
Finding the Optimal Path over Multi-Cost Graphs

Yajun Yang †1, Jeffrey Xu Yu ‡2, Hong Gao †3, Jianzhong Li †4
†Harbin Institute of Technology, China

‡The Chinese University of Hong Kong, China
1,3,4{yjyang, honggao, lijzh}@hit.edu.cn, 2 yu@se.cuhk.edu.hk

ABSTRACT
Shortest path query is an important problem in graphs and has been
well-studied. However, most approaches for shortest path query
are based on single-cost (weight) graphs. In this paper, we intro-
duce the definition of multi-cost graph and study a novel query: the
optimal path query over multi-cost graphs. We propose a best-first
branch and bound search algorithm with two optimizing strategies.
Furthermore, we propose a novel index named k-cluster index to
make our method more space and time efficient for large graphs.
We discuss how to construct and utilize k-cluster index. We con-
firm the effectiveness and efficiency of our algorithms using real-
life datasets in experiments.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval

General Terms
Algorithms

Keywords
Multi-cost graphs, optimal path, non-linear functions

1. INTRODUCTION
Graphs have been widely used to model complex relationships

among various entities in real applications. Shortest path query in
graphs is an important problem and has been well-studied. How-
ever, most of existing works assume that there is a single cost type
on edges. In fact, the edges may have multiple cost types to de-
scribe the relationships among various entities. In a transportation
network, there are several cost types to measure an edge(representing
a highway) between two cities, such as length, traveling time, toll
fee, etc. We call a graph multi-cost graph if there are several cost
types on edges. In real applications, these cost types coexist and
may collectively affect the decisions of users. It is unadvisable to
choose a shortest path by a single cost type. For example, in trans-
portation network, the summed toll fee of the path with the shortest

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’12, October 29–November 2, 2012, Maui, HI, USA.
Copyright 2012 ACM 978-1-4503-1156-4/12/10 ...$15.00.

length may be too expensive to accept. In this case, users prefer
to choose a path which is slightly longer than the shortest path but
its toll fee is very low. Therefore, it is important to find an optimal
path under global consideration according to user’s preference.

We utilize a score function f(·) to measure the importance of
paths in multi-cost graphs. f(·) calculates an overall score for a
path according to all cost types of this path. Given a score function
f(·), starting vertex s and ending vertex t, in this paper, our objec-
tive is to find a path from s to t that has the minimum score. This
path is said to be the optimal path from s to t under function f(·).
To the best of our knowledge, our paper is the first research work
about the optimal path query over multi-cost graphs.

All existing works for shortest path problem utilize the follow-
ing property: any sub-path of a shortest path is also a shortest path.
Unfortunately, this property does not hold in multi-cost graphs if
score function is non-linear(detailed in section 2). Thus, all exist-
ing methods cannot solve the optimal path problem over multi-cost
graphs. As analysis in the works about transportation problem[4],
the non-linear score functions are existent and reasonable.

The main contributions are summarized below. Given a multi-
cost graph G, score function f(·), starting vertex s and ending
vertex t. First, we define a novel optimal path query over multi-
cost graphs. Second, we propose a best-first branch and bound
search algorithm with two optimizing strategies. Third, we propose
a novel index for multi-cost graphs, named k-cluster index, which
makes our method more efficient for large graphs. k-cluster index
is with lower space cost than naive index. Fourth, we introduce
how to answer the optimal path query over multi-cost graphs by k-
cluster index. Finally, we confirm the effectiveness and efficiency
of our algorithms using real-life datasets.

2. PROBLEM STATEMENT
A multi-cost graph is a simple directed graph, denoted as G =

(V, E), where V is the set of vertices and E is the set of edges.
Each edge e ∈ E is represented by e = (u, v), u, v ∈ V , e is
called u’s outgoing edge or v’s incoming edge and v(or u) is called
u(or v)’s outgoing(or incoming) neighbor. Each edge e ∈ E is as-
signed a cost vector cost(e), cost(e) = (c1, c2, · · · , cd), where
ci is the i-th cost value of edge e according to the d cost types in-
volved in decision making. For example, in transportation network,
an edge e between city A and B represents a highway from A to B.
cost(e) = (c1, c2, c3) is a 3-dimensional cost vector of e, where c1

would be the Euclidean distance between A and B, c2 would be the
driving time from A to B, and c3 could be the toll fee, etc. In this
paper, we assume ci ≥ 0. This assumption is reasonable, because
the cost cannot be less than zero in real applications. Our work
can be easily extended to handle undirected graphs, an undirected
edge e = (u, v) is equivalent to two directed edges e1 = (u, v)

2124

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2396761.2398586&domain=pdf&date_stamp=2012-10-29

s a

b

d

c

t

r

(0.5,4) (0.5,2)

(2,3)

(2,1) (3,3)

(1,1)(5,3)

(5,1)

(3,3)

Figure 1: An example of multi-cost graph G(V, E)

and e2 = (v, u), where cost(e1) = cost(e2) = cost(e). For
simplicity, we only discuss directed graphs in following.

