1 Regular Languages
 (Part 1 of 2)

Yajun Yang
yjyang@tju.edu.cn

School of Computer Science and Technology
Tianjin University
2015

Outline

(1) Finite Automata
(2) Nondeterminism

A Computational Model

The theory of computation begins with a question:

What is a computer?

A Computational Model

The theory of computation begins with a question:

What is a computer?

- Computational model: an idealized computer.

A Computational Model

The theory of computation begins with a question：

What is a computer？

－Computational model：an idealized computer．
－Several different computational models

- Finite automata or finite state machine 有穷自动机
- Pushdown automata 下推自动机
- Linear－bounded automata 线性有界自动机
- Turing machine 图灵机

Outline

(1) Finite Automata

- Formal Definition of a Finite Automaton
- Examples of Finite Automata
- Formal Definition of Computation
- Designing Finite Automata
- The Regular Operations
(2) Nondeterminism

Example: An Automatic Door

Example: An Automatic Door

Example: An Automatic Door

	inpute signal				
state	NEITHER	FRONT	REAR	BOTH	
	CLOSED	CLOSED	OPEN	CLOSED	
CLOSED					
OPEN	CLOSED	OPEN	OPEN	OPEN	

Example: A Finite Automaton

Example (A finite automaton M_{1})

Example: A Finite Automaton

Example (A finite automaton M_{1})

- the state diagram of M_{1}
- three states: q_{1}, q_{2}, and q_{3}
- the start state: q_{1}
- the accept state: q_{2}
- transitions: the arrows going from one state to another

Example: A Finite Automaton

Example (A finite automaton M_{1})

Example: A Finite Automaton

Example (A finite automaton M_{1})

Feed the input string 1101 to the machine M_{1}

Example: A Finite Automaton

Example (A finite automaton M_{1})

Feed the input string 1101 to the machine M_{1}
(1) Start in state q_{1}

Example: A Finite Automaton

Example (A finite automaton M_{1})

Feed the input string 1101 to the machine M_{1}
(1) Start in state q_{1}
(2) Read 1 , follow transition from q_{1} to q_{2}

Example: A Finite Automaton

Example (A finite automaton M_{1})

Feed the input string 1101 to the machine M_{1}
(1) Start in state q_{1}
(2) Read 1 , follow transition from q_{1} to q_{2}
(3) Read 1 , follow transition from q_{2} to q_{2}

Example: A Finite Automaton

Example (A finite automaton M_{1})

Feed the input string 1101 to the machine M_{1}
(1) Start in state q_{1}
(2) Read 1 , follow transition from q_{1} to q_{2}
(3) Read 1 , follow transition from q_{2} to q_{2}
(9) Read 0 , follow transition from q_{2} to q_{3}

Example: A Finite Automaton

Example (A finite automaton M_{1})

Feed the input string 1101 to the machine M_{1}
(1) Start in state q_{1}
(2) Read 1, follow transition from q_{1} to q_{2}
(3) Read 1 , follow transition from q_{2} to q_{2}
(9) Read 0 , follow transition from q_{2} to q_{3}
(5) Read 1, follow transition from q_{3} to q_{2}

Example: A Finite Automaton

Example (A finite automaton M_{1})

Feed the input string 1101 to the machine M_{1}
(1) Start in state q_{1}
(2) Read 1, follow transition from q_{1} to q_{2}
(3) Read 1 , follow transition from q_{2} to q_{2}
(9) Read 0 , follow transition from q_{2} to q_{3}
(0) Read 1 , follow transition from q_{3} to q_{2}
(0) Accept because M_{1} is in an accept state q_{2} at the end of the input

Formal Definition of a Finite Automaton

Definition（DFA（确定型有穷自动机））

Formal Definition of a Finite Automaton

Definition（DFA（确定型有穷自动机））

A deterministic finite automaton（DFA）is a 5－tuple $\left(Q, \Sigma, \delta, q_{0}, F\right)$ ， where

Formal Definition of a Finite Automaton

Definition（DFA（确定型有穷自动机））

A deterministic finite automaton（DFA）is a 5－tuple $\left(Q, \Sigma, \delta, q_{0}, F\right)$ ， where
（1）Q is a finite set called the states，

