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Abstract. With the rapid development of Internet, graphs have been
widely used to model the complex relationships among various entities
in real world. However, the labels on the graphs are always incomplete.
The accurate label inference is required for many real applications such
as personalized service and product recommendation. In this paper, we
propose a novel label inference method based on maximal entropy ran-
dom walk. The main idea is that a small number of vertices in graphs
propagate their labels to other unlabeled vertices in a way of random
walk with the maximal entropy guidance. We give the algorithm and
analyze the time and space complexities. We confirm the effectiveness of
our algorithm through conducting experiments on real datasets.
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1 Introduction

With the rapid development of Internet, graphs have been widely used to model
the complex relationships among various entities in real applications including
social network, web graph and biology. These graphs are always with labels. For
an example of social network, every people is represented by a vertex in the
graph. The vertices may be with the labels to indicate the hobbies, occupations
or other attributes for their representing people. As another example of protein
interaction network, the labels on the vertices indicate the types of the protein.
These graphs are called as labeled graphs. However, due to the limitation of
information collection and the existence of noise, the labels on graphs are always
incomplete, i.e., only a fraction of the vertices are attached with the labels on
the graph and the remaining ones are unknown. For the example, in Sina Weibo,
which is the largest micro-blog platform in China, only 20%−30% users exhibit
the labels about their occupations. Therefore, inferring the labels for the vertices
in graphs is a critical problem in many applications.

Consider a concrete application of social network, e.g., Sina Weibo, an inter-
net enterprise tries to provide more personalized service for the users according
to the users’ information such as their hobbies, occupations and so on. However,
only a small amount of information or labels are explicitly provided by rarely
users themselves due to the privacy or other concerns, then an effective label
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inference mechanism is required to infer the missing labels for the remaining
users. By the accurate label inference, more personalized services such as prod-
uct and content recommendation may be provided for the targeting customers.
It improves the user experience effectively.

Over the last several years, there have been an increasing interest in label
inference from the graphs. The first category of these works focuses on building a
classifier to distinguish the vertices with the distinct labels in a network [8,12,14].
For these methods, the sufficient background knowledge is necessary for extract-
ing features from the users [6,18]. Specially, an actual and reliable sub-network
is required as a training dataset including all the kinds of labels. However, such
sub-network is difficult to find out, even it may be not exist. The other category
is a community detection method to identify the group affiliation for the indi-
viduals in the network [17]. The individuals in the same group are deem as with
the uniform labels. Homophily [13] is a common assumption in these methods to
infer user labels, i.e., the similar users tend to interact with each other directly.
Hence the users with the similar labels are aggregated naturally to a community
by one-hop interactions.

In this paper, we study the problem of identifying the labels for all the
vertices in the labeled graphs. The main idea of our label inference mechanism
is that a small number of labeled vertices propagate their labels to the entire
network in a way of random walk under the guidance by the maximal entropy
model. Different to the previous methods, our method does not require too much
background knowledge or training sub-networks. On the other hand, homophily
assumption is not necessary, that is, it allows the users with the same label
appear in the network dispersedly but not in some common community.

The main contributions of this paper are summarized as below. First, we
propose a novel label inference model based on the maximal entropy random
walk. Second, we give the algorithm to infer labels with our model and analyze
the time and space complexities of our algorithm. Our algorithm can handle
both undirected and directed graphs. Finally, we confirm the effectiveness of our
algorithm through conducting experiments on real datasets by compared with
SVM, Homophily, and traditional random walk algorithms.

The rest of the paper is organized as follow. Section 2 defines the problem.
Section 3 proposes the random walk model with the maximal entropy guidance.
The label inference algorithm is given in Sect. 4. The experimental results on real
networks are presented in Sect. 5. The related works are introduced in Sect. 6.
Finally, we conclude this paper in Sect. 7.

