# 1 Regular Languages (Part 1 of 2)

Yajun Yang yjyang@tju.edu.cn

School of Computer Science and Technology Tianjin University

2015



(中) (종) (종) (종) (종) (종)



### 2 Nondeterminism

< □ > < 同 >

э.

The theory of computation begins with a question:

What is a computer?

The theory of computation begins with a question:

What is a computer?

• Computational model: an idealized computer.

The theory of computation begins with a question:

What is a computer?

- Computational model: an idealized computer.
- Several different computational models
  - Finite automata or finite state machine 有穷自动机
  - Pushdown automata 下推自动机
  - Linear-bounded automata 线性有界自动机
  - Turing machine 图灵机

# Outline

### Finite Automata

- Formal Definition of a Finite Automaton
- Examples of Finite Automata
- Formal Definition of Computation
- Designing Finite Automata
- The Regular Operations

### 2 Nondeterminism

# Example: An Automatic Door



э

### Example: An Automatic Door



Yajun Yang (TJU)

2015 6/66

э

< □ > < 同 > < 回 > < 回 > < 回 >

### Example: An Automatic Door



Yajun Yang (TJU)

1 Regular Languages (Part 1 of 2)

6 / 66





### Example (A finite automaton $M_1$ )



- the *state diagram* of  $M_1$
- three *states*:  $q_1$ ,  $q_2$ , and  $q_3$
- the *start state*: q<sub>1</sub>
- the *accept state*:  $q_2$
- transitions: the arrows going from one state to another

#### Example (A finite automaton $M_1$ )



< 🗗 🕨 🔸

# Example: A Finite Automaton

#### Example (A finite automaton $M_1$ )



Feed the input string 1101 to the machine  $M_1$ 

Yajun Yang (TJU)

1 Regular Languages (Part 1 of 2)

2015 8 / 66

### Example (A finite automaton $M_1$ )



Feed the input string 1101 to the machine  $M_1$ 



### Example (A finite automaton $M_1$ )



Feed the input string 1101 to the machine  $\ensuremath{M_1}$ 

- Start in state  $q_1$
- 2 Read 1, follow transition from  $q_1$  to  $q_2$

### Example (A finite automaton $M_1$ )



Feed the input string 1101 to the machine  $M_1$ 

- Start in state  $q_1$
- 2 Read 1, follow transition from  $q_1$  to  $q_2$
- **③** Read 1, follow transition from  $q_2$  to  $q_2$

2015 8/66

### Example (A finite automaton $M_1$ )



Feed the input string 1101 to the machine  $M_1$ 

- Start in state  $q_1$
- 2 Read 1, follow transition from  $q_1$  to  $q_2$
- **③** Read 1, follow transition from  $q_2$  to  $q_2$
- Read 0, follow transition from  $q_2$  to  $q_3$

### Example (A finite automaton $M_1$ )



Feed the input string 1101 to the machine  $M_1$ 

- Start in state  $q_1$
- 2 Read 1, follow transition from  $q_1$  to  $q_2$
- $\odot$  Read 1, follow transition from  $q_2$  to  $q_2$
- Read 0, follow transition from  $q_2$  to  $q_3$
- **(6)** Read 1, follow transition from  $q_3$  to  $q_2$

### Example (A finite automaton $M_1$ )



Feed the input string 1101 to the machine  $M_1$ 

A 
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- Start in state q<sub>1</sub>
- 2 Read 1, follow transition from  $q_1$  to  $q_2$
- **③** Read 1, follow transition from  $q_2$  to  $q_2$
- Read 0, follow transition from  $q_2$  to  $q_3$
- **③** Read 1, follow transition from  $q_3$  to  $q_2$
- **(**) **Accept** because  $M_1$  is in an accept state  $q_2$  at the end of the input

Definition (DFA (确定型有穷自动机))

### Definition (DFA (确定型有穷自动机))

### A deterministic finite automaton (DFA) is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$ ,

### Definition (DFA (确定型有穷自动机))

### A deterministic finite automaton (DFA) is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$ ,

#### where

Q is a finite set called the *states*,

### Definition (DFA (确定型有穷自动机))

A deterministic finite automaton (DFA) is a 5-tuple  $(Q, \Sigma, \delta, q_0, F)$ ,

- Q is a finite set called the *states*,
- 2  $\Sigma$  is a finite set called the *alphabet*,

### Definition (DFA (确定型有穷自动机))

A deterministic finite automaton (DFA) is a 5-tuple  $(Q, \Sigma, \delta, q_0, F)$ ,

- Q is a finite set called the *states*,
- 2  $\Sigma$  is a finite set called the *alphabet*,
- $\ \, \bullet \ \, \delta:Q\times\Sigma\to Q \text{ is the } \textit{transition function},$

### Definition (DFA (确定型有穷自动机))

A *deterministic finite automaton* (DFA) is a 5-tuple  $(Q, \Sigma, \delta, q_0, F)$ ,

- Q is a finite set called the *states*,
- 2  $\Sigma$  is a finite set called the *alphabet*,
- **③**  $\delta: Q \times \Sigma \to Q$  is the *transition function*,
- $q_0 \in Q$  is the *start state*, and

### Definition (DFA (确定型有穷自动机))

A *deterministic finite automaton* (DFA) is a 5-tuple  $(Q, \Sigma, \delta, q_0, F)$ ,

- Q is a finite set called the *states*,
- 2  $\Sigma$  is a finite set called the *alphabet*,
- $\ \, \bullet \ \, \delta:Q\times\Sigma\to Q \text{ is the } transition function,$
- $q_0 \in Q$  is the *start state*, and
- $F \subseteq Q$  is the set of accept states.