Formal Definition of a Finite Automaton

Definition（DFA（确定型有穷自动机））

A deterministic finite automaton（DFA）is a 5－tuple $\left(Q, \Sigma, \delta, q_{0}, F\right)$ ， where
（1）Q is a finite set called the states，
（2）Σ is a finite set called the alphabet，

Formal Definition of a Finite Automaton

Definition（DFA（确定型有穷自动机））

A deterministic finite automaton（DFA）is a 5－tuple $\left(Q, \Sigma, \delta, q_{0}, F\right)$ ， where
（1）Q is a finite set called the states，
（2）Σ is a finite set called the alphabet，
（3）$\delta: Q \times \Sigma \rightarrow Q$ is the transition function，

Formal Definition of a Finite Automaton

Definition（DFA（确定型有穷自动机））

A deterministic finite automaton（DFA）is a 5－tuple $\left(Q, \Sigma, \delta, q_{0}, F\right)$ ， where
（1）Q is a finite set called the states，
（2）Σ is a finite set called the alphabet，
（3）$\delta: Q \times \Sigma \rightarrow Q$ is the transition function，
（9）$q_{0} \in Q$ is the start state，and

Formal Definition of a Finite Automaton

Definition（DFA（确定型有穷自动机））

A deterministic finite automaton（DFA）is a 5－tuple $\left(Q, \Sigma, \delta, q_{0}, F\right)$ ， where
（1）Q is a finite set called the states，
（2）Σ is a finite set called the alphabet，
（3）$\delta: Q \times \Sigma \rightarrow Q$ is the transition function，
（9）$q_{0} \in Q$ is the start state，and
（5）$F \subseteq Q$ is the set of accept states．

Using the Definition of DFA

Example (A finite automaton M_{1})

Using the Definition of DFA

Example (A finite automaton M_{1})

$$
M_{1}=\left(Q, \Sigma, \delta, q_{1}, F\right), \text { where }
$$

Using the Definition of DFA

Example (A finite automaton M_{1})

$$
M_{1}=\left(Q, \Sigma, \delta, q_{1}, F\right), \text { where }
$$

(1) $Q=\left\{q_{1}, q_{2}, q_{3}\right\}$

Using the Definition of DFA

Example (A finite automaton M_{1})

$$
M_{1}=\left(Q, \Sigma, \delta, q_{1}, F\right), \text { where }
$$

(1) $Q=\left\{q_{1}, q_{2}, q_{3}\right\}$
(2) $\Sigma=\{0,1\}$

Using the Definition of DFA

Example (A finite automaton M_{1})

$$
M_{1}=\left(Q, \Sigma, \delta, q_{1}, F\right) \text {, where }
$$

(1) $Q=\left\{q_{1}, q_{2}, q_{3}\right\}$
(2) $\Sigma=\{0,1\}$
(0) δ is described as: $\delta\left(q_{1}, 0\right)=q_{1}, \quad \delta\left(q_{1}, 1\right)=q_{2}$,
$\delta\left(q_{2}, 0\right)=q_{3}, \quad \delta\left(q_{2}, 1\right)=q_{2}, \quad \delta\left(q_{3}, 0\right)=q_{2}, \quad \delta\left(q_{3}, 1\right)=q_{2}$

Using the Definition of DFA

Example (A finite automaton M_{1})

$$
M_{1}=\left(Q, \Sigma, \delta, q_{1}, F\right) \text {, where }
$$

(1) $Q=\left\{q_{1}, q_{2}, q_{3}\right\}$
(2) $\Sigma=\{0,1\}$
(0) δ is described as: $\delta\left(q_{1}, 0\right)=q_{1}, \quad \delta\left(q_{1}, 1\right)=q_{2}$,
$\delta\left(q_{2}, 0\right)=q_{3}, \quad \delta\left(q_{2}, 1\right)=q_{2}, \quad \delta\left(q_{3}, 0\right)=q_{2}, \quad \delta\left(q_{3}, 1\right)=q_{2}$

- q_{1} is the start state, and

Using the Definition of DFA

Example (A finite automaton M_{1})

$$
M_{1}=\left(Q, \Sigma, \delta, q_{1}, F\right) \text {, where }
$$

(1) $Q=\left\{q_{1}, q_{2}, q_{3}\right\}$
(2) $\Sigma=\{0,1\}$
(0) δ is described as: $\delta\left(q_{1}, 0\right)=q_{1}, \quad \delta\left(q_{1}, 1\right)=q_{2}$,
$\delta\left(q_{2}, 0\right)=q_{3}, \quad \delta\left(q_{2}, 1\right)=q_{2}, \quad \delta\left(q_{3}, 0\right)=q_{2}, \quad \delta\left(q_{3}, 1\right)=q_{2}$

- q_{1} is the start state, and
- $F=\left\{q_{2}\right\}$

Language of DFA

- If A is the set of all strings that machine M accepts, we say that A is the language of machine M and write $L(M)=A$.