2 Problem Statement

A labeled graph is a simple directed graph, denoted as G = (V,E,Σ,L), where
V is the set of vertices and E is the set of edges in G. The total number of nodes
is n. Each edge e ∈ E is represented by (u, v), u, v ∈ V . e is called u’s outgoing
edge or v’s incoming edge and v (or u) is called u (or v)’s outgoing(or incoming)
neighbor. Σ is the set of all the labels in G. L is a label function mapping V to
Σ. Each L(u) is a label in Σ, i.e. L(u) ∈ Σ. For example, in Sina Weibo, a user u
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Table 1. Important notations

Notation Description

G(V, E) structure of the graph

Σ, Vs, L label set, labeled vertex set, label function mapping V to Σ

T (u) label-weight set on vertex u

wx(u) the probability that vertex u has the label x

p
(k)
i,j transition probability at the k-th iteration of maximal entropy random walk

N+(vi), N−(vi) outgoing neighbor set of vi, incoming neighbor set of vi

H(vj) entropy value of vj

wx(vi, vj) probability that vi have the label lx propagated by its incoming neighbor vi

Fig. 1. An example graph from a company

Table 2. Labels on vertices in Fig. 1

ID Name Label

1 Fiona Manager

2 Philip Programmer

3 Jeffrey Human Resource

4 Mike Programmer

5 Abby Manager

may have an occupation label as “Manager”, then L(u) = “Manager”. Note that
all the labels in Σ are with the same type, e.g., “Manager” and “Programmer”
are two labels about the same label type “occupation”. In real applications, a
user may has several labels with different types. In the following, we first focus
on the case that every vertex has a label with the same type and we will discuss
how to deal with the general case that every vertex may have the labels with
several types in Sect. 4.3. Our work can be easily extended to handle undirected
graphs, in which an undirected edge (u, v) is equivalent to two directed edges
(u, v) and (v, u) (Table 1).

Figure 1 illustrates an example graph in a social network. There are five
users in this graph that are staffs in software company and the labels about
their occupations are shown in Table 2. In this example, the occupation of Fiona
is “Manager”, so she is labeled in “Manager”.

Problem Statement: Given a labeled graph G = (V,E,Σ,L) and the labeled
vertex set Vs where Vs ⊂ V , i.e., only the labels on the vertices in Vs is known,
and our work is to infer L(u) for every vertex u ∈ V − Vs.

3 Inference Model Based on Maximal Entropy
Random Walk

3.1 Framework

In this section, we introduce the framework of our label inference model as shown
in Fig. 2. The input is G(V,E,Σ,L) and Vs, which describe the structure of the
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Fig. 2. The framework of label inference model

entire graph G(V,E) and the labeled vertex set respectively. The main idea of our
method is propagating the labels from the vertices in Vs to the unlabeled vertices
in the way of random walk. It is worth noting that an unlabeled vertex v ∈ V −Vs

may become a vertex with several labels in the random walk process. Σ is the
set of all the possible labels in graph G, Σ = {l1, · · · , lp}, then every vertex in G
only has a label from Σ. We use a tuple set T (u) = {< lx, wx(u) > |1 ≤ x ≤ p}
to denote the labels lx (1 ≤ x ≤ p) on vertex u with the corresponding weight
wx(u). T (u) is called label-weight set of u. Here, wx(u) indicates the probability
that vertex u has the label lx and

∑p
x=1 wx(u) = 1. For every vertex u ∈ Vs, if

it has a label lx1 , then wx1(u) = 1 and wx(u) = 0 for x �= x1 and 1 ≤ x ≤ p.
For every vertex u ∈ V − Vs, wx(u) is initialized as 1

p for 1 ≤ x ≤ p. It means
u may have p labels with the same probability at the beginning. The value of
wx(u) (1 ≤ x ≤ p) for every vertex is updated iteratively after every one step
random walk and wx(u) becomes larger and larger if u has the label lx in real
world. We discuss how to update wx(u) in Sect. 3.3. Moreover, the random walk
is under the guidance of maximal entropy. After every one step random walk,
our algorithm computes the entropy value for every vertex v ∈ V −Vs. For every
vertex u in G, the transition probability from u to all its outgoing neighbors in
the next one step random walk is calculated according to the entropy values of
all the outgoing neighbors of u. Finally, when the convergence is satisfied, the
random walk terminates, and the label set L(u) for every vertex u ∈ Vs can be
inferred by its T (u).