#### Example (A finite automaton $M_1$ )



#### Example (A finite automaton $M_1$ )



 $M_1 = (Q, \Sigma, \delta, q_1, F)$ , where

Yajun Yang (TJU)

1 Regular Languages (Part 1 of 2)

2015 10 / 66

#### Example (A finite automaton $M_1$ )



 $M_1 = (Q, \Sigma, \delta, q_1, F)$ , where

### $Q = \{q_1, q_2, q_3\}$

#### Example (A finite automaton $M_1$ )



 $M_1 = (Q, \Sigma, \delta, q_1, F)$ , where

- $Q = \{q_1, q_2, q_3\}$
- **2**  $\Sigma = \{0, 1\}$

#### Example (A finite automaton $M_1$ )



$$M_1 = (Q, \Sigma, \delta, q_1, F)$$
, where

- $Q = \{q_1, q_2, q_3\}$
- **2**  $\Sigma = \{0, 1\}$

•  $\delta$  is described as:  $\delta(q_1, 0) = q_1$ ,  $\delta(q_1, 1) = q_2$ ,  $\delta(q_2, 0) = q_3$ ,  $\delta(q_2, 1) = q_2$ ,  $\delta(q_3, 0) = q_2$ ,  $\delta(q_3, 1) = q_2$ 

#### Example (A finite automaton $M_1$ )



$$M_1 = (Q, \Sigma, \delta, q_1, F)$$
, where

- **1**  $Q = \{q_1, q_2, q_3\}$
- **2**  $\Sigma = \{0, 1\}$

 $\begin{aligned} & \bullet \text{ is described as: } \delta(q_1,0) = q_1, \quad \delta(q_1,1) = q_2, \\ & \delta(q_2,0) = q_3, \quad \delta(q_2,1) = q_2, \quad \delta(q_3,0) = q_2, \quad \delta(q_3,1) = q_2 \end{aligned}$ 

9  $q_1$  is the start state, and

#### Example (A finite automaton $M_1$ )



$$Q = \{q_1, q_2, q_3\}$$

**2** 
$$\Sigma = \{0, 1\}$$

 $\begin{aligned} & \bullet \quad \text{is described as:} \quad \delta(q_1,0) = q_1, \quad \delta(q_1,1) = q_2, \\ & \delta(q_2,0) = q_3, \quad \delta(q_2,1) = q_2, \quad \delta(q_3,0) = q_2, \quad \delta(q_3,1) = q_2 \end{aligned}$ 

- $\bullet$   $q_1$  is the start state, and
- **5**  $F = \{q_2\}$

## Language of DFA



• If A is the set of all strings that machine M accepts, we say that A is the *language of machine* M and write L(M) = A.

# Language of DFA



- If A is the set of all strings that machine M accepts, we say that A is the *language of machine* M and write L(M) = A.
- We say that *M* recognizes *A*.

# Language of DFA



- If A is the set of all strings that machine M accepts, we say that A is the *language of machine* M and write L(M) = A.
- We say that *M* recognizes *A*.
- A machine may accept several strings, but it always recognizes only one language.

## Language of DFA



- If A is the set of all strings that machine M accepts, we say that A is the *language of machine* M and write L(M) = A.
- We say that *M* recognizes *A*.
- A machine may accept several strings, but it always recognizes only one language.
- What about the machine accepts no strings?

# Language of DFA $M_1$



 $L(M_1) = ?$ 

-∢ ≣⇒

< 行

# Language of DFA $M_1$



 $L(M_1) = ?$ 

### $L(M_1) =$

 $A = \{w \mid w \text{ contains at least one 1 and } \}$ 

an even number of 0s follow the last 1 }

### DFA $M_2$



< E

- (日)



э.



 $L(M_2) = ?$ 

▶ ∢ ∃ ▶



 $L(M_2) = ?$ 

try 1101,

- ∢ ∃ →



 $L(M_2) = ?$ 

try 1101, try 110



 $L(M_2) =?$ 

try 1101, try 110

 $L(M_2) = \{ w \mid w \text{ ends in a } 1 \}$ 

< /⊒ > < ∃ > < ∃

#### DFA $M_3$ $M_3 = (\{q_1, q_2\}, \{0, 1\}, \delta, q_1, \{q_1\})$ 0 1 0 1 $\delta$ : $q_1$ $q_2$ $q_1$ $q_1$ $q_2$ $q_2$ 0 $q_2$ $q_1$

#### DFA $M_3$



| $M_3 = (\{q_1, q_2\}, \{0, 1\}, \delta, q_1, \{q_1\})$ |       |                                           |       |  |
|--------------------------------------------------------|-------|-------------------------------------------|-------|--|
|                                                        |       | 0                                         | 1     |  |
| δ:                                                     | $q_1$ | $\begin{array}{c} q_1 \\ q_1 \end{array}$ | $q_2$ |  |
|                                                        | $q_2$ | $q_1$                                     | $q_2$ |  |

 $L(M_3) = ?$ 

→ < Ξ >

- ( E

#### 

 $L(M_3) = ?$ 

 $L(M_3) = \{ w \mid w \text{ is the empty string } \varepsilon \text{ or ends in a 0} \}$ 

< ロト < 同ト < ヨト < ヨト



 $L(M_3) = ?$ 

 $L(M_3) = \{ w \mid w \text{ is the empty string } \varepsilon \text{ or ends in a 0} \}$ 

What is the relationship between  $L(M_2)$  and  $L(M_3)$ ?

< ロト < 同ト < ヨト < ヨト

#### DFA $M_4$



∢ ≣ ≯

#### DFA $M_4$



 $L(M_4) =$ 

-∢ ≣⇒

#### DFA $M_4$



 $L(M_4) = \{ w \mid w \text{ starts and ends with the same symbol } \}$ 

- 3 ▶

#### DFA $M_5$



#### DFA $M_5$



 $L(M_5) =$ 

▶ < Ξ >

- (日)

```
• \Sigma = \{ < \mathsf{RESET} >, 0, 1, 2 \}
```

- $\Sigma = \{ \langle \mathsf{RESET} \rangle, 0, 1, 2 \}$
- For each i ≥ 1 let A<sub>i</sub> be the language of all strings where the sum of the numbers is a multiple of i, except that the sum is reset to 0 whenever the symbol <RESET> appears.

- $\Sigma = \{ \langle \mathsf{RESET} \rangle, 0, 1, 2 \}$
- For each  $i \ge 1$  let  $A_i$  be the language of all strings where the sum of the numbers is a multiple of i, except that the sum is reset to 0 whenever the symbol  $\langle \text{RESET} \rangle$  appears.
- For each  $A_i$  we give a DFA  $B_i$ , recognizing  $A_i$ .

- $\Sigma = \{ \langle \mathsf{RESET} \rangle, 0, 1, 2 \}$
- For each  $i \ge 1$  let  $A_i$  be the language of all strings where the sum of the numbers is a multiple of i, except that the sum is reset to 0 whenever the symbol <RESET> appears.
- For each  $A_i$  we give a DFA  $B_i$ , recognizing  $A_i$ .
- $B_i = \{Q_i, \Sigma, \delta_i, q_0, \{q_0\}\}$

- $\Sigma = \{ \langle \mathsf{RESET} \rangle, 0, 1, 2 \}$
- For each i ≥ 1 let A<sub>i</sub> be the language of all strings where the sum of the numbers is a multiple of i, except that the sum is reset to 0 whenever the symbol <RESET> appears.
- For each  $A_i$  we give a DFA  $B_i$ , recognizing  $A_i$ .