Language of DFA

- If A is the set of all strings that machine M accepts, we say that A is the language of machine M and write $L(M)=A$.
- We say that M recognizes A.

Language of DFA

- If A is the set of all strings that machine M accepts, we say that A is the language of machine M and write $L(M)=A$.
- We say that M recognizes A.
- A machine may accept several strings, but it always recognizes only one language.

Language of DFA

- If A is the set of all strings that machine M accepts, we say that A is the language of machine M and write $L(M)=A$.
- We say that M recognizes A.
- A machine may accept several strings, but it always recognizes only one language.
- What about the machine accepts no strings?

Language of DFA M_{1}

DFA M_{1}

$L\left(M_{1}\right)=$?

Language of DFA M_{1}

DFA M_{1}

$L\left(M_{1}\right)=$?
$L\left(M_{1}\right)=$
$A=\{w \mid w$ contains at least one 1 and an even number of 0 s follow the last 1$\}$

Example: DFA M_{2}

DFA M_{2}

Example: DFA M_{2}

DFA M_{2}

$$
\begin{aligned}
& M_{2}=\left(\left\{q_{1}, q_{2}\right\},\{0,1\}, \delta, q_{1},\left\{q_{2}\right\}\right) \\
& \delta: \begin{array}{c|cc}
\\
\delta: & 0 & 1 \\
\hline q_{1} & q_{1} & q_{2} \\
q_{2} & q_{1} & q_{2}
\end{array}
\end{aligned}
$$

Example: DFA M_{2}

DFA M_{2}

$$
L\left(M_{2}\right)=?
$$

$$
\begin{aligned}
& M_{2}=\left(\left\{q_{1}, q_{2}\right\},\{0,1\}, \delta, q_{1},\left\{q_{2}\right\}\right)
\end{aligned}
$$

Example: DFA M_{2}

DFA M_{2}

$$
\begin{aligned}
& M_{2}=\left(\left\{q_{1}, q_{2}\right\},\{0,1\}, \delta, q_{1},\left\{q_{2}\right\}\right) \\
& \delta: \begin{array}{c|cc}
& & 0 \\
\hline
\end{array} q_{1} \left\lvert\, q_{1} \begin{array}{c}
q_{2} \\
\\
\\
q_{2}
\end{array} q_{1} \quad q_{2}\right.
\end{aligned}
$$

$L\left(M_{2}\right)=$?
try 1101,

Example: DFA M_{2}

DFA M_{2}

$$
\begin{aligned}
& M_{2}=\left(\left\{q_{1}, q_{2}\right\},\{0,1\}, \delta, q_{1},\left\{q_{2}\right\}\right) \\
& \delta: \begin{array}{|l|ll}
& 0 & 1 \\
\hline q_{1} & q_{1} & q_{2} \\
q_{2} & q_{1} & q_{2}
\end{array}
\end{aligned}
$$

$L\left(M_{2}\right)=$?
try 1101, try 110

Example: DFA M_{2}

DFA M_{2}

$$
\begin{aligned}
& M_{2}=\left(\left\{q_{1}, q_{2}\right\},\{0,1\}, \delta, q_{1},\left\{q_{2}\right\}\right) \\
& \delta: \begin{array}{c|cc}
& & 0 \\
\hline
\end{array} q_{1} \left\lvert\, q_{1} \begin{array}{c}
q_{2} \\
\\
\\
q_{2}
\end{array} q_{1} \quad q_{2}\right.
\end{aligned}
$$

$L\left(M_{2}\right)=$?
try 1101, try 110

$$
L\left(M_{2}\right)=\{w \mid w \text { ends in a } 1\}
$$

Example: DFA M_{3}

DFA M_{3}

$M_{3}=\left(\left\{q_{1}, q_{2}\right\},\{0,1\}, \delta, q_{1},\left\{q_{1}\right\}\right)$

Example: DFA M_{3}

DFA M_{3}

$M_{3}=\left(\left\{q_{1}, q_{2}\right\},\{0,1\}, \delta, q_{1},\left\{q_{1}\right\}\right)$

$L\left(M_{3}\right)=$?