3.2 One by One Step Random Walk

A random walk is a mathematical formalization of a path that consists of a
succession of random steps. Give a directed graph G(V,E), where the number of
the vertex is n = |V |. Graph G can be represented as a n×n symmetric adjacency
matrix M , where mi,j is an entry of M at the i-th row and the j-th column.
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Then mi,j = 1 if (vi, vj) ∈ E otherwise mi,j = 0 for vi, vj ∈ V . The degree of a
vertex vi is denoted as di =

∑n
j=1 mi,j . Let D = diag(d1, · · · , dn) be a diagonal

matrix of vertex degree. A traditional random work on G can be defined utilizing
the transition matrix P = D−1M with entries pi,j = mi,j

di
. pi,j is called the

transition probability from vi to vj by one step random walk and P is called the
initial transition probability matrix. Let P (k) denote the transition probability
matrix of k-th step random walk, then the transition probability matrix P (k+1)

of (k + 1)-th step random walk can be calculated as P (k+1) = P k × P . An entry
p
(k)
i,j in P (k) is the transition probability from vi to vj by k step random walk.

In our algorithm, the labels are propagated in the way of random walk one
by one step. At each iteration, a vertex vi propagates its labels in T (vi) by
one step random walk. Let vj is an outgoing neighbor of vi. The entropy value
of vj is calculated by T (vj). Then the transition probability pi,j from vi to vj

by next one step random walk is calculated according to the entropy values
of all vi’s outgoing neighbors. Different to the traditional random walk, the
transition probability pi,j for one step random walk is not an uniform value in
our method, that is, pi,j for the k-th and (k + 1)-th iteration are different. We
use p

(k)
i,j to denote the transition probability at the k-th iteration. With p

(k)
i,j , all

vj ’s incoming neighbors propagate their labels to vj and then T (vj) is updated.
The initial transition probability p

(1)
i,j from vi to vj is given below.

p
(1)
i,j =

I(vi, vj)∑
vj∈N+(vi)

I(vi, vj)
(1)

Where N+(vi) is the outgoing neighbor set of vi and I(vi, vj) is parameter used
to reflect the closeness between vi and vj . The value of I(vi, vj) can be given
by the real application requirement. For example, in DBLP dataset, I(vi, vj) is
the number of the papers in which researcher vi and vj are co-author. If there
is no requirement about I(vi, vj), then I(vi, vj) = 1 for every pair of vertex vi

and vj in G.

3.3 Updating Label-Weight Set Under Maximal Entropy Guidance

In this section, we discuss how to compute the transition probability p
(k)
i,j under

maximal entropy guidance and how to update T (vj) for every vertex vj ∈ V −Vs.
We introduce the maximal entropy for computing the transition probability p

(k)
i,j

which is well known in information theory. Without loss of generality, at k-th
iteration, every vertex vj is with a label-weight set T (vj) = {< lx, wx(vj) > |1 ≤
x ≤ p}. Then the entropy value H(vj) of vj can be calculated as below.

H(vj) = −
p∑

x=1

wx(vj) × ln wx(vj) (2)

Note that wx(vj) × ln wx(vj) = 0 if wx(vj) = 0. H(vj) indicates the uncertainty
about the labels on vertex vj . The larger H(vj) results in the more uncertainty
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on vj for label inference. Therefore, the more labels from the other vertices are
expected to propagate their labels to vj for improving the label inference on
vj . There is a special case to be handled with carefully, where vj has no label,
i.e., wx(vi) = 0 for 1 ≤ x ≤ p. In this case, H(vj) is computed as H(vj) =
−∑p

x=1
1
p × ln 1

p . It means the uncertainty on vi is the maximum. If vj is an

outgoing neighbor of vi, then the transition probability p
(k)
i,j from vi to vj at k-th

iteration is computed as follows.

p
(k)
i,j =

H(vj)∑
vj∈N+(vi)

