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Abstract. In a real social network, each user has attributes for self-
description called user attributes which are semantically hierarchical.
With these attributes, we can implement personalized services such
as user classification and targeted recommendations. Most traditional
approaches mainly focus on the flat inference problem without consid-
ering the semantic hierarchy of user attributes which will cause seri-
ous inconsistency in multilevel tasks. To address these issues, in this
paper, we propose a cross-level model called IWM. It is based on the
theory of maximum entropy which collects attribute information by
mining the global graph structure. Meanwhile, we propose a correction
method based on the predefined hierarchy to realize the mutual correc-
tion between different layers of attributes. Finally, we conduct extensive
verification experiments on the DBLP data set and it has been proved
that compared with other algorithms, our method has a superior effect.
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1 Introduction

In a social network, each user has a series of labels used to describe their charac-
teristics called user attributes. However, for a certain type of attributes, they are
not flat but hierarchical. The most existing methods [4,5] mainly focus on the
single-level attribute inference and it will bring some problems for hierarchical
structures as shown in Fig. 1. Even though utilizing the same method for every
single-level, the attributes of different level may be conflicted for the same user,
attributes at the same level may be indeterminate, and the results of a certain
layer may be missing.

In this paper, we propose a multi-level inference model named IWM to solve
the problems mentioned above. This model can infer hierarchical attributes
for unknown users by collecting attributes from nearby users under maximum
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(a) conflict (b) indeterminacy (c) missing

Fig. 1. Problems of labeling in real social networks

entropy random walk. Meanwhile, we propose a correction method based on the
predefined hierarchy of attributes to revise the results. Finally, we conduct the
experiments on real datasets to validate the effectiveness of our method.

The rest of the paper is organized as follows. Section 2 defines the problem.
Section 3 proposes the multilevel inference model. Algorithm is given in Sect. 4.
The experimental results and analysis are presented in Sect. 5. The related works
are introduced in Sect. 6. Finally, we conclude this paper in Sect. 7.

2 Problem Definition

2.1 Semantic Tree

The semantic tree T is a predefined structure which is semantically exists used
to describe the hierarchical relationship between different user attributes. We
use Tg to represent the user attributes at T ’s gth layer.

2.2 Labeled Graph

Labeled graph is a simple undirected graph, denoted as G = (V,E, T, L), where V
is the set of vertices and E is the set of edges. T is the semantic tree of attributes in
G. L is a function mapping V to a cartesian product of the attributes in T defined
as L : V → T1 × T2 × · · · × Tm, where m is the depth of T .

Problem Statement: Given a labeled graph G(V,E, T, L) and labeled vertices
set Vs ⊂ V , where Vs is the set of vertices with complete attributes. So for every
vertex vs ∈ Vs, L(vs) = {l1, l2, · · · , lm}, where l1 ∈ T1, l2 ∈ T2, · · · , lm ∈ Tm.
The input of the problem is L(vs) for every vertex vs ∈ Vs and the output is
L(vu) for every vertex vu ∈ Vu, where Vu = V − Vs.

3 Attribute Inference Model

Our attribute inference model can be divided into two parts. The first part
is called the information propagation model. Based on the maximum entropy
theory and one step random walk, vertices in Vs spread their own attributes to
other vertices layer by layer. The second part is a correction model based on the
semantic tree. This model realizes the mutual correction between different layers
of attributes. These two models are described in detail below.
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3.1 Information Propagation Model

The information propagation model is an extension of the model proposed in [7].
The main idea is that the higher the entropy value of the vertex, the stronger the
uncertainty of its own user attributes, so more information should be collected.
The attributes of vj ’s each layer can be represented by Lg(vj) = {lx, wx(vj), lx ∈
Tg}. Then the entropy value of vj ’s gth layer Hg(vj) can be calculated as blow.

Hg(vj) = −
∑

lx∈Tg

wx(vj) × ln wx(vj) (1)

If vi is a neighbor of vj , then the transition probability Pg(vi, vj) from vi to vj
at gth layer is computed as follows.

Pg(vi, vj) =
Hg(vj)∑

vj∈N(vi)
Hg(vj)

(2)

Where N(vi) is the set of neighbors of vj .
Next, we use the following equation to normalize the attribute probability

obtained by different vertices.

wx(vj) =

∑
vi∈N(vj)

Pg(vi, vj) × wx(vi)∑
ly∈Tg

∑
vi∈N(vj)

Pg(vi, vj) × wy(vi)
(3)

Lg(vj) will be updated through wx(vj). In this way, the attribute information is
spread hierarchically in the graph.