Example: DFA M_{3}

DFA M_{3}

$M_{3}=\left(\left\{q_{1}, q_{2}\right\},\{0,1\}, \delta, q_{1},\left\{q_{1}\right\}\right)$

$L\left(M_{3}\right)=$?

$$
L\left(M_{3}\right)=\{w \mid w \text { is the empty string } \varepsilon \text { or ends in a } 0\}
$$

Example: DFA M_{3}

DFA M_{3}

$$
M_{3}=\left(\left\{q_{1}, q_{2}\right\},\{0,1\}, \delta, q_{1},\left\{q_{1}\right\}\right)
$$

$L\left(M_{3}\right)=$?

$$
L\left(M_{3}\right)=\{w \mid w \text { is the empty string } \varepsilon \text { or ends in a } 0\}
$$

What is the relationship between $L\left(M_{2}\right)$ and $L\left(M_{3}\right)$?

Example: DFA M_{4}

DFA M_{4}

Example: DFA M_{4}

DFA M_{4}

$$
L\left(M_{4}\right)=
$$

Example: DFA M_{4}

DFA M_{4}

$L\left(M_{4}\right)=\{w \mid w$ starts and ends with the same symbol $\}$

Example: DFA M_{5}

DFA M_{5}

Example: DFA M_{5}

DFA M_{5}

$L\left(M_{5}\right)=$

Example: Generalization of M_{5}

- $\Sigma=\{\langle$ RESET $\rangle, 0,1,2\}$

Example: Generalization of M_{5}

- $\Sigma=\{\langle$ RESET $\rangle, 0,1,2\}$
- For each $i \geq 1$ let A_{i} be the language of all strings where the sum of the numbers is a multiple of i, except that the sum is reset to 0 whenever the symbol <RESET> appears.

Example: Generalization of M_{5}

- $\Sigma=\{\langle$ RESET $\rangle, 0,1,2\}$
- For each $i \geq 1$ let A_{i} be the language of all strings where the sum of the numbers is a multiple of i, except that the sum is reset to 0 whenever the symbol <RESET> appears.
- For each A_{i} we give a DFA B_{i}, recognizing A_{i}.

Example: Generalization of M_{5}

- $\Sigma=\{\langle$ RESET $\rangle, 0,1,2\}$
- For each $i \geq 1$ let A_{i} be the language of all strings where the sum of the numbers is a multiple of i, except that the sum is reset to 0 whenever the symbol <RESET> appears.
- For each A_{i} we give a DFA B_{i}, recognizing A_{i}.
- $B_{i}=\left\{Q_{i}, \Sigma, \delta_{i}, q_{0},\left\{q_{0}\right\}\right\}$

Example: Generalization of M_{5}

- $\Sigma=\{\langle$ RESET $\rangle, 0,1,2\}$
- For each $i \geq 1$ let A_{i} be the language of all strings where the sum of the numbers is a multiple of i, except that the sum is reset to 0 whenever the symbol <RESET> appears.
- For each A_{i} we give a DFA B_{i}, recognizing A_{i}.
- $B_{i}=\left\{Q_{i}, \Sigma, \delta_{i}, q_{0},\left\{q_{0}\right\}\right\}$
- $Q_{i}=\left\{q_{0}, q_{1}, q_{2}, \ldots, q_{i-1}\right\}$

Example: Generalization of M_{5}

- $\Sigma=\{\langle$ RESET $\rangle, 0,1,2\}$
- For each $i \geq 1$ let A_{i} be the language of all strings where the sum of the numbers is a multiple of i, except that the sum is reset to 0 whenever the symbol <RESET> appears.
- For each A_{i} we give a DFA B_{i}, recognizing A_{i}.
- $B_{i}=\left\{Q_{i}, \Sigma, \delta_{i}, q_{0},\left\{q_{0}\right\}\right\}$
- $Q_{i}=\left\{q_{0}, q_{1}, q_{2}, \ldots, q_{i-1}\right\}$
- We design the transition function δ_{i} so that for each j, if B_{i} is in q_{j}, the running sum is j, modulo i.