A path p is a sequence of vertices (v0, v1, · · · , vl), where vi ∈
V (0 ≤ i ≤ l) and ei = (vi−1, vi) ∈ E(0 < i ≤ l). p is simple
if and only if there is no repeated vertex in p, i.e., vi 6= vj , for any
i 6= j, 0 ≤ i, j ≤ l. The cost vector cost(p) of path p is the vector
sum of its constituent edges. Let {e1, e2, · · · , el} be the set of con-
stituent edges of path p and let cost(p) = (c1(p), c2(p), · · · , cd(p))

be the cost vector of path p. Then, cost(p) =
∑l

j=1 cost(ej).
Here, ci(p) =

∑l
j=1 ci(ej), 0 ≤ i ≤ d. Note that ci(p) and

ci(ej) are the i-th cost value of cost(p) and cost(ej) respectively.
Score function f(·) is an aggregate function specified by user

in multi-dimensional space. For each data object, f(·) aggregates
its values on all dimensions to one overall score. Generally, the
best object is the object with the minimum score. In this paper,
f(·) computes score of a path p according to cost(p), i.e., f(p) =
f(c1(p), c2(p), · · · , cd(p)). Here, f(p) equals to f(cost(p)). For
simplicity, we use f(p) in following paper. We assume function
f(·) is monotone increasing, i.e., for any two different paths p and
p′, if (∀i, ci(p) ≤ ci(p

′)) ∧ (∃i, ci(p) < ci(p
′)), then f(p) <

f(p′). The restriction of monotonicity is a common property and it
is reasonable[2]. Its intuitive meaning is that: if all costs of a path p
are less than that of another path p′, then the overall score of p is at
least good as p′. The definition of the optimal path over multi-cost
graphs is given as below:

Definition 2.1: (Optimal Path) Given a multi-cost graph G(V, E)
and score function f(·), s, t ∈ V are any two different vertices
in G. Let Ps,t represent the set of all simple paths from s to t in
G. The optimal path from s to t, denoted as sp(s, t), is a path
in G that has the minimum score among all paths in Ps,t, that is,
f(sp(s, t)) ≤ f(p) for any p ∈ Ps,t. 2

The problem of the optimal path query over multi-cost graphs is
given as follows:

Problem Statement: Given a multi-cost graph G(V, E), score
function f(·), starting vertex s and ending vertex t. Find the opti-
mal path sp(s, t) from s to t such that f(sp(s, t)) is minimum.

If score function f(·) is linear, i.e., for any two edges ei and
ej (i 6= j), f(ei + ej) = f(ei) + f(ej), We only need to con-
sider f(e) as edge e’s single-one weight. We apply existing al-
gorithm, e.g., Dijkstra algorithm, to compute the shortest path ac-
cording to weight f(e). This shortest path is exactly the optimal
path for our problem. Otherwise, there is another path p′ such that
f(p′) < f(p). By the linearity of score function f(·), we have
f(p′) = f(

∑l
i=1 e′i) =

∑l
i=1 f(e′i) < f(p) = f(

∑r
i=1 ei) =∑r

i=1 f(ei), which is in contradiction to the correctness of the
shortest path (Dijkstra) algorithm.

If score function f(·) is non-linear, i.e., f(ei + ej) 6= f(ei) +
f(ej), then existing methods cannot solve our problem. The frame-
works of these methods are that: build an index to maintain the
shortest paths between any two vertices in index. Given a query,
algorithms first retrieve the shortest paths to be visited inside in-
dex and then concatenate them by the shortest paths outside index.
All these methods utilize the following property: any sub-path of

a shortest path is also a shortest path. Hence, they only need to
maintain the shortest paths for any two vertices in index. However,
the optimal sub-path property does not hold in multi-cost graphs if
score function is non-linear. As shown in Fig. 1, the score function
is f(x, y) = x2 + y2. We find that the optimal path from s to r is
s → a → c → r. Here, the sub-path p : s → a → c is not the
optimal path from s to c, because its score is f(1, 6) = 37, which
is larger than the score f(4, 4) = 32 of path p′ : s → b → c. It
states the sub-path of the optimal path may not be an optimal path.