H(vj)
(3)

where N+(vi) is the outgoing neighbor set of vi.
Next, we introduce how to update T (vj) utilizing the transition probability

p
(k)
i,j at k-th iteration. We use wx(vi, vj) to denote the probability that vj have the

label lx propagated by its incoming neighbor vi at this iteration, then wx(vi, vj)
can be calculated by

wx(vi, vj) = wx(vi) × p
(k)
i,j (4)

By wx(vi, vj), the wx(vj) updates utilizing the following equation

wx(vj) =

∑
vi∈N−(vj)

wx(vi, vj)
∑p

x=1

∑
vi∈N−(vj)

wx(vi, vj)
(5)

where N−(vj) is the incoming neighbor set of vj . Thus for every vertex vj ∈ Vs,
the T (vj) is also updated after updating every wx(vj) (1 ≤ x ≤ p).

4 Label Inference Algorithm

4.1 Label Inference Algorithm

The algorithm for label inference is shown in Algorithm1. The input is a labeled
graph G and vertex subset Vs, where the labels on every vertex v ∈ Vs is given.
The output is T (vj) for every vertex in vj ∈ Vr, where Vr = V − Vs. Initially,
Algorithm 1 computes the initial transition probability p

(1)
u,v by Eq. (1) for every

vertex u ∈ Vs and every u’s outgoing neighbor v (line 1 to 2). Line 3 to 13 shows
the one by one step random walk under maximal entropy guidance. In each
iteration, for every vertex vj ∈ Vr, algorithm first computes its H(vj). Next,
algorithm computes p

(k)
i,j for all vj ’s incoming neighbor vi, then wx(vi, vj) and

wx(vj) can be computed. Finally, T (vj) can be updated with updating wx(vj).
The algorithm terminates when the convergence is satisfied. The condition of
convergence is given by the following equation.

∑

vj∈Vr

∑

1≤x≤p

|wk
x(vj) − wk−1

x (vj)| ≤ θ × p × |Vr| (6)

where wk
x(vj) is essentially wx(vj) at k-th iteration, and θ is a threshold given by

user to control the number of iterations for convergence. As discussion in [10],
the convergence can be satisfied for a maximal entropy random walk.
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Algorithm 1. Label-Inference (G(V,E,Σ,L), Vs)
Input: G(V, E, Σ, L), Vs.
Output: T (vj) for every vertex vj ∈ Vr(or V − Vs).

1: for every vertex u ∈ Vs do
2: computes p

(1)
u,v for every v ∈ N+(u);

3: while
∑

vj∈Vr

∑
1≤x≤p |wk

x(vj) − wk−1
x (vj)| ≥ θ × p × |Vr| do

4: for every vertex vj ∈ Vr do
5: computes H(vj) by Eq. (2);
6: for vj ∈ V − Vs do
7: for vi ∈ N−(vj) do

8: computes p
(k)
i,j by Eq. (3);

9: for x = 1 to p do
10: computes wx(vi, vj) by Eq. (4);
11: for x = 1 to p do
12: computes wx(vj) by Eq. (5);
13: updates T (vj) by wx(vj);
14: return T (vj) for every vertex vj ∈ Vr

4.2 Complexity Analysis

We analyze the time and space complexities of Algorithm 1. Let n be the number
of the vertices in G. For the time complexity, at each iteration, algorithm needs
to compute H(vj) for every vj ∈ Vr, thus the time complexity of this step is
O(|Vr|). The complexity of computing p

(k)
i,j is O(nd), where d is the average out-

degree of all the vertices in G. Because there are p labels in G, then complexity
of computing wx(vj) is O(|Vr|+pnd) = O(pnd). Let the number of iterations be
k, then the total complexity of Algorithm1 is O(kpnd). In the worst case, d = n
but d is always far less than n in real applications.

For the space complexity, at each iteration, Algorithm1 needs to calculate
and maintain wx(vi, vj) (1 ≤ x ≤ p), where vi is a vertex in G and vj is an
outgoing neighbor of vi. Then the space complexity is O(pnd).