3.2 Attribute Correction Model

The formal definitions of the concepts involved in this section are given below.

Definition 1. Define the following relationships in the semantic tree:

(1) If x2 is a child node of x1, then x1, x2 have a relationship called
Child(x1, x2).

(2) Say that x1, x2 have a descendant relationship called Descendant(x1, x2),if
Child(x1, x2) ∪ ∃x3(Child(x1, x3) ∩ Descendant(x3, x2)).

(3) If x2 is a brother node of x1, then x1, x2 have a relationship called
Brother(x1, x2).

Definition 2 (Descendant vertex set). For a node x1, its descendant node
set is defined as DesSet(x1) = {x|Descendant(x1, x)}.
Definition 3 (Brother vertex set). For a node x1, its brother node set is
defined as BroSet(x1) = {x|Brother(x1, x)}.



Multilevel Inference Mechanism for User Attributes 713

For the attribute lx in the middle layer of the semantic tree, its existence
depends on both Parent(x) and DesSet(x), so wx(vj) can be corrected by
Eq. (4).

wx(vj) = wParent(x)(vj) × (1 − α) × wx(vj) + α × ∑
y∈DesSet(x) wy(vj)∑

z(1 − α) × wz(vj) + α × ∑
y∈DesSet(z) wy(vj)

(4)

where z ∈ BroSet(x) and α represents a correction strength. When the value of
α is large, the result is inclined to the hierarchy of the semantic tree, otherwise,
it is more inclined to the information collected by propagation.

There is another case that the highest layer attributes don’t have any child
node, so they can be corrected as follows.

wx(vj) = wParent(x)(vj) × wx(vj)∑
z∈BroSet(x) wz(vj)

(5)

4 Attribute Inference Algorithm

4.1 Algorithm Description

The detailed steps of the algorithm are shown in Algorithm 1. Firstly, we use
Eq. (1) to calculate entropy Hg(vu) for all vu ∈ Vu layer by layer (line 1 to 3).
Line 4 to 9 start inferring hierarchically. After all layers’ information are col-
lected, correction can be performed by Eq. (4) or Eq. (5) (line 10 to 11).

Algorithm 1. Cross-level Attribute Inference(G,Vs)
Input: G(V, E, T, L) and Vs.
Output:L(vu) for every vertex vu ∈ Vu.

1: for every layer g in T do
2: for every vertex vu ∈ Vu do
3: compute Hg(vu)
4: for every vertex vu ∈ Vu do
5: for every layer g in T do
6: for every vertex vi ∈ N(vu) do
7: compute Pg(vi, vu)
8: for every attribute lx ∈ Tg do
9: compute wx(vu)

10: for every attribute lx ∈ T do
11: correct wx(vu)
12: if

∑

vu∈Vu

∑

lx∈T

|diffwx(vj)| ≤ |Vu| × |T | × σ then

13: return L(vu) for every vertex vu ∈ Vu

14: else
15: return step 1
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The algorithm terminates when the convergence is satisfied. The condition
of convergence is given by the following equation.

∑

vu∈Vu

∑

lx∈T

|diffwx(vu)| ≤ |Vu| × |T | × σ (6)

where diff(wx(vu)) is the difference on wx(vu) after the inference algorithm is
executed, and σ is a threshold to control the number of iterations.

4.2 Time Complexity

We assume that the labeled graph G has n vertices and p attributes, the seman-
tic tree has m layers. So the time complexity of information propagation is
O(m|Vu| + mnd + pnd) = O(mnd + pnd), where d is the average degree of all
the vertices in G. After that, we need to modify every attribute for each user by
the complexity of O(pn). To sum up, the total time complexity of our algorithm
for one iteration is O(mnd + pn).

5 Experiment

The experiments are performed on a Windows 10 PC with Intel Core i5 CPU
and 8 GB memory. Our algorithms are implemented in Python 3.7. The default
parameter values in the experiment are α = 0.5, σ = 0.0001.

5.1 Experimental Settings

Dataset. We will study the performance on DBLP dataset. DBLP is a computer
literature database system. Each author is a vertex and their research field is
used as the attributes to be inferred. We extract 63 representative attributes
and define a 4-layer semantic tree in advance.