3. BRANCH AND BOUND ALGORITHM
In this section, we propose a best-first branch and bound search

algorithm with two optimizing strategies.

3.1 Basic Algorithm
Given a multi-cost graph G(V, E), score function f(·), starting

vertex s and ending vertex t, all possible paths started from s in G
can be organized in a search tree. Here, the root node represents
starting vertex set {s}, and any non-root node represents a path
started from s. Let C and C′ be two nodes in the search tree and
they represent two different paths started from s in G. The node
C is the parent of another node C′ if they satisfy the following
two conditions: (i) C ⊂ C′ and |C′| = |C| + 1; (ii) the only
vertex v ∈ C′ \ C satisfies v /∈ C and v ∈ N+(u), where u is
the ending vertex of C and N+(u) is the outgoing neighbor set of
u. C ⊂ C′ implies C is a path prefix of C′, |C| represents the
number of vertices in C. v /∈ C guarantees there does not exist
circle if append v to C, i.e., C′ is a simple path. With the search
tree, the problem to find the optimal path from s to t in G becomes a
tree searching problem. That is to find a node C, where the ending
vertex of C is t, such that in the search tree C has the minimum
score f(C) no larger than any other C′ whose ending vertex is t.
In the following, we use C to refer a node in the search tree as well
as the path it representing.

We use a min-heap H to maintain the nodes to be visited in the
search tree. The nodes in H are sorted by their scores. We initial-
ize H only with the starting vertex set {s}. Our algorithm performs
best-first branch and bound search over the search tree by repeat-
edly popping up the top element C, which has the minimum score
f(C) in H . Below, let τ indicate the current minimum f(C) of C
whose ending vertex is t. Initially, τ = ∞.

For a node C, if f(C) > τ , then there does not exist the optimal
path from s to t in the subtree rooted at C. Thus, we can prune
this branch safely. Lemma 3.1 guarantees the correctness of this
pruning rule.

Lemma 3.1: For any two nodes C and C′ in the search tree, if C
is an ancestor of C′, then f(C′) > f(C). 2

The correctness of Lemma 3.1 can be proved by the monotonic-
ity of function f(·).

When a node C pops up from H , algorithm will expand C by
processing the children of C in search tree. Assume that the ending
vertex of C is u. For any v ∈ N+(u), we first check whether there
exists a circle if append v to C, i.e., v ∈ C or not. If v /∈ C, we
calculate the score f(C′) for node C′ = C ∪ {v}, C′ is a child
of C and its ending vertex is v. In case of v 6= t, if f(C′) ≥ τ ,
by Lemma 3.1, we can safely prune the subtree rooted at C′. If
f(C′) < τ , we insert C′ into H . In case of v = t, C′ is a path
from s to t. If f(C′) < τ , we use C′ instead of the current optimal
path from s to t and update τ by f(C′). C′ will not be inserted into
H when its ending vertex is t.

The algorithm terminates when H = ∅, or the score f(C) ≥ τ
for the top element C in H . When the algorithm terminates, the

2125

Algorithm 1 FIND-sp(s, t)-best-first-SEARCH (G, s, t, f(·))
Input: G, starting vertex s, ending vertex t and function f(·)
Output: optimal path sp(s, t) based on function f(·).

1: τ ←∞, sp(s, t) ← ∅, H ← {s}, cost({s}) ← 0;
2: while H 6= ∅ do
3: let C be the path by popping up the top element from H and

end(C) = u; //end(C) is the ending vertex of C.
4: if f(C) ≥ τ then
5: break;
6: for each vertex v, v ∈ N+(u) ∧ v /∈ C do
7: C′ ← C ∪ {v}; f(C′) ← f(C + (u, v));
8: if v = t then
9: if f(C′) < τ then

10: τ ← f(C′); sp(s, t) ← C′; continue;
11: else
12: LB(C′) ← f(C′ + Φv,t);
13: if f(C′) ≥ τ then
14: prune the subtree rooted at C′; continue;
15: if ∃p ∈ SKYP(s, v), p ≺ C′ then
16: prune the subtree rooted at C′; continue;
17: else
18: SKYP(s, v) ← SKYP(s, v) ∪ {C′};
19: for each p ∈ SKYP(s, v) do
20: if C′ ≺ p then
21: SKYP(s, v) ← SKYP(s, v)− {p};
22: if LB(C′) ≥ τ then
23: prune the subtree rooted at C′; continue;
24: insert C′ into H according to f(C′);
25: return sp(s, t), τ ;

current optimal path corresponding to τ is the answer. The best-
first branch-and-bound algorithm is shown in Algorithm 1.