Example: Generalization of M_{5}

- $\Sigma=\{\langle$ RESET $\rangle, 0,1,2\}$
- For each $i \geq 1$ let A_{i} be the language of all strings where the sum of the numbers is a multiple of i, except that the sum is reset to 0 whenever the symbol <RESET> appears.
- For each A_{i} we give a DFA B_{i}, recognizing A_{i}.
- $B_{i}=\left\{Q_{i}, \Sigma, \delta_{i}, q_{0},\left\{q_{0}\right\}\right\}$
- $Q_{i}=\left\{q_{0}, q_{1}, q_{2}, \ldots, q_{i-1}\right\}$
- We design the transition function δ_{i} so that for each j, if B_{i} is in q_{j}, the running sum is j, modulo i.
- $\delta_{i}\left(q_{j}, 0\right)=q_{j}$
$\delta_{i}\left(q_{j}, 1\right)=q_{k}$, where $k=j+1$ modulo i
$\delta_{i}\left(q_{j}, 2\right)=q_{k}$, where $k=j+2$ modulo i
$\delta_{i}\left(q_{j},\langle\right.$ RESET $\left.\rangle\right)=q_{0}$

Formal Definition of Computation for a DFA

- Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a DFA.
- Let $w=a_{1} a_{2} \ldots a_{n}$ be a string where $a_{i} \in \Sigma$.
- Then M accepts w if a sequence of states $r_{0}, r_{1}, \ldots, r_{n}$ in Q exists with three conditions:

Formal Definition of Computation for a DFA

- Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a DFA.
- Let $w=a_{1} a_{2} \ldots a_{n}$ be a string where $a_{i} \in \Sigma$.
- Then M accepts w if a sequence of states $r_{0}, r_{1}, \ldots, r_{n}$ in Q exists with three conditions:
(1) $r_{0}=q_{0}$

Formal Definition of Computation for a DFA

- Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a DFA.
- Let $w=a_{1} a_{2} \ldots a_{n}$ be a string where $a_{i} \in \Sigma$.
- Then M accepts w if a sequence of states $r_{0}, r_{1}, \ldots, r_{n}$ in Q exists with three conditions:
(1) $r_{0}=q_{0}$
(2) $\delta\left(r_{i}, a_{i+1}\right)=r_{i+1}$, for $i=0, \ldots, n-1$

Formal Definition of Computation for a DFA

- Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a DFA.
- Let $w=a_{1} a_{2} \ldots a_{n}$ be a string where $a_{i} \in \Sigma$.
- Then M accepts w if a sequence of states $r_{0}, r_{1}, \ldots, r_{n}$ in Q exists with three conditions:
(1) $r_{0}=q_{0}$
(2) $\delta\left(r_{i}, a_{i+1}\right)=r_{i+1}$, for $i=0, \ldots, n-1$
(3) $r_{n} \in F$

Formal Definition of Computation for a DFA

- Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a DFA.
- Let $w=a_{1} a_{2} \ldots a_{n}$ be a string where $a_{i} \in \Sigma$.
- Then M accepts w if a sequence of states $r_{0}, r_{1}, \ldots, r_{n}$ in Q exists with three conditions:
(1) $r_{0}=q_{0}$
(2) $\delta\left(r_{i}, a_{i+1}\right)=r_{i+1}$, for $i=0, \ldots, n-1$
(3) $r_{n} \in F$

We say that M recognizes language A if $A=\{w \mid M$ accepts $w\}$

Regular Language

Definition (regular language)

A language is called a regular language if some DFA recognizes it.

Regular Language

Definition (regular language)

A language is called a regular language if some DFA recognizes it.

Example

- Take DFA M_{5}
- $w=10<$ RESET $>22<$ RESET >012

Regular Language

Definition (regular language)

A language is called a regular language if some DFA recognizes it.

Example

- Take DFA M_{5}
- $w=10<$ RESET $>22<$ RESET >012
- The sequence of states M_{5} enters when computing on w is $q_{0}, q_{1}, q_{1}, q_{0}, q_{2}, q_{1}, q_{0}, q_{0}, q_{1}, q_{0}$ which satisfies the three conditions.