4.3 Discussion About Multiply Types of Labels in Graph

In the above discussion, we assume that all the vertices in G have a label with
the same type, e.g., all users have the label with the same type “occupation” in
a social network. Next, we introduce how to deal with the general case where
the vertex may have the labels with several types. For example, an user may
have two different label types such as “hobby” and “occupation”. Generally, if
the graph G has q label types, then the graph is considered as q labeled graphs
G1, · · · , Gq, where every Gi(1 ≤ i ≤ q) has the same structure (V,E) as the
original graph G but only have one label type. Our label inference method can
be used on Gq to infer the labels for the q-th label type.
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5 Experiments

In this section, we compare our method with other relevant approaches from
different aspects to demonstrate the effectiveness of the model we proposed on
label inference. In the following, we introduce the datasets, the baseline methods,
and report our results. All the experiments are conducted on a 3.2 GHz Intel
Core i5 CPU PC with the 16 GB main memory, running on Windows 7 and the
programming language is Python.

5.1 Dataset and Experiment Setup

DBLP is a dataset that describes the researcher cooperation network. We treat
the research domains as users’ labels. We extract the journal information and
conference information from DBLP network, and we label these journals and
conferences into seven computer domain, including Artificial Intelligence, Data
Mining, Computer Security, Programming Language, Computer Architecture,
Theoretical Computer Science, and Human-computer Interaction. We extract
1,000, 3,000, 5,000, 7,000, and 10,000 vertices in the DBLP graph respectively to
conduct the experiments. Meanwhile, We extract 4, 5, 6, and 7 research domains
to be the labels for researchers by combining some domains. We evaluate the
performance of experiments by precision and recall.

In order to demonstrate the effectiveness of the label inference method (LIM),
we compare our method against a number of baseline approaches. Since our
model considers both the local network structure of individual users and the
effects from neighbor influence, we use the following approaches to show the
performance of our method from different perspectives:

(1) SVM: We use the traditional SVM classifier as the first baseline.
(2) Homophily: From the paper [13], we know that the label of a user is associ-

ated with the user’s neighbors. Therefore, we use this method as a baseline
which can infer labels for users by majority votes on the user’s neighbors.
And this method is called Homophily.

(3) TRW: Our method is modified by the traditional random walk, so we apply
the traditional random walk as another baseline. We refer to this approach
as TRW.

5.2 Experimental Results

Exp1-Impact of the Proportion of Unlabeled Vertices. In Fig. 3, we
study the performance of our proposed model LIM and the baselines mentioned
in Sect. 5.1 on the different proportion of unlabeled vertices. We conduct this
experiment in 5,000 vertices graph and we set the label number as 5 classes. We
set the unlabeled scale 20 %, 40 %, 60 %, 80 %, and 90 % respectively. We present
the result of precision and recall in Fig. 3(a) and (b) respectively. We can discov-
ery that the decline tendency of our method is much slow than other methods
along with the change of the scale of unlabeled vertices. And the precision of our
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Fig. 3. Impact of the proportion of unlabeled vertices

method is almost 70 % at the condition of there are 90 % vertices lack of label.
We can get the conclusion that the performance is influenced by the proportion
of unlabeled vertices.

Exp2-Impact of Vertex Size. We study the performance of our method and
the baselines in different vertex size and the results can be seen in Fig. 4. We
conduct this experiment in 1,000, 3,000, 5,000, 7,000, and 10,000 vertices graph
respectively. And we set the label number as 4 classes. The Fig. 4(a) and (b)
show the results of precision and recall of all the methods. We can analyze the
results to get that the precision and recall have no relation with the vertex size in
most cases. As the number of vertices changing, the performance has no obvious
change in most cases.

Fig. 4. Impact of vertex size

Exp3-Impact of Label Number. We study the impact of the number of
vertices’ labels in Fig. 5. We show the performance of our method and the base-
lines on 4, 5, 6, and 7 label classes in the graph which includes 5,000 vertices
and the proportion of unlabeled vertices is 80 %, which we can have a intuitive
understanding on precision and recall according to the Fig. 5(a) and (b) respec-
tively. It is obvious that the larger the label number is, the lower the precision is
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because of the unrelated labels have interference for label inference when unla-
beled vertices collect labels from labeled vertices. However, the descent rate of
performance of our method is slower than other methods.