3.2 Pruning Rules
To further enhance the power of pruning, we develop two prun-

ing rules. We first introduce the definition of skyline path before
giving these rules.

Definition 3.1: (Path Dominate) Given a multi-cost graph G(V, E),
p and p′ are two different paths in G. We say p dominates p′, de-
noted as p ≺ p′, iff for ∀i(1 ≤ i ≤ d), ci(p) ≤ ci(p

′), and
∃i(1 ≤ i ≤ d), ci(p) < ci(p

′). Here, ci(p) and ci(p
′) are the i-th

cost value of cost(p) and cost(p′). 2

Definition 3.2: (Skyline Path) Given a multi-cost graph G(V, E)
and two vertices u, v ∈ V . Let Pu,v denote the set of all paths
from u to v in G. A path p is said to be a skyline path from u to v
if and only if p cannot be dominated by any other path p′ in Pu,v ,
i.e., @p′ ∈ Pu,v , p′ ≺ p. 2

Skyline path based pruning: For any vertex u ∈ G, we use a
set SKYP(s, u) to maintain the skyline paths from s to u that have
been searched up to now. Initially, SKYP(s, u) = ∅. Given a node
C, assume that the ending vertex of C is u. If ∃p ∈ SKYP(s, u),
p ≺ C, then the subtree rooted at C can be pruned safely, otherwise
path C should be inserted into SKYP(s, u). In addition, if ∃p ∈
SKYP(s, u), C ≺ p, then p should be removed from SKYP(s, u).
Lemma 3.2 guarantees the correctness of this pruning rule.

Lemma 3.2: Let C and C′ are two different nodes in the search
tree and both of their ending vertices are u. If C′ ≺ C, then the
optimal path from s to t cannot be in the subtree rooted at C. 2

The correctness of Lemma 3.2 can be proved by the monotonic-
ity of function f(·).

Next, we introduce the definition of the Lower Bound of Optimal
Path(LBOP) and then give the second pruning rule.

Definition 3.3: (Lower Bound of Optimal Path(LBOP)) Given
a multi-cost graph G(V, E). Each edge e ∈ E has a cost vector
cost(e), cost(e) = (c1(e), · · · , cd(e)). G1, · · · ,Gd are d weighted
graphs, Gi = (V, E). The weight of any edge e in Gi is ci(e). Gi is
said to be a weighted graph based on i-th cost value in G. For any
two vertices u and v,Pu,v = {P(u,v);1, · · · ,P(u,v);d} is called the
set of single-one cost shortest paths from u to v, where P(u,v);i

is the weighted shortest path from u to v in Gi. The cost of P(u,v);i

is φ(u,v);i. We say cost vector Φu,v = (φ(u,v);1, · · · , φ(u,v);d) is
the lower bound of optimal path (LBOP) from u to v in G. 2

LBOP based pruning: We pre-compute Φu,v for any two vertices
u and v in G. Given a node C, let the ending vertex of C be u.
We estimate a lower bound LB(C) according to Φu,t, LB(C) =
f(C + Φu,t). LB(C) indicates the lower bound of the score of
any path whose ending vertex is t in the subtree rooted at C. If
LB(C) ≥ τ , then the subtree rooted at C can be pruned safely.
Lemma 3.3 guarantees the correctness of this pruning strategy.

Lemma 3.3: Let C be a node in search tree. LB(C) ≥ τ . If C̃ is
a path ended at t in the subtree rooted at C. then f(C̃) ≥ τ . 2

The correctness of Lemma 3.3 can be proved by the monotonic-
ity of function f(·).

4. K-CLUSTER INDEX
We note that the branch and bound algorithm need to maintain

Φu,v for every two vertices u and v in G, which is too expensive
for large graphs. In addition, the time cost is also expensive for
large graphs. Next, we propose a new index named k-cluster index,
which has small space cost and perform well on large graphs. We
introduce what is k-cluster index and how to construct it.