Regular Language

Definition (regular language)

A language is called a regular language if some DFA recognizes it.

Example

- Take DFA M_{5}
- $w=10<$ RESET $>22<$ RESET >012
- The sequence of states M_{5} enters when computing on w is
$q_{0}, q_{1}, q_{1}, q_{0}, q_{2}, q_{1}, q_{0}, q_{0}, q_{1}, q_{0}$ which satisfies the three conditions.
$L\left(M_{5}\right)=\{w \mid$ the sum of the symbols in w is 0 modulo 3 , except that $<$ RESET $>$ resets the count to 0$\}$

Designing Finite Automata

An approach helpful: "reader as automaton"

- put yourself in the place of the machine you are trying to design
- and then see how you would go about performing the machine's task

Designing Finite Automata

An approach helpful: "reader as automaton"

- put yourself in the place of the machine you are trying to design
- and then see how you would go about performing the machine's task

Example

- $\Sigma=\{0,1\}$
- The language consists of all strings with an odd number of 1 s .
- Construct a finite automaton E_{1} to recognize this language.

Designing Finite Automata

Example

- $\Sigma=\{0,1\}$
- The language consists of all strings with an odd number of 1 s .
- Construct a finite automaton E_{1} to recognize this language.

Designing Finite Automata

Example

- $\Sigma=\{0,1\}$
- The language consists of all strings with an odd number of 1 s .
- Construct a finite automaton E_{1} to recognize this language.
(1) $q_{\text {even }}:$ even so far
(2) $q_{\text {odd }}$: odd so far

Designing Finite Automata

Example

- $\Sigma=\{0,1\}$
- The language consists of all strings with an odd number of 1 s .
- Construct a finite automaton E_{1} to recognize this language.
(1) $q_{\text {even }}$: even so far
(2) $q_{\text {odd }}$: odd so far

DFA E_{1}

Designing Finite Automata

Example

- $\Sigma=\{0,1\}$
- The language consists of all strings with an odd number of 1 s .
- Construct a finite automaton E_{1} to recognize this language.
(1) $q_{\text {even }}$: even so far
(2) $q_{\text {odd }}$: odd so far

DFA E_{1}

Designing Finite Automata

Example

- $\Sigma=\{0,1\}$
- The language consists of all strings with an odd number of 1 s .
- Construct a finite automaton E_{1} to recognize this language.
(1) $q_{\text {even }}$: even so far
(2) $q_{\text {odd }}$: odd so far

DFA E_{1}

Designing Finite Automata

Example

- $\Sigma=\{0,1\}$
- The language of all strings that contain the string 001 as a substring.
- To design a finite automaton E_{2} to recognize this language.

Designing Finite Automata

Example

- $\Sigma=\{0,1\}$
- The language of all strings that contain the string 001 as a substring.
- To design a finite automaton E_{2} to recognize this language.
(1) q : haven't just seen any symbols of the pattern

Designing Finite Automata

Example

- $\Sigma=\{0,1\}$
- The language of all strings that contain the string 001 as a substring.
- To design a finite automaton E_{2} to recognize this language.
(1) q : haven't just seen any symbols of the pattern
(2) q_{0} : have just seen a 0

Designing Finite Automata

Example

- $\Sigma=\{0,1\}$
- The language of all strings that contain the string 001 as a substring.
- To design a finite automaton E_{2} to recognize this language.
(1) q : haven't just seen any symbols of the pattern
(2) q_{0} : have just seen a 0
(3) q_{00} : have just seen 00

Designing Finite Automata

Example

- $\Sigma=\{0,1\}$
- The language of all strings that contain the string 001 as a substring.
- To design a finite automaton E_{2} to recognize this language.
(1) q : haven't just seen any symbols of the pattern
(2) q_{0} : have just seen a 0
(3) q_{00} : have just seen 00
(c) q_{001} : have seen the entire pattern 001

Designing Finite Automata

Example

- The language of all strings that contain the string 001 as a substring.
(1) q : haven't just seen any symbols of the pattern
(2) q_{0} : have just seen a 0
(3) q_{00} : have just seen 00
(c) q_{001} : have seen the entire pattern 001