• 
$$B_i = \{Q_i, \Sigma, \delta_i, q_0, \{q_0\}\}$$
  
•  $Q_i = \{q_0, q_1, q_2, \dots, q_{i-1}\}$ 

- $\Sigma = \{ \langle \mathsf{RESET} \rangle, 0, 1, 2 \}$
- For each i ≥ 1 let A<sub>i</sub> be the language of all strings where the sum of the numbers is a multiple of i, except that the sum is reset to 0 whenever the symbol <RESET> appears.
- For each  $A_i$  we give a DFA  $B_i$ , recognizing  $A_i$ .
- $B_i = \{Q_i, \Sigma, \delta_i, q_0, \{q_0\}\}$ 
  - $Q_i = \{q_0, q_1, q_2, \dots, q_{i-1}\}$
  - We design the transition function  $\delta_i$  so that for each j, if  $B_i$  is in  $q_j$ , the running sum is j, modulo i.

- $\Sigma = \{ \langle \mathsf{RESET} \rangle, 0, 1, 2 \}$
- For each i ≥ 1 let A<sub>i</sub> be the language of all strings where the sum of the numbers is a multiple of i, except that the sum is reset to 0 whenever the symbol <RESET> appears.
- For each  $A_i$  we give a DFA  $B_i$ , recognizing  $A_i$ .

• 
$$B_i = \{Q_i, \Sigma, \delta_i, q_0, \{q_0\}\}$$

• 
$$Q_i = \{q_0, q_1, q_2, \dots, q_{i-1}\}$$

• We design the transition function  $\delta_i$  so that for each j, if  $B_i$  is in  $q_j$ , the running sum is j, modulo i.

• 
$$\delta_i(q_j, 0) = q_j$$
  
 $\delta_i(q_j, 1) = q_k$ , where  $k = j + 1$  modulo  $i$   
 $\delta_i(q_j, 2) = q_k$ , where  $k = j + 2$  modulo  $i$   
 $\delta_i(q_j, < \text{RESET} >) = q_0$ 

- Let  $M = (Q, \Sigma, \delta, q_0, F)$  be a DFA.
- Let  $w = a_1 a_2 \dots a_n$  be a string where  $a_i \in \Sigma$ .
- Then M accepts w if a sequence of states  $r_0, r_1, \ldots, r_n$  in Q exists with three conditions:

- Let  $M = (Q, \Sigma, \delta, q_0, F)$  be a DFA.
- Let  $w = a_1 a_2 \dots a_n$  be a string where  $a_i \in \Sigma$ .
- Then M accepts w if a sequence of states  $r_0, r_1, \ldots, r_n$  in Q exists with three conditions:

1 
$$r_0 = q_0$$

- Let  $M = (Q, \Sigma, \delta, q_0, F)$  be a DFA.
- Let  $w = a_1 a_2 \dots a_n$  be a string where  $a_i \in \Sigma$ .
- Then M accepts w if a sequence of states  $r_0, r_1, \ldots, r_n$  in Q exists with three conditions:

**1** 
$$r_0 = q_0$$

2) 
$$\delta(r_i, a_{i+1}) = r_{i+1}$$
, for  $i = 0, \dots, n-1$ 

- Let  $M = (Q, \Sigma, \delta, q_0, F)$  be a DFA.
- Let  $w = a_1 a_2 \dots a_n$  be a string where  $a_i \in \Sigma$ .
- Then M accepts w if a sequence of states  $r_0, r_1, \ldots, r_n$  in Q exists with three conditions:

$$r_0 = q_0$$
 $\delta(r_i, a_{i+1}) = r_{i+1}$ , for  $i = 0, ..., n-1$ 
 $r_n \in F$ 

• Let 
$$M = (Q, \Sigma, \delta, q_0, F)$$
 be a DFA.

- Let  $w = a_1 a_2 \dots a_n$  be a string where  $a_i \in \Sigma$ .
- Then M accepts w if a sequence of states  $r_0, r_1, \ldots, r_n$  in Q exists with three conditions:

$$r_0 = q_0$$
 $\delta(r_i, a_{i+1}) = r_{i+1}$ , for  $i = 0, ..., n-1$ 
 $r_n \in F$ 

We say that M recognizes language A if  $A = \{w \mid M \text{ accepts } w\}$ 

Definition (regular language)

A language is called a regular language if some DFA recognizes it.

Definition (regular language)

A language is called a regular language if some DFA recognizes it.

#### Example

- Take DFA  $M_5$
- w = 10 < RESET > 22 < RESET > 012

#### Definition (regular language)

A language is called a regular language if some DFA recognizes it.

#### Example

- Take DFA  $M_5$
- w = 10 < RESET > 22 < RESET > 012
- The sequence of states  $M_5$  enters when computing on w is

 $q_0, q_1, q_1, q_0, q_2, q_1, q_0, q_0, q_1, q_0$ which satisfies the three conditions.

#### Definition (regular language)

A language is called a regular language if some DFA recognizes it.

#### Example

- Take DFA  $M_5$
- w = 10 < RESET > 22 < RESET > 012
- ${\ensuremath{\, \bullet }}$  The sequence of states  $M_5$  enters when computing on w is

 $q_0, q_1, q_1, q_0, q_2, q_1, q_0, q_0, q_1, q_0$ 

which satisfies the three conditions.

 $L(M_5) = \{w \mid \text{the sum of the symbols in } w \text{ is 0 modulo 3,} \\ \text{except that <RESET> resets the count to 0 } \}$ 

Yajun Yang (TJU)

1 Regular Languages (Part 1 of 2)

2015 19 / 66

## Designing Finite Automata

#### An approach helpful: "reader as automaton"

- put yourself in the place of the machine you are trying to design
- and then see how you would go about performing the machine's task

# Designing Finite Automata

#### An approach helpful: "reader as automaton"

- put yourself in the place of the machine you are trying to design
- and then see how you would go about performing the machine's task

#### Example

- $\Sigma = \{\mathbf{0}, \mathbf{1}\}$
- The language consists of all strings with an odd number of 1s.
- Construct a finite automaton  $E_1$  to recognize this language.

- $\Sigma = \{\mathbf{0}, \mathbf{1}\}$
- The language consists of all strings with an odd number of 1s.
- Construct a finite automaton  $E_1$  to recognize this language.