4.1 What Is The K-Cluster Index?
Definition 4.1: (K-Cluster) Given a graph G(V, E), k-cluster is
a partition {V1, · · · , Vk} of V , such that: (1) for ∀Vi, Vj(i 6= j),
Vi ∩ Vj = ∅; (2)V =

⋃
1≤i≤k Vi. Each Vi ⊆ V is called a

cluster in G. A vertex v is said to be an entry of cluster Vi, if (1)
v ∈ Vi; and (2) ∃u, u /∈ Vi ∧ u ∈ N−(v). Similarly, A vertex
v is said to be an exit of cluster Vi, if (1) v ∈ Vi; and (2) ∃u,
u /∈ Vi ∧ u ∈ N+(v). N−(v) and N+(v) are v’s incoming and
outgoing neighbor set, respectively. Entries and exits are also said
to be the border vertices. 2

We use V.entry and V.exit to denote the entry set and exit set
of G, respectively. Obviously, V.entry =

⋃
1≤i≤k Vi.entry and

V.exit =
⋃

1≤i≤k Vi.exit, where Vi.entry and Vi.exit are entry
set and exit set of cluster Vi.

A k-cluster index includes two parts: inter-index and inner-index.
Inter-index: Inter-index maintains the LBOP for every pair of

border vertex and entry in G. It is essentially a matrix whose size is
(|V.exit|+ |V.entry|)× |V.entry|. Each row represents a border
vertex (entry or exit) u in G and each column represents an entry v
in G. Each cell Au,v indicates the LBOP Φu,v from u to v.

Inner-index: Inner-index contains k sub-indices, where each
sub-index Ix corresponds to a cluster Vx. Each sub-index Ix con-
tains two components: (i) Skyline-Path-Inner-Index IS

x ; and (ii)
LBOP-Inner-Index IL

x .
Skyline-Path-Inner-Index IS

x in cluster Vx is a collection of the
sets of skyline paths for every pair of entry and exit in Vx, i.e.,
IS

x = {SKYPx(u, v)|u ∈ Vx.entry, v ∈ Vx.exit}. SKYPx(u, v)
is the set of skyline paths from u to v in Gx, where Gx is the
induced subgraph of Vx on G. Note that the paths in SKYPx(u, v)
only pass through the vertices in Vx.

2126

LBOP-Inner-Index IL
x in cluster Vx is a |Vx| × |Vx| matrix to

maintain LBOPs for every two vertices u, v ∈ Vx. Similar to inter-
index, each cell Au,v indicates the LBOP Φu,v from u to v.

By inter-index and LBOP-inner-index, we can compute Φs,t for
any two vertices s and t in G. Given two vertices s and t, we
first identify the clusters which contain s and t respectively. Let
Vs and Vt denote the clusters that contain s and t respectively. If
Vs = Vt, we can directly retrieve Φs,t from LBOP-inner-index IL

s .
If Vs 6= Vt, we give Lemma 4.1 to help us to compute Φs,t.

Lemma 4.1: Given a multi-cost graph G and two vertices s and t,
let Vs and Vt be the clusters that contain s and t respectively, Vs 6=
Vt. Φs,t is the LBOP from s to t, Φs,t = (φ(s,t);1, · · · , φ(s,t);d).
For any entry v ∈ Vt.entry, Φs,v and Φv,t are LBOP from s to v
and LBOP from v to t respectively. Φs,v = (φ(s,v);1, · · · , φ(s,v);d)
and Φv,t = (φ(v,t);1, · · · , φ(v,t);d). Then, for ∀i(1 ≤ i ≤ d), we
have φ(s,t);i = min{φ(s,v);i + φ(v,t);i|v ∈ Vt.entry}. 2

Proof Sketch: By the definition of LBOP, φ(s,t);i is the cost of
single-one cost shortest path P(s,t);i in Gi. Obviously, P(s,t);i

passes through a vertex in Vt.entry. Without loss of generality,
assume this vertex is v. P(s,t);i can be divided into two segments:
(i) sub-path from s to v; and (ii) sub-path from v to t. φ(s,v);i

and φ(v,t);i are the costs of shortest paths from s to v and from v
to t respectively in Gi, then φ(s,v);i + φ(v,t);i ≤ φ(s,t);i. On the
other hand, φ(s,t);i is the minimum cost among all paths from s
to t, then φ(s,t);i ≤ φ(s,v);i + φ(v,t);i. Then we have φ(s,t);i =
φ(s,v);i + φ(v,t);i. Next, we prove v is the vertex that minimizes
φ(s,v);i+φ(v,t);i. This is correct otherwiseP(s,t);i is not the single-
one cost shortest path in Gi. Therefore, Lemma 4.1 is proved. 2