Designing Finite Automata

Example

- The language of all strings that contain the string 001 as a substring.
(1) q : haven't just seen any symbols of the pattern
(2) q_{0} : have just seen a 0
(3) q_{00} : have just seen 00
(c) q_{001} : have seen the entire pattern 001

DFA E_{2}

Designing Finite Automata

Example

- The language of all strings that contain the string 001 as a substring.
(1) q : haven't just seen any symbols of the pattern
(2) q_{0} : have just seen a 0
(3) q_{00} : have just seen 00
(1) q_{001} : have seen the entire pattern 001

DFA E_{2}

Designing Finite Automata

Example

- The language of all strings that contain the string 001 as a substring.
(1) q : haven't just seen any symbols of the pattern
(2) q_{0} : have just seen a 0
(3) q_{00} : have just seen 00
(9) q_{001} : have seen the entire pattern 001

DFA E_{2}

Designing Finite Automata

Example

- The language of all strings that contain the string 001 as a substring.
(1) q : haven't just seen any symbols of the pattern
(2) q_{0} : have just seen a 0
(3) q_{00} : have just seen 00
(c) q_{001} : have seen the entire pattern 001

DFA E_{2}

Designing Finite Automata

Example

- The language of all strings that contain the string 001 as a substring.
(1) q : haven't just seen any symbols of the pattern
(2) q_{0} : have just seen a 0
(3) q_{00} : have just seen 00
(c) q_{001} : have seen the entire pattern 001

DFA E_{2}

Designing Finite Automata

Example

- The language of all strings that contain the string 001 as a substring.
(1) q : haven't just seen any symbols of the pattern
(2) q_{0} : have just seen a 0
(3) q_{00} : have just seen 00
(c) q_{001} : have seen the entire pattern 001

DFA E_{2}

The Regular Operations

Definition (regular operations)

Let A and B be language. We define the regular operations union, concatenation, and star as follows:

The Regular Operations

Definition (regular operations)

Let A and B be language. We define the regular operations union, concatenation, and star as follows:

- Union: $A \cup B=\{x \mid x \in A$ or $x \in B\}$

The Regular Operations

Definition (regular operations)

Let A and B be language. We define the regular operations union, concatenation, and star as follows:

- Union: $A \cup B=\{x \mid x \in A$ or $x \in B\}$
- Concatenation: $A \circ B=\{x y \mid x \in A$ and $y \in B\}$

The Regular Operations

Definition (regular operations)

Let A and B be language. We define the regular operations union, concatenation, and star as follows:

- Union: $A \cup B=\{x \mid x \in A$ or $x \in B\}$
- Concatenation: $A \circ B=\{x y \mid x \in A$ and $y \in B\}$
- Star: $A^{*}=\left\{x_{1} x_{2} \ldots x_{k} \mid k \geq 0\right.$ and each $\left.x_{i} \in A\right\}$

The Regular Operations

Example

Let the alphabet Σ be the standard 26 letters $\{a, b, \ldots, z\}$. If $A=\{$ good, bad $\}$ and $B=\{$ boy, girl $\}$, then

The Regular Operations

Example

Let the alphabet Σ be the standard 26 letters $\{a, b, \ldots, z\}$.
If $A=\{$ good, bad $\}$ and $B=\{$ boy, girl $\}$, then

- $A \cup B=\{$ good, bad, boy, girl $\}$

The Regular Operations

Example

Let the alphabet Σ be the standard 26 letters $\{a, b, \ldots, z\}$.
If $A=\{$ good, bad $\}$ and $B=\{$ boy, girl $\}$, then

- $A \cup B=\{$ good, bad, boy, girl $\}$
- $A \circ B=\{$ goodboy, goodgirl, badboy, badgirl\}

The Regular Operations

Example

Let the alphabet Σ be the standard 26 letters $\{a, b, \ldots, z\}$.
If $A=\{$ good, bad $\}$ and $B=\{$ boy, girl $\}$, then

- $A \cup B=\{$ good, bad, boy, girl $\}$
- $A \circ B=$ \{goodboy, goodgirl, badboy, badgirl $\}$
- $A^{*}=\{\varepsilon$, good, bad, goodgood, goodbad, badgood, badbad, goodgoodgood, goodgoodbad, goodbadgood, goodbadbad,... \}

The Regular Operations

Closed

The Regular Operations

Closed

Theorem

The class of regular languages is closed under the union operation.