Baselines and Evaluation Metrics. We compare our method IWM with three
classic attribute inference baselines which are SVM, Community Detection (CD)
[6] and Traditional Random Walk (TRW) [7].

We use five commonly metrics to make a comprehensive evaluation of the
inference results. The calculation method of these metrics are shown below.

Precison =
∑

l∈T |{vu|vu ∈ Vu ∧ l ∈ Predict(vu) ∩ Real(vu)}|∑
l∈T |{vu|vu ∈ Vu ∧ l ∈ Predict(vu)}| (7)

Recall =
∑

l∈T |{vu|vu ∈ Vu ∧ l ∈ Predict(vu) ∩ Real(vu)}|∑
l∈T |{vu|vu ∈ Vu ∧ l ∈ Real(vu)}| (8)
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F1 =
2 × Precision × Recall

Precision + Recall
(9)

Accuracy =
1

|Vu| × |{vu|vu ∈ Vu ∧ Predict(vu) = Real(vu)}| (10)

Jaccard =
1

|Vu| ×
∑

vu∈Vu

|Predict(vu) ∩ Real(vu)|
|Predict(vu) ∪ Real(vu)| (11)

where Predict(vu) and Real(vu) respectively represent the inference result set
and real original attribute set of vu. For all metrics, the larger value means the
better performance.

5.2 Results and Analysis

Exp1-Impact of Vertex Size. We conduct the first experiment in coauthor
relationship networks with 5, 000, 10, 000, 20, 000, and 40, 000 vertices. The pro-
portion of unknown vertices is 30% (Table 1).

Table 1. Inference performance on different vertex size.

Vertex size Method Precision Recall F1 Mean-Acc Jaccard

Layer2 Layer3 Layer4 Mean-Pre Layer2 Layer3 Layer4 Mean-Rec Layer2 Layer3 Layer4 Mean-F1