We compute Φs,t in two cases: (i) s ∈ Vs.entry ∪ Vs.exit; and
(ii) s /∈ Vs.entry∪Vs.exit. For case (i), we first compute φ(s,v);i+
φ(v,t);i for all v ∈ Vt.entry. Note that φ(s,v);i and φ(v,t);i can be
retrieved from inter-index and LBOP-inner-index IL

t respectively.
By Lemma 4.1, we select the minimum φ(s,v);i+φ(v,t);i as φ(s,t),i,
which is the i-th cost value of Φs,t. For case (ii), φ(s,v);i cannot be
retrieved from inter-index directly. We compute φ(s,v);i as follows:
We first retrieve φ(s,u);i from LBOP-inner-index IL

s and φ(u,v);i

from inter-index for every u ∈ Vs.exit. By Lemma 4.1, we select
min{φ(s,u);i +φ(u,v);i|u ∈ Vs.exit} as φ(s,v);i, and then compute
φ(s,t),i as similar as case (i).

4.2 How to Construct K-Cluster Index?

4.2.1 Inter-index and LBOP-inner-index
Inter-index and LBOP-inner-index IL

x in each cluster Vx can be
constructed easily. For LBOP-inner-index IL

x , we adopt existing
shortest path algorithm to compute Φu,v for any two vertex u, v ∈
Vx. For inter-index, we compute Φu,v for any u ∈ V.entry ∪
V.exit and v ∈ V.entry. Note that: if entry u and exit v are in the
same cluster Vx, we do not need to maintain Φu,v in inter-index
because it has been maintained in LBOP-inner-index IL

x .

4.2.2 Skyline-path-inner-index
To construct IS

x , we need to compute SKYPx(u, v) for every
pair of entry u and exit v in each cluster Vx. We propose a breadth-
first branch and bound search algorithm, which is in a similar man-
ner as Algorithm 1. We build a search tree rooted at {u} for Gx

like that in Algorithm 1 and use a queue Q to maintain the nodes to
be searched, where Gx is the induced subgraph of Vx on G. When
a node C pops up from queue, we expand C by processing the chil-
dren of C. For a child C′ of C, assume the ending vertex of C′ is
w. In case of w 6= v, if ∃p ∈ SKYPx(u, v), p ≺ C′, then we can
prune the subtree rooted at C′. Otherwise, C′ is inserted into Q.

In case of w = v, if @p ∈ SKYPx(u, v), p ≺ C′, then we insert
p into SKYPx(u, v). On the other hand, if ∃p ∈ SKYPx(u, v),
C′ ≺ p, we remove p from SKYPx(u, v).

We also propose two pruning rules to improve efficiency.
Skyline path based pruning: We maintain a set SKYPx(u, w)

for each w ∈ Vx in the searching process. For a node C whose
ending vertex is w, if ∃p ∈ SKYPx(u, w), p ≺ C, then the subtree
rooted at C can be pruned safely. Otherwise, we insert C into
SKYPx(u, w). In addition, if ∃p ∈ SKYPx(u, w), C ≺ p, we
remove p from SKYPx(u, w) .

LBOP base pruning: For a node C whose ending vertex is w,
consider Φw,v from w to v. We estimate a lower bound LB(C)
for C, LB(C) = cost(C) + Φw,v . If ∃p ∈ SKYPx(u, v), p ≺
LB(C), then the subtree rooted at C can be pruned safely.

The correctness of above two pruning rules can be proved as
similar as that of pruning rules in Algorithm 1.

4.3 How to Partition Graph to K Clusters
There are several ways to partition a graph to k clusters. For

different partitions, the number of entries and exits are different. In
our problem, the less number of entries and exits makes the size of
k-cluster index smaller. Intuitively, the less edges among different
clusters results in the less number of entries and exits in graph.
Thus, k-cluster partition problem is to find a partition such that
the edges among k different clusters are sparse and the edges in a
cluster are dense. It is a graph partition problem and this problem
has been well studied. We adopt the multi-level graph partitioning
technique proposed by Karypis et al. in [1], which is an efficient
partition algorithm.