- $\Sigma = \{\mathbf{0}, \mathbf{1}\}$
- The language consists of all strings with an odd number of 1s.
- Construct a finite automaton  $E_1$  to recognize this language.
  - $\ \, \bullet \ \, q_{even}: \ \, {\rm even} \ \, {\rm so} \ \, {\rm far} \ \ \,$
  - (2)  $q_{odd}$ : odd so far

- $\Sigma = \{\mathbf{0}, \mathbf{1}\}$
- The language consists of all strings with an odd number of 1s.
- Construct a finite automaton  $E_1$  to recognize this language.
  - $\ \, \bullet \ \, q_{even}: \ \, {\rm even} \ \, {\rm so} \ \, {\rm far} \ \ \,$



| DFA $E_1$ |       |                  |  |
|-----------|-------|------------------|--|
|           | qeven | q <sub>odd</sub> |  |

### Example

- $\Sigma = \{\mathbf{0}, \mathbf{1}\}$
- The language consists of all strings with an odd number of 1s.
- Construct a finite automaton  $E_1$  to recognize this language.

  - (2)  $q_{odd}$ : odd so far

### DFA $E_1$



### Example

- $\Sigma = \{\mathbf{0}, \mathbf{1}\}$
- The language consists of all strings with an odd number of 1s.
- $\bullet\,$  Construct a finite automaton  $E_1$  to recognize this language.
  - $\ \, \bullet \ \, q_{even}: \ \, {\rm even} \ \, {\rm so} \ \, {\rm far} \ \ \,$
  - 2  $q_{odd}$ : odd so far

### DFA $E_1$



- $\Sigma = \{\mathbf{0}, \mathbf{1}\}$
- The language of all strings that contain the string 001 as a substring.
- To design a finite automaton  $E_2$  to recognize this language.

- $\Sigma = \{\mathbf{0}, \mathbf{1}\}$
- The language of all strings that contain the string 001 as a substring.
- To design a finite automaton  $E_2$  to recognize this language.
  - $\mathbf{0}$  q: haven't just seen any symbols of the pattern

- $\Sigma = \{\mathbf{0}, \mathbf{1}\}$
- The language of all strings that contain the string 001 as a substring.
- To design a finite automaton  $E_2$  to recognize this language.
  - q: haven't just seen any symbols of the pattern
  - 2  $q_0$ : have just seen a 0

- $\Sigma = \{\mathbf{0}, \mathbf{1}\}$
- The language of all strings that contain the string 001 as a substring.
- To design a finite automaton  $E_2$  to recognize this language.
  - $\ \, {\bf 0} \ \ \, q: \ \, {\rm haven't \ just \ seen \ any \ symbols \ of \ the \ \, pattern }$
  - 2  $q_0$ : have just seen a 0
  - 3  $q_{00}$  : have just seen 00

- $\Sigma = \{\mathbf{0}, \mathbf{1}\}$
- The language of all strings that contain the string 001 as a substring.
- To design a finite automaton  $E_2$  to recognize this language.
  - q: haven't just seen any symbols of the pattern
  - 2  $q_0$ : have just seen a 0
  - 3  $q_{00}$  : have just seen 00
  - $q_{001}$ : have seen the entire pattern 001

- The language of all strings that contain the string 001 as a substring.
  - q: haven't just seen any symbols of the pattern
  - 2  $q_0$ : have just seen a 0
  - (a)  $q_{00}$  : have just seen 00
  - $q_{001}$ : have seen the entire pattern 001

- The language of all strings that contain the string 001 as a substring.
  - $\mathbf{0}$  q: haven't just seen any symbols of the pattern
  - 2  $q_0$ : have just seen a 0
  - 3  $q_{00}$  : have just seen 00
  - $q_{001}$ : have seen the entire pattern 001



- The language of all strings that contain the string 001 as a substring.
  - q: haven't just seen any symbols of the pattern
  - 2  $q_0$ : have just seen a 0
  - 3  $q_{00}$  : have just seen 00
  - $q_{001}$ : have seen the entire pattern 001



### Example

- The language of all strings that contain the string 001 as a substring.
  - q: haven't just seen any symbols of the pattern
  - 2  $q_0$ : have just seen a 0
  - 3  $q_{00}$  : have just seen 00
  - $q_{001}$ : have seen the entire pattern 001

### DFA $E_2$



#### Example

- The language of all strings that contain the string 001 as a substring.
  - q: haven't just seen any symbols of the pattern
  - 2  $q_0$ : have just seen a 0
  - 3  $q_{00}$  : have just seen 00
  - $q_{001}$ : have seen the entire pattern 001

### DFA $E_2$



< A

#### Example

- The language of all strings that contain the string 001 as a substring.
  - q: haven't just seen any symbols of the pattern
  - 2  $q_0$ : have just seen a 0
  - 3  $q_{00}$  : have just seen 00
  - $q_{001}$ : have seen the entire pattern 001

### DFA $E_2$



- (日)

### Example

- The language of all strings that contain the string 001 as a substring.
  - q: haven't just seen any symbols of the pattern
  - 2  $q_0$ : have just seen a 0
  - 3  $q_{00}$  : have just seen 00
  - $q_{001}$ : have seen the entire pattern 001

### DFA $E_2$



### Definition (regular operations)

Let A and B be language. We define the regular operations **union**,

concatenation, and star as follows:

### Definition (regular operations)

Let A and B be language. We define the regular operations **union**, **concatenation**, and **star** as follows:

• Union: 
$$A \cup B = \{x \mid x \in A \text{ or } x \in B\}$$

### Definition (regular operations)

Let A and B be language. We define the regular operations **union**, **concatenation**, and **star** as follows:

- Union:  $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$
- Concatenation:  $A \circ B = \{xy \mid x \in A \text{ and } y \in B\}$

### Definition (regular operations)

Let A and B be language. We define the regular operations **union**, **concatenation**, and **star** as follows:

- Union:  $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$
- Concatenation:  $A \circ B = \{xy \mid x \in A \text{ and } y \in B\}$
- Star:  $A^* = \{x_1 x_2 \dots x_k \mid k \ge 0 \text{ and each } x_i \in A\}$

### Example

Let the alphabet  $\Sigma$  be the standard 26 letters {a, b, ..., z}.

If  $A = \{ \text{ good, bad} \}$  and  $B = \{ \text{boy, girl} \}$ , then

#### Example

Let the alphabet  $\Sigma$  be the standard 26 letters {a, b, ..., z}.

- If  $A = \{ \text{good, bad} \}$  and  $B = \{ \text{boy, girl} \}$ , then
  - $A \cup B = \{ \text{good, bad, boy, girl} \}$

#### Example

Let the alphabet  $\Sigma$  be the standard 26 letters {a, b, ..., z}.

- If  $A = \{ \text{good, bad} \}$  and  $B = \{ \text{boy, girl} \}$ , then
  - $A \cup B = \{ good, bad, boy, girl \}$
  - $A \circ B = \{ \text{goodboy, goodgirl, badboy, badgirl} \}$

### Example

Let the alphabet  $\Sigma$  be the standard 26 letters {a, b, ..., z}.