5000 SVM 0.6410 0.5460 0.4700 0.5640 0.5630 0.5070 0.4450 0.5260 0.5810 0.5100 0.4300 0.5200 0.5021 0.6611

CD 0.8428 0.6347 0.2117 0.4384 0.8307 0.6839 0.5718 0.6949 0.8364 0.6581 0.3078 0.5368 0.5180 0.5888

TRW 0.8721 0.6423 0.6423 0.4099 0.8754 0.7554 0.7317 0.7867 0.8735 0.6931 0.3153 0.5377 0.6171 0.6446

IWM 0.9552 0.8310 0.8310 0.7773 0.8629 0.7518 0.6867 0.7666 0.9067 0.7892 0.6364 0.7718 0.7604 0.7187

10000 SVM 0.8070 0.5800 0.4870 0.5180 0.6090 0.4860 0.4400 0.4480 0.6640 0.4990 0.4340 0.4490 0.4650 0.6314

CD 0.7852 0.6427 0.2074 0.4488 0.7591 0.6106 0.4596 0.6103 0.7720 0.6259 0.2848 0.5164 0.3871 0.5109

TRW 0.8309 0.6388 0.6388 0.3505 0.8632 0.7269 0.7099 0.7653 0.8466 0.6798 0.2583 0.4803 0.5815 0.6181

IWM 0.9492 0.8373 0.8373 0.7655 0.8465 0.7354 0.6769 0.7526 0.8949 0.7830 0.6170 0.7591 0.7288 0.7003

20000 SVM 0.7400 0.5440 0.4460 0.5220 0.5320 0.4620 0.3920 0.4290 0.5820 0.4730 0.3980 0.4440 0.4260 0.6058

CD 0.7602 0.6099 0.1888 0.4176 0.7332 0.6020 0.4423 0.5935 0.7463 0.6053 0.2634 0.4895 0.3579 0.4848

TRW 0.8294 0.6063 0.6063 0.3143 0.8392 0.7418 0.6817 0.7446 0.8342 0.6561 0.2243 0.4418 0.5296 0.5810

IWM 0.9396 0.8170 0.8170 0.7436 0.8372 0.7218 0.6526 0.7372 0.8854 0.7664 0.5895 0.7403 0.6924 0.6688

40000 SVM 0.7489 0.6167 0.4311 0.4850 0.4811 0.4522 0.3589 0.3950 0.5444 0.4911 0.3622 0.4050 0.3378 0.5473

CD 0.7458 0.5333 0.1928 0.4547 0.6855 0.4669 0.2568 0.4710 0.7143 0.4979 0.2200 0.4626 0.1579 0.3797

TRW 0.8093 0.5888 0.5888 0.2870 0.8347 0.7059 0.6629 0.7340 0.8214 0.6419 0.2006 0.4125 0.4652 0.5572

IWM 0.9360 0.8061 0.8061 0.7270 0.8344 0.7169 0.6349 0.7284 0.8817 0.7587 0.5667 0.7276 0.6561 0.6642

It is obvious that our method shows the best performance on different eval-
uation indicators. For examplewhen it comes to a 20,000 vertices network, our
model improves over the strongest baseline 22.2%, 35.1%, 16.3% and 6.3% on
Precision, F1, Accuracy, and Jaccard index, separately. In terms of recall, our
method does not have obvious advantages over TRW.

Exp2-Impact of the Proportion of Unknown Vertices. In Exp2 the vertex
scale of the network is 20, 000 and we set the unlabeled scale 10%, 20%, 30%,
and 50% respectively.
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(a) Precision (b) Recall (c) F1 (d) Accuracy (e) Jaccard

Fig. 2. Inference performance on different proportion of unknown vertices

We can analyze the results to get that as the proportion of unknown vertices
increases, the decline tendency of our method is much slower than other methods.
It is interesting to see that the five evaluate indicators of our method are 71.77%,
72.17%, 71.96%, 64.21% and 65.43% at the condition of 50% vertices lack of
attributes which can show that it has a great value in practical applications.

Exp3-Real Case Study. In Table 2 we present partial results of the experiment
which gives a clear comparison between our method and TRW. We use these
examples to demonstrate the effectiveness of our method.

Table 2. Comparison of inference results by TRW and IWM.

Author True label TRW result IWM result

Layer2 Layer3 Layer4 Layer2 Layer3 Layer4 Layer2 Layer3 Layer4

Chris Stolte Data Database Query Unknown Database Query Data Database Query

Marcel Kyas Network Wireless Localization Network Databse Localization Network Wireless Localization

William Deitrick Data Mining Clusters Network, Data Unknown Clusters Data Mining Clusters

V. Dhanalakshmi Learning Language Extraction Unknown Classification Speech Learning Language Speech

For Chris Stolte, IWM can complement the missing information which can’t
be inferred by TRW. For Marcel Kyas, our method modify the error information
on Layer 3 and obtain the correct result. TRW causes indeterminacy problem
on Layer2 of William Deitrick, while IWM can select more relevant attributes.
However, for V. Dhanalakshmi, due to its special structure, when most of the
collected information is interference, IWM can’t make correct inference either.

6 Related Work

There has been an increasing interest in the inference of single-layer user
attributes over the last several years.

Firstly, based on resource content there are [1,11] which utilize the user’s
text content for inference. [3] constructs a social-behavior-attribute network and
design a vote distribution algorithm to perform inference. There are also meth-
ods based on the analysis of graph structure such as Local Community Detection
[6] and Label Propagation [12]. [10] discovers the correlation between item rec-
ommendation and attribute reasoning, so they use an Adaptive Graph Convo-
lutional Network to joint these two tasks. However, these methods don’t explore
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the relationship existing in the attribute hierarchy, which will greatly reduce the
effectiveness in our multilevel problem.

Another method is to build a classifier to treat the inference problem as a
multilevel classification problem. [2] trains a binary classifier for each attribute.
[8] trains a multi-classifier for each parent node in the hierarchy. [9] trains a
classifier for each layer in the hierarchical structure, and use it in combination
with [8] to solve the inconsistency. However, classifier-based approaches have a
high requirement for data quality. It will make the construction of the classifier
complicated and the amount of calculation for training is huge.

7 Conclusion

In this paper, we study the multilevel user attribute inference problem. We first
define the problem and propose the concept of semantic tree and labeled graph.
We present a new method to solve this problem. The information propagation
model is proposed to collect attributes for preliminary inference. The attribute
correction model is proposed to conduct a cross-level correction. Experimental
results on real-world data sets have demonstrated the superior performance of
our new method. In future work, we will improve our method for multi-category
attributes and do more works on optimizing the algorithm to save more time.
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