5. QUERY PROCESSING
Given an optimal path query from s to t, we construct a shrunk

graph Ḡ = (V̄ , Ē). V̄ includes three parts: (i) Vs; (ii) Vt; and (iii)⋃
x6=s,t(Vx.entry ∪ Vx.exit). Vs and Vt are the clusters that con-

tain s and t respectively. Ē also includes three parts: (i) (u, v) ∈
Ē, iff ((u, v) ∈ E)∧ ((u, v ∈ Vs)∨ (u, v ∈ Vt)); (ii) (u, v) ∈ Ē,
iff ((u, v) ∈ E) ∧ ((u ∈ Vx.exit) ∧ (v ∈ Vy.entry)), where
Vx 6= Vy; and (iii) we create m new edges {(u, v)1, · · · , (u, v)m}
for any entry u ∈ Vx.entry and any exit v ∈ Vx.exit, where
Vx 6= Vs and Vx 6= Vt. Note that m is the size of SKYPx(u, v).
In case (iii), each edge (u, v)i(1 ≤ i ≤ m) from u to v represents
a skyline path in SKYPx(u, v). The optimal query from s to t on
G(V, E) is equivalent to the optimal path query on Ḡ(V̄ , Ē).

We utilize a best-first branch and bound search algorithm as sim-
ilar as Algorithm 1 to compute the optimal path on Ḡ(V̄ , Ē). Note
that Ḡ is not a simple graph, because there are multiple edges be-
tween entry u and exit v in a cluster Vx. We define a new search
tree as follows such that Algorithm 1 can work on Ḡ.

Given graph Ḡ, starting vertex s and ending vertex t, all pos-
sible paths started from s in Ḡ can be organized in a search tree.
Here, the root node represents starting vertex set {s}. Any non-root
node C = {v0, (v0, v1), v1, · · · , (vl−1, vl), vl}, represents a path
started from s, where v0 = s and (vi−1, vi) is an edge from vi−1

to vi. |C| is the number of vertices in C, i.e., |C| = |{v|v ∈ C}|.
For two different nodes C and C′ in the search tree, C is the parent
of C′ if they satisfy the following two conditions: (i) C ⊂ C′ and
|C′| = |C| + 1; and (ii) C′ \ C is a tuple set {(u, v), v}, where
u and v are the ending vertex of path C and C′ respectively, and
(u, v) is an edge from u to v.

We run Algorithm 1 on this search tree. When a node C pops up
from the min-heap H , we expand the C by processing the children
of C. Assume that the ending vertex of C is u. Then, for each
edge (u, v) in Ḡ, we add tuple set {(u, v), v} into C to get a child

2127

d = 2 d = 3
Dataset Naive index K-C index Navie index K-C index
CAITN 0.0374 0.0078 0.0515 0.0163
CARN 0.0733 0.0217 0.0851 0.0375
EuAll 0.1471 0.0112 0.2019 0.0201

Slashdot 4.8139 0.1321 6.2506 0.1978
HepPh 17.653 0.4372 21.467 0.5402

Table 1: Online Querying Time in Second

d = 2 d = 3
Dataset Naive index K-C index Naive index K-C index
CAITN 115.99 6.15 203.78 13.31
CARN 2600.68 93.69 4398.95 163.62
EuAll 796.33 20.51 1333.86 38.94

Slashdot 1746.39 46.95 3136.24 81.17
HepPh 4124.96 138.37 6460.35 223.06

Table 2: Index Size in MB

C′ of C. There may exist several edges from u to v when u ∈
Vx.entry and v ∈ Vx.exit. These edges represent skyline paths
from u to v in Gx. To check if C′ can be pruned or not, we also
propose basic pruning rule, skyline path based pruning rule, and
LBOP based pruning rule that are as similar as that in Algorithm 1.
For LBOP based pruning rule, we compute LBOP as we discussed
in Section 4.1. If C′ cannot be pruned, it is inserted into min-heap
H . Algorithm terminates when H = ∅ or f(C) ≥ τ for the top
element C in H .

6. PERFORMANCE STUDY
All experiments were done on a 3.0GHz Intel Pentium Core i5

CPU PC with 8GB main memory, running on Windows 7.

6.1 Datasets and Experiment Setup
We test the following five real datasets.
CAITN: The Chicago Anonymized Internet Traces Network is

a communication network on Chicago. It is an undirected graph
with 4,837 vertices and 17,426 edges.

CARN: The California Road Network is an undirect graph with
21,047 vertices and 21,692 edges.

EuAll: EuAll is an email communication network, email users
are vertices and the communications between them are edges. It is
a directed graph with 11,521 vertices and 32,389 edges.

Slashdot: Slashdot is a technology related news website known
for its specific user community. We generate a directed graph with
20,639 vertices and 187,672 edges.