- If  $A = \{ \text{good, bad} \}$  and  $B = \{ \text{boy, girl} \}$ , then
  - $A \cup B = \{ good, bad, boy, girl \}$
  - $A \circ B = \{ \text{goodboy, goodgirl, badboy, badgirl} \}$
  - $A^* = \{\varepsilon, \text{ good, bad, goodgood, goodbad, badgood, badbad, goodgoodgood, goodgoodbad, goodbadgood, goodbadbad, ... \}$

Closed

э

### Closed

#### Theorem

The class of regular languages is closed under the union operation.

### Closed

Theorem

The class of regular languages is closed under the union operation.

In other words, if  $A_1$  and  $A_2$  are regular languages, so is  $A_1 \cup A_2$ .

### Closed

#### Theorem

The class of regular languages is closed under the union operation.

In other words, if  $A_1$  and  $A_2$  are regular languages, so is  $A_1 \cup A_2$ .

#### Proof.

### Closed

#### Theorem

The class of regular languages is closed under the union operation.

In other words, if  $A_1$  and  $A_2$  are regular languages, so is  $A_1 \cup A_2$ .

### Proof.

Let  $M_1$  recognize  $A_1$ , where  $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ , and

 $M_2$  recognize  $A_2$ , where  $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ .

### Closed

#### Theorem

The class of regular languages is closed under the union operation.

In other words, if  $A_1$  and  $A_2$  are regular languages, so is  $A_1 \cup A_2$ .

### Proof.

Let  $M_1$  recognize  $A_1$ , where  $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ , and

 $M_2$  recognize  $A_2$ , where  $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ .

Construct M to recognize  $A_1 \cup A_2$ , where  $M = (Q, \Sigma, \delta, q_0, F)$ .

### Closed

#### Theorem

The class of regular languages is closed under the union operation.

In other words, if  $A_1$  and  $A_2$  are regular languages, so is  $A_1 \cup A_2$ .

### Proof.

Let  $M_1$  recognize  $A_1$ , where  $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ , and

 $M_2$  recognize  $A_2$ , where  $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ .

Construct M to recognize  $A_1 \cup A_2$ , where  $M = (Q, \Sigma, \delta, q_0, F)$ .

$$Q = \{ (r_1, r_2) \mid r_1 \in Q_1 \text{ and } r_2 \in Q_2 \}$$

### Closed

#### Theorem

The class of regular languages is closed under the union operation.

In other words, if  $A_1$  and  $A_2$  are regular languages, so is  $A_1 \cup A_2$ .

### Proof.

Let  $M_1$  recognize  $A_1$ , where  $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ , and

 $M_2$  recognize  $A_2$ , where  $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ .

Construct M to recognize  $A_1 \cup A_2$ , where  $M = (Q, \Sigma, \delta, q_0, F)$ .

$$\ \, {\bf Q}=\{(r_1,r_2)\mid r_1\in Q_1 \text{ and } r_2\in Q_2\}$$

**2**  $\Sigma$  is the same as in  $M_1$  and  $M_2$ 

#### Theorem

The class of regular languages is closed under the union operation.

In other words, if  $A_1$  and  $A_2$  are regular languages, so is  $A_1 \cup A_2$ .

### Proof.

• For each 
$$(r_1, r_2) \in Q$$
 and each  $a \in \Sigma$ , let  $\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a))$ 

#### Theorem

The class of regular languages is closed under the union operation.

In other words, if  $A_1$  and  $A_2$  are regular languages, so is  $A_1 \cup A_2$ .

### Proof.

**3** For each 
$$(r_1, r_2) \in Q$$
 and each  $a \in \Sigma$ , let  $\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a))$ 

 $\bigcirc$   $q_0$  is the pair  $(q_1, q_2)$ 

#### Theorem

The class of regular languages is closed under the union operation.

In other words, if  $A_1$  and  $A_2$  are regular languages, so is  $A_1 \cup A_2$ .

### Proof.

**3** For each 
$$(r_1, r_2) \in Q$$
 and each  $a \in \Sigma$ , let  $\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a))$ 

 $\bigcirc$   $q_0$  is the pair  $(q_1, q_2)$ 

**5** 
$$F = \{(r_1, r_2) \mid r_1 \in F_1 \text{ or } r_2 \in F_2\}$$

# The Regular Operations

#### Theorem

The class of regular languages is closed under the concatenation operation.

In other words, if  $A_1$  and  $A_2$  are regular languages, so is  $A_1 \circ A_2$ .

# The Regular Operations

#### Theorem

The class of regular languages is closed under the concatenation operation.

In other words, if  $A_1$  and  $A_2$  are regular languages, so is  $A_1 \circ A_2$ . **Problem:** M doesn't know where to break the input string?

### Outline

### 1 Finite Automata

### 2 Nondeterminism

- Formal Definition of a Nondeterministic Finite Automaton
- Equivalence of NFAs and DFAs
- Closure Under the Regular Operations

# Nondeterminism 非确定性

- **Determinism**: When the machine is in a given state and reads the next input symbol, we know what the next state will be it is determined. We call this **deterministic** computation.
- **Nondeterminism**: In a **nondeterministic** machine, several choices may exist for the next state at any point.

# Nondeterminism 非确定性

- **Determinism**: When the machine is in a given state and reads the next input symbol, we know what the next state will be it is determined. We call this **deterministic** computation.
- **Nondeterminism**: In a **nondeterministic** machine, several choices may exist for the next state at any point.
- Nondeterminism is a generalization of determinism,
- so every deterministic finite automaton is automatically a nondeterministic finite automaton.

## Nondeterministic Finite Automata

### NFA $N_1$

• Nondeterministic finite automata may have additional features.



## Nondeterministic Finite Automata

### NFA $N_1$

Nondeterministic finite automata may have additional features.



• DFA: deterministic finite automaton 确定型有穷自动机

• NFA: nondeterministic finite automaton 非确定型有穷自动机

### **NFAs**

### NFA $N_1$



### • DFA:

every state of a DFA always has exactly one exiting transition arrow for each symbol in the alphabet.

### • NFA:

- a state may have zero, one, or many exiting arrows for each alphabet symbol.
- 2) an NFA may have arrows labeled with members of the alphabet or  $\varepsilon$ .