Fig. 5. Impact of label number

Exp4-Impact of Threshold θ. We study the impact of threshold θ which has
a detailed introduction in Sect. 4.1. The precision and recall value are different
in different θ. We show the performance of this experiment in Fig. 6. We conduct
the experiment in 7,000 vertices graph and the unlabeled vertices scale is 80 %.
The method we compare to is TRW only. We can see the results from Fig. 6.
The threshold affects the iteration convergence times. However, the threshold
doesn’t have an important impact on the experimental performance.

Fig. 6. Impact of threshold θ

Exp5-Real Case Study. In Table 3 we give a real case study on DBLP dataset.
We can discover that most inference results are accurate on our method. How-
ever, The last row which is marked in bold type is wrong. By analyzing the
papers of this researcher, both the true label and the inference label are his
main domains and the number of published papers are almost same. In this
real case study, we should make efforts on this special case to improvement our
algorithm in future.
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Table 3. Real case study

Name True label Inference label

Jiawei Han Data Mining Data Mining

Philip S. Yu Data Mining Data Mining

Jeffrey Yu Data Mining Data Mining

Nate Foster Programming Language Programming Language

Onur Mutlu Computer Architecture Computer Architecture

Yi Lin Artificial Intelligence Artificial Intelligence

Alex Pentland Human-computer Interaction Human-computer Interaction

Ronald L. Rivest Computer Security Theoretical Computer Science

6 Related Work

Label inference is an important problem in graphs and there have been an
increasing interest in this problem over the last several years. The existing works
for label inference problem can be divided into two categories.

The first category of the works [2,20,22] proposes different ideas which based
on building feature vectors for vertices mainly from their textual informations
and neighbor link informations. By training the feature vectors they build a clas-
sifier for inferring labels for vertices. For example, [15] uses the Bayesian classi-
fier and iteration method to update attribute information. These works have a
strong dependency on the background knowledge of users. However, the back-
ground knowledge isn’t sufficient and always outdated which strongly influences
the inference result. The second category is the approaches based on digging the
graph structure, mainly for surrounding structure mining [4,19]. [5] provides a
method on how can we automatically discover role labels for vertices. For ver-
tices in graph, the similarity in graph structure decides the similarity of them.
However, it is an unsupervised learning approach which is not applicable on
the semi-supervised problem we focus on. [21] uses mining technology on graph
structure and the relationship between vertices and their neighbors and combines
the two aspects infer social roles for vertices. They abstract five social factors
to mining all the vertices’ structure information in the graph. In their paper,
they propose an optimization framework and propose a probabilistic model to
integrate the vertices’ structure information and local neighbors’ information to
infer labels. In [14] studies user attribute inference in university social networks
by applying community detection. However, these methods that depend on the
surrounding structure maybe give a wrong judge if two users have same label
but not in the adjacent structure.

Random Walk model is a good method to mining graph structure [1,9,11,16].
It is well studied in multiclass semi-supervised learning [7,23]. The main idea
of these work is to estimate a distribution over the missing labels based on
Markov random walk. Meanwhile, there are many works is proposed to improve
the performance of random walk which combines with the maximum entropy
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theory [3,10]. However, the problem they focus on is link prediction or some
else, which is different with the problem our paper focus on.

7 Conclusion

In this paper, we study how to infer labels for unlabeled nodes in graphs or
social networks. We first define the label inference problem. Second, we propose
the maximal entropy random walk inference model to solve this problem. We
improve the result precision by the proposed model. Finally, we confirm the
effectiveness of our algorithm through conducting experiments on real datasets.
In the next, we will do more works about how to deal with multi-attributes
graphs and how to optimize our model to save more time and memories.
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Science Foundation of China No. 61432011, 61402323 and 61502335.
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