HepPh: HepPh citation graph is a directed graph extracted from
the e-print arXiv with 34,546 papers and 421,578 edges.

In each graph, we randomly assigned d costs to each edge (d ∈
{2, 3}). we randomly generate 1,000 pairs of vertices and query
the shortest paths between each pair of vertices. The query time
reported is the average time on each dataset. We set score function
as f(x1, · · · , xd) =

∑d
i=1 x2

i .

6.2 Experimental results
Querying time: As shown in Table 1, we investigate the querying
time on five datasets by comparing k-cluster index with naive index
for d = 2 and d = 3. Naive index is the matrix to maintain Φu,v

for every two vertices u and v in G. In this experiment, we set
number of clusters k = 50. For all datasets, the querying time of
k-cluster index are much less than that of naive index. Specially,
in HepPh, the querying time of naive index are 17.653 and 21.467
seconds for d = 2 and d = 3 respectively but the querying time of

k-cluster index are only 0.4372 and 0.5402 seconds. The querying
time using k-cluster index are always in order of magnitude faster
than naive index. This is because k-cluster index pre-computes the
skyline paths for any entry u and any exit v in each cluster.

Index size: The index size is shown in Table 2. We compare the
size of k-cluster index with naive index when d = 2 and d = 3.
The number k of clusters is also set as 50. We find the size of k-
cluster index are much smaller than that of naive index. In HepPh,
for d = 2, the size of naive index is 4124.96 MB but the size of
k-cluster is only 138.37 MB. These results state k-cluster index is
space efficient and thus k-cluster index is suitable for large graphs.

7. RELATED WORK
Most existing works for shortest path problem [3, 6, 7] utilize

the property of optimal sub-path in the shortest path: any sub-path
of a shortest path is also a shortest path. Therefore, they only need
to maintain the shortest paths among vertices in index and com-
pute the shortest path by concatenating the sub shortest paths in
index. Unfortunately, in multi-cost graphs, the property of optimal
sub-path in a shortest path does not hold. Hence, all these meth-
ods cannot solve the optimal path problem proposed in our paper.
Mouratidis et al. in [5] studies skyline queries and top-k queries
on multi-cost transportation networks. For any vertex v in graph,
all distances on different dimensions between v and query point
form the cost vector of vertex v. The definition of the cost vector
in this work is different with our work and thus its query results are
points but not paths. Therefore, the methods in this work cannot be
applied to the optimal path problem in our paper.

8. CONCLUSION
In this paper, we defined the optimal path query problem over

multi-cost graphs and proposed a best-first branch and bound search
algorithm with two optimizing strategies. We also proposed a novel
index named k-cluster index to make our method more efficient for
large graphs. We confirmed the effectiveness and efficiency of our
algorithms using real-life datasets.

9. ACKNOWLEDGMENT
This work is supported by the National Grand Fundamental Re-

search 973 Program of China under grant 2012CB316200, the Na-
tional Natural Science Foundation of China under grant 61173022,
61173023, and grants of the Research Grants Council of the Hong
Kong SAR, China No. 419109, 418512.

10. REFERENCES
[1] A. Abou-Rjeili and G. Karypis. Multilevel algorithms for partitioning

power-law graphs. In IPDPS, 2006.
[2] S. Chaudhuri and L. Gravano. Evaluating top-k selection queries. In

M. P. Atkinson, M. E. Orlowska, P. Valduriez, S. B. Zdonik, and M. L.
Brodie, editors, VLDB, pages 397–410. Morgan Kaufmann, 1999.

[3] J. Cheng, Y. Ke, S. Chu, and C. Cheng. Efficient processing of
distance queries in large graphs: a vertex cover approach. In SIGMOD
Conference, pages 457–468, 2012.

[4] N. Ilich and S. P. Simonovic. An evolution program for non-linear
transportation problems. Journal of Heuristics, 7:145–168, 2001.

[5] K. Mouratidis, Y. Lin, and M. L. Yiu. Preference queries in large
multi-cost transportation networks. In ICDE, pages 533–544, 2010.

[6] M. Qiao, H. Cheng, L. Chang, and J. X. Yu. Approximate shortest
distance computing: A query-dependent local landmark scheme. In
ICDE, pages 462–473, 2012.

[7] Y. Xiao, W. Wu, J. Pei, W. Wang, and Z. He. Efficiently indexing
shortest paths by exploiting symmetry in graphs. In EDBT, pages
493–504, 2009.

2128