# Deterministic and Nondeterministic Computations



### How Does an NFA Compute?





### NFA $N_1$





< □ > < □ > < □ > < □ > < □ >



### NFA $N_1$



•  $L(N_1) = \{w \mid w \text{ contain either 101 or 11 as a substring}\}$ 

イロト イヨト イヨト イヨト

- The language A:
  - {the language consisting of all strings over  $\{0,1\}$  containing a 1 in the third position from the end}
  - e.g., 000100  $\in A$ , 0011  $\notin A$

- The language A:
  - {the language consisting of all strings over  $\{0,1\}$  containing a 1 in the third position from the end}
  - e.g., 000100  $\in A$ , 0011  $\notin A$



- The language A:
  - {the language consisting of all strings over  $\{0,1\}$  containing a 1 in the third position from the end}
  - e.g., 000100  $\in A$ , 0011  $\notin A$



Every NFA can be converted into an equivalent DFA.

### Example (The equivalent DFA of NFA $N_2$ )



The convenience of having  $\varepsilon$  arrows

### Example (NFA $N_3$ )



A B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The convenience of having  $\varepsilon$  arrows

### Example (NFA $N_3$ )



 $L(N_3) = \{ \text{all strings of the form } 0^k \text{ where } k \text{ is a multiple of } 2 \text{ or } 3. \}$ 

Yajun Yang (TJU)

1 Regular Languages (Part 1 of 2)

Image: A marked black

2015 45 / 66

### Example (NFA $N_4$ )



A (1) > A (2) > A (2)

### Example (NFA $N_4$ )



• it accepts the strings  $\varepsilon$ , a, baba, baa

• it accepts it doesn't accept the strings b, bb, babba

## Formal Definition of a Nondeterministic Finite Automaton

### Definition (NFA)

A *nondeterministic finite automaton* (NFA) is a 5-tuple  $(Q, \Sigma, \delta, q_0, F)$ , where

- $\bigcirc$  Q is a finite set of states,
- **2**  $\Sigma$  is a finite alphabet,
- $\begin{tabular}{ll} \bullet & \delta: Q \times \Sigma_{\varepsilon} \to \mathcal{P}(Q) \end{tabular} \end{tabular} is the transition function, \end{tabular} \end{tabular}$
- ${\small {\small \bigcirc}} \ q_0 \in Q \ {\rm is \ the \ start \ state, \ and }$
- **9**  $F \subseteq Q$  is the set of accept states.
  - $\mathcal{P}(Q)$  is the power set of Q
  - $\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\}$

# Example: The Formal Definition of NFA $N_1$

### Example (Recall the NFA $N_1$ )



$$N_1 = (Q, \Sigma, \delta, q_1, F)$$
, where

| ۲ | Q = | $= \{q_1, q_2,$ | $q_3, q_4\}$ |
|---|-----|-----------------|--------------|
|---|-----|-----------------|--------------|

- $\Sigma = \{0,1\}$
- $\bullet~\delta$  is given as
- q<sub>1</sub> is the start state
- $F = \{q_4\}$

|       | 0         | 1              | ε         |
|-------|-----------|----------------|-----------|
| $q_1$ | $\{q_1\}$ | $\{q_1, q_2\}$ | Ø         |
| $q_2$ | $\{q_3\}$ | Ø              | $\{q_3\}$ |
| $q_3$ | Ø         | $\{q_4\}$      | Ø         |
| $q_4$ | $\{q_4\}$ | $\{q_4\}$      | Ø         |

### Formal Definition of Computation for an NFA

- Let  $N = (Q, \Sigma, \delta, q_0, F)$  be an NFA.
- Let w be a string over  $\Sigma$ .
- Then N accepts w if we can write w as  $w = a_1 a_2 \cdots a_n$ , where  $a_i \in \Sigma_{\varepsilon}$  and a sequence of states  $r_0, r_1, \ldots, r_n$  exists in Q with three conditions:

(1) 
$$r_0 = q_0$$
  
(2)  $r_{i+1} \in \delta(r_i, a_{i+1})$ , for  $i = 0, \dots, n-1$   
(3)  $r_n \in F$ 

DFA and NFA recognize the same class of languages.

DFA and NFA recognize the same class of languages.

• Surprising: NFAs appear to have more power than DFAs, so we might expect that NFAs recognize more languages

DFA and NFA recognize the same class of languages.

- Surprising: NFAs appear to have more power than DFAs, so we might expect that NFAs recognize more languages
- Useful: describing an NFA for a given language sometimes is much easier than describing a DFA for that language

DFA and NFA recognize the same class of languages.

- Surprising: NFAs appear to have more power than DFAs, so we might expect that NFAs recognize more languages
- Useful: describing an NFA for a given language sometimes is much easier than describing a DFA for that language

#### Equivalent

Say that two machines are *equivalent* if they recognize the same language.

#### Theorem

Every nondeterministic finite automaton has an equivalent deterministic

finite automaton.

#### Theorem

*Every nondeterministic finite automaton has an equivalent deterministic finite automaton.* 

### Proof.

- Let  $N = (Q, \Sigma, \delta, q_0, F)$  be the NFA recognizing some language A.
- We construct a DFA  $M = (Q', \Sigma, \delta', q'_0, F')$  recognizing A.
- Before doing the full construction, let's first consider the easier case wherein N has no  $\varepsilon$  arrows. Later we take the  $\varepsilon$  arrows into account.

#### Theorem

Every nondeterministic finite automaton has an equivalent deterministic

finite automaton.

#### Proof.

$$Q' = \mathcal{P}(Q)$$

2 For 
$$R \in Q'$$
 and  $a \in \Sigma$ ,

$$\delta'(R,a) = \{q \in Q \mid q \in \delta(r,a) \text{ for some } r \in R\}$$

$$\delta'(R,a) = \bigcup_{r \in R} \delta(r,a)$$

Yajun Yang (TJU)

Image: A mathematical states and the states and

#### Theorem

*Every nondeterministic finite automaton has an equivalent deterministic finite automaton.* 

Proof.  
(a) 
$$q'_0 = \{q_0\}$$
  
(b)  $F' = \{R \in Q' \mid R \text{ contains an accept state of } N\}$ 

### Proof.

Now we need to consider the  $\varepsilon$  arrows.

< □ > < □ > < □ > < □ > < □ >

### Proof.

Now we need to consider the  $\varepsilon$  arrows.

• For any state R of M,

 $E(R) = \{q \mid q \text{ can be reached from } R \text{ by traveling along } 0 \text{ or more } \varepsilon \text{ arrows} \}$ 

• E(R) is the collection of states that can be reached from members of R by going only along  $\varepsilon$  arrows, including the members of R themselves.

• 
$$\delta'(R,a) = \{q \in Q \mid q \in E(\delta(r,a)) \text{ for some } r \in R\}$$

• 
$$q'_0 = E(\{q_0\})$$

Image: A match a ma

### Proof.

Now we need to consider the  $\varepsilon$  arrows.

• For any state R of M,

 $E(R) = \{q \mid q \text{ can be reached from } R \text{ by traveling along } 0 \text{ or more } \varepsilon \text{ arrows} \}$ 

• E(R) is the collection of states that can be reached from members of R by going only along  $\varepsilon$  arrows, including the members of R themselves.

• 
$$\delta'(R,a) = \{q \in Q \mid q \in E(\delta(r,a)) \text{ for some } r \in R\}$$

• 
$$q'_0 = E(\{q_0\})$$

We have now completed the construction of the DFA  ${\cal M}$  that simulates the NFA N.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

#### Theorem

Every nondeterministic finite automaton has an equivalent deterministic

finite automaton.

### Corollary

A language is regular if and only if some nondeterministic finite automaton recognizes it.

 $\mathbf{2}$ 

# Equivalence of NFAs and DFAs

### Example (NFA $N_4$ )

NFA  $N_4 = (Q, \Sigma, \delta, q_0, F)$ 

- $Q = \{1, 2, 3\}$
- $\Sigma = \{\mathsf{a}, \mathsf{b}\}$
- δ
- $q_0 = 1$



Construct a DFA D that is equivalent to  $N_4$ 

- ( E

а

a,b

3

NFA  $N_4 = (Q, \Sigma, \delta, q_0, F)$ 



DFA  $D = (Q', \Sigma, \delta', q'_0, F')$ 

NFA  $N_4 = (Q, \Sigma, \delta, q_0, F)$ 



DFA  $D = (Q', \Sigma, \delta', q'_0, F')$ 

•  $Q' = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}$ 

NFA  $N_4 = (Q, \Sigma, \delta, q_0, F)$ 



DFA  $D = (Q', \Sigma, \delta', q'_0, F')$ 

•  $Q' = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$ •  $\Sigma = \{a, b\}$ 

NFA  $N_4 = (Q, \Sigma, \delta, q_0, F)$ 



 $\mathsf{DFA}\ D = (Q', \Sigma, \delta', q_0', F')$ 

•  $Q' = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}$ 

• 
$$\Sigma = \{\mathsf{a}, \mathsf{b}\}$$

• 
$$q'_0 = E(\{q_0\}) = E(\{1\}) = \{1,3\}$$

NFA  $N_4 = (Q, \Sigma, \delta, q_0, F)$ 



 $\mathsf{DFA}\ D = (Q', \Sigma, \delta', q_0', F')$ 

•  $Q' = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}$ 

•  $\Sigma = \{\mathsf{a}, \mathsf{b}\}$ 

• 
$$q'_0 = E(\{q_0\}) = E(\{1\}) = \{1,3\}$$

•  $F' = \{\{1\}, \{1, 2\}, \{1, 3\}, \{1, 2, 3\}\}$ 

### Example (DFA D that is equivalent to the NFA $N_4$ )



Example (DFA D after removing unnecessary states)

- No arrows point at states  $\{1\}$  and  $\{1, 2\}$
- They may be removed without affecting the performance of DFA.



### Theorem

The class of regular languages is closed under the union operation.

### Theorem

The class of regular languages is closed under the union operation.

### Proof.

### Theorem

The class of regular languages is closed under the union operation.

### Proof.

Let  $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$  recognize  $A_1$ , and

 $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$  recognize  $A_2$ .

### Theorem

The class of regular languages is closed under the union operation.

### Proof.

Let  $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$  recognize  $A_1$ , and

 $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$  recognize  $A_2$ .

### Theorem

The class of regular languages is closed under the union operation.

### Proof.

Let  $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$  recognize  $A_1$ , and

 $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$  recognize  $A_2$ .

$$\bigcirc Q = \{q_0\} \cup Q_1 \cup Q_2$$

### Theorem

The class of regular languages is closed under the union operation.

### Proof.

Let  $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$  recognize  $A_1$ , and

 $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$  recognize  $A_2$ .

Construct  $N = (Q, \Sigma, \delta, q_0, F)$  to recognize  $A_1 \cup A_2$ .

$$Q = \{q_0\} \cup Q_1 \cup Q_2$$

2  $q_0$  is the start state of N

### Theorem

The class of regular languages is closed under the union operation.

### Proof.

Let  $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$  recognize  $A_1$ , and

 $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$  recognize  $A_2$ .

Construct  $N = (Q, \Sigma, \delta, q_0, F)$  to recognize  $A_1 \cup A_2$ .

$$\bigcirc Q = \{q_0\} \cup Q_1 \cup Q_2$$

2  $q_0$  is the start state of N

 $F = F_1 \cup F_2$ 

#### Theorem

The class of regular languages is closed under the union operation.

### Proof.

Let  $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$  recognize  $A_1$ , and

 $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$  recognize  $A_2$ .

Construct  $N = (Q, \Sigma, \delta, q_0, F)$  to recognize  $A_1 \cup A_2$ .

 $\label{eq:q0} \mathbf{0} \ \ Q = \{q_0\} \cup Q_1 \cup Q_2 \qquad \qquad \mathbf{0} \ \ \text{For any} \ q \in Q \ \text{and any} \ a \in \Sigma_{\varepsilon}$ 

2  $q_0$  is the start state of N

 $F = F_1 \cup F_2$ 

### Theorem

The class of regular languages is closed under the union operation.

### Proof.

Let 
$$N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$$
 recognize  $A_1$ , and

 $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$  recognize  $A_2$ .

Construct  $N = (Q, \Sigma, \delta, q_0, F)$  to recognize  $A_1 \cup A_2$ .

 $\label{eq:q_1} \mathbf{0} \ Q = \{q_0\} \cup Q_1 \cup Q_2 \qquad \qquad \mathbf{0} \ \text{ For any } q \in Q \text{ and any } a \in \Sigma_{\varepsilon}$ 

 $\delta(q)$ 

**2**  $q_0$  is the start state of N

$$\bullet F = F_1 \cup F_2$$

For any 
$$q \in Q$$
 and any  $a \in \Sigma_{\varepsilon}$ 

$$(a) = \begin{cases} \delta_1(q, a) & q \in Q_1 \\ \delta_2(q, a) & q \in Q_2 \\ \{q_1, q_2\} & q = q_0 \text{ and } a = \varepsilon \\ \emptyset & q = q_0 \text{ and } a \neq \varepsilon \end{cases}$$

### Construction of an NFA N to recognize $A_1 \cup A_2$



### Construction of an NFA N to recognize $A_1 \cup A_2$



#### Theorem

The class of regular languages is closed under the concatenation operation.

#### Theorem

The class of regular languages is closed under the concatenation operation.

### Proof.

### Theorem

The class of regular languages is closed under the concatenation operation.

### Proof.

Let  $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$  recognize  $A_1$ , and

 $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$  recognize  $A_2$ .

### Theorem

The class of regular languages is closed under the concatenation operation.

### Proof.

Let  $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$  recognize  $A_1$ , and

 $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$  recognize  $A_2$ .

### Theorem

The class of regular languages is closed under the concatenation operation.

### Proof.

Let  $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$  recognize  $A_1$ , and

 $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$  recognize  $A_2$ .

Construct  $N = (Q, \Sigma, \delta, q_1, F_2)$  to recognize  $A_1 \circ A_2$ .

 $Q = Q_1 \cup Q_2$ 

### Theorem

The class of regular languages is closed under the concatenation operation.

### Proof.

Let  $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$  recognize  $A_1$ , and

 $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$  recognize  $A_2$ .

- $Q = Q_1 \cup Q_2$
- q<sub>1</sub> is the same as the start state of N<sub>1</sub>

### Theorem

The class of regular languages is closed under the concatenation operation.

### Proof.

Let  $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$  recognize  $A_1$ , and

 $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$  recognize  $A_2$ .

- $Q = Q_1 \cup Q_2$
- q<sub>1</sub> is the same as the start state of N<sub>1</sub>
- The accept states F<sub>2</sub> are the same as the accept states of N<sub>2</sub>

### Theorem

The class of regular languages is closed under the concatenation operation.

### Proof.

Let  $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$  recognize  $A_1$ , and

 $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$  recognize  $A_2$ .

- $\label{eq:quantum_states} \textbf{0} \ \ Q = Q_1 \cup Q_2 \qquad \qquad \textbf{0} \ \ \text{For any} \ q \in Q \ \text{and any} \ a \in \Sigma_{\varepsilon}$
- q<sub>1</sub> is the same as the start state of N<sub>1</sub>
- The accept states F<sub>2</sub> are the same as the accept states of N<sub>2</sub>

#### Theorem

The class of regular languages is closed under the concatenation operation.

### Proof.

Let 
$$N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$$
 recognize  $A_1$ , and

 $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$  recognize  $A_2$ .

Construct  $N = (Q, \Sigma, \delta, q_1, F_2)$  to recognize  $A_1 \circ A_2$ .

- $\begin{tabular}{ll} {\bf Q} = Q_1 \cup Q_2 & \end{tabular} \begin{tabular}{ll} {\bf S} & \end{tabular} \begin{tabular}{ll} {\bf S} & \end{tabular} & \end{tabular} \be$
- q<sub>1</sub> is the same as the start state of N<sub>1</sub>
- The accept states F<sub>2</sub> are the same as the accept states of N<sub>2</sub>

$$\delta(q,a) = \begin{cases} \delta_1(q,a) & q \in Q_1 \text{ and } q \notin F_1 \\ \delta_1(q,a) & q \in F_1 \text{ and } a \neq \varepsilon \\ \delta_1(q,a) \cup \{q_2\} & q \in F_1 \text{ and } a = \varepsilon \\ \delta_2(q,a) & q \in Q_2 \end{cases}$$

Yajun Yang (TJU)

## Construction of N to recognize $A_1 \circ A_2$



## Construction of N to recognize $A_1 \circ A_2$



#### Theorem

The class of regular languages is closed under the star operation.

### Theorem

The class of regular languages is closed under the star operation.

### Proof.

### Theorem

The class of regular languages is closed under the star operation.

### Proof.

Let  $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$  recognize  $A_1$ .

#### Theorem

The class of regular languages is closed under the star operation.

### Proof.

Let  $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$  recognize  $A_1$ .

#### Theorem

The class of regular languages is closed under the star operation.

### Proof.

Let  $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$  recognize  $A_1$ .

$$Q = \{q_0\} \cup Q_1$$

#### Theorem

The class of regular languages is closed under the star operation.

### Proof.

Let  $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$  recognize  $A_1$ .

- $Q = \{q_0\} \cup Q_1$
- q<sub>0</sub> is the new start state.

#### Theorem

The class of regular languages is closed under the star operation.

### Proof.

Let  $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$  recognize  $A_1$ .

- $Q = \{q_0\} \cup Q_1$
- *q*<sub>0</sub> is the new start state.
- **3**  $F = \{q_0\} \cup F_1$

#### Theorem

The class of regular languages is closed under the star operation.

### Proof.

Let  $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$  recognize  $A_1$ .

- $\label{eq:q0} \mathbf{0} \ \ Q = \{q_0\} \cup Q_1 \qquad \ \mathbf{0} \ \ \text{For any} \ q \in Q \ \text{and any} \ a \in \Sigma_{\varepsilon}$
- *q*<sub>0</sub> is the new start state.
- $F = \{q_0\} \cup F_1$

#### Theorem

The class of regular languages is closed under the star operation.

### Proof.

Let  $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$  recognize  $A_1$ .

- $\label{eq:Q} {\bf 0} \ Q = \{q_0\} \cup Q_1 \qquad {\bf 0} \ \mbox{For any } q \in Q \ \mbox{and any } a \in \Sigma_{\varepsilon}$
- $\begin{array}{l} \textcircled{0} \quad q_0 \text{ is the new} \\ \text{start state.} \end{array} \qquad \left\{ \begin{array}{l} \delta_1(q,a) \qquad \qquad q \in Q_1 \text{ and } q \notin F_1 \\ \delta_1(q,a) \qquad \qquad q \in F_1 \text{ and } a \neq \varepsilon \end{array} \right.$

• 
$$F = \{q_0\} \cup F_1$$
  
 $\delta(q, a) = \begin{cases} \delta_1(q, a) \cup \{q_1\} & q \in F_1 \text{ and } a = \varepsilon \\ \{a_1\} & a = a_0 \text{ and } a = \varepsilon \end{cases}$ 

$$q=q_0$$
 and  $a
eqarepsilon$ 

## Closure Under the Regular Operations

### Construction of N to recognize $A_1^*$



### Construction of N to recognize $A_1^*$



# Conclusion

▶ < Ξ >

Image: A mathematical states and the states and

## Conclusion

## DFA

- Formal Definitions of a DFA
- Computation of a DFA
- From DFAs to languages
- From languages to DFAs
- The Regular Operations

# Conclusion

## DFA

- Formal Definitions of a DFA
- Computation of a DFA
- From DFAs to languages
- From languages to DFAs
- The Regular Operations

## • NFA

- Formal Definitions of an NFA
- Equivalence of NFAs and DFAs
- Closure Under the Regular Operations