The Regular Operations

Closed

Theorem

The class of regular languages is closed under the union operation.

In other words, if A_{1} and A_{2} are regular languages, so is $A_{1} \cup A_{2}$.

The Regular Operations

Closed

Theorem

The class of regular languages is closed under the union operation.
In other words, if A_{1} and A_{2} are regular languages, so is $A_{1} \cup A_{2}$.
Proof.

The Regular Operations

Closed

Theorem

The class of regular languages is closed under the union operation.
In other words, if A_{1} and A_{2} are regular languages, so is $A_{1} \cup A_{2}$.

Proof.

Let M_{1} recognize A_{1}, where $M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}\right)$, and M_{2} recognize A_{2}, where $M_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{2}, F_{2}\right)$.

The Regular Operations

Closed

Theorem

The class of regular languages is closed under the union operation.
In other words, if A_{1} and A_{2} are regular languages, so is $A_{1} \cup A_{2}$.

Proof.

Let M_{1} recognize A_{1}, where $M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}\right)$, and M_{2} recognize A_{2}, where $M_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{2}, F_{2}\right)$.
Construct M to recognize $A_{1} \cup A_{2}$, where $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$.

The Regular Operations

Closed

Theorem

The class of regular languages is closed under the union operation.
In other words, if A_{1} and A_{2} are regular languages, so is $A_{1} \cup A_{2}$.

Proof.

Let M_{1} recognize A_{1}, where $M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}\right)$, and M_{2} recognize A_{2}, where $M_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{2}, F_{2}\right)$.

Construct M to recognize $A_{1} \cup A_{2}$, where $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$.
(1) $Q=\left\{\left(r_{1}, r_{2}\right) \mid r_{1} \in Q_{1}\right.$ and $\left.r_{2} \in Q_{2}\right\}$

The Regular Operations

Closed

Theorem

The class of regular languages is closed under the union operation.
In other words, if A_{1} and A_{2} are regular languages, so is $A_{1} \cup A_{2}$.

Proof.

Let M_{1} recognize A_{1}, where $M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}\right)$, and M_{2} recognize A_{2}, where $M_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{2}, F_{2}\right)$.
Construct M to recognize $A_{1} \cup A_{2}$, where $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$.
(1) $Q=\left\{\left(r_{1}, r_{2}\right) \mid r_{1} \in Q_{1}\right.$ and $\left.r_{2} \in Q_{2}\right\}$
(c) Σ is the same as in M_{1} and M_{2}

The Regular Operations

Theorem

The class of regular languages is closed under the union operation.
In other words, if A_{1} and A_{2} are regular languages, so is $A_{1} \cup A_{2}$.

Proof.

(3) For each $\left(r_{1}, r_{2}\right) \in Q$ and each $a \in \Sigma$, let

$$
\delta\left(\left(r_{1}, r_{2}\right), a\right)=\left(\delta_{1}\left(r_{1}, a\right), \delta_{2}\left(r_{2}, a\right)\right)
$$

The Regular Operations

Theorem

The class of regular languages is closed under the union operation.
In other words, if A_{1} and A_{2} are regular languages, so is $A_{1} \cup A_{2}$.

Proof.

(3) For each $\left(r_{1}, r_{2}\right) \in Q$ and each $a \in \Sigma$, let

$$
\delta\left(\left(r_{1}, r_{2}\right), a\right)=\left(\delta_{1}\left(r_{1}, a\right), \delta_{2}\left(r_{2}, a\right)\right)
$$

(9) q_{0} is the pair $\left(q_{1}, q_{2}\right)$

The Regular Operations

Theorem

The class of regular languages is closed under the union operation.
In other words, if A_{1} and A_{2} are regular languages, so is $A_{1} \cup A_{2}$.

Proof.

(3) For each $\left(r_{1}, r_{2}\right) \in Q$ and each $a \in \Sigma$, let

$$
\delta\left(\left(r_{1}, r_{2}\right), a\right)=\left(\delta_{1}\left(r_{1}, a\right), \delta_{2}\left(r_{2}, a\right)\right)
$$

(1) q_{0} is the pair $\left(q_{1}, q_{2}\right)$
(6) $F=\left\{\left(r_{1}, r_{2}\right) \mid r_{1} \in F_{1}\right.$ or $\left.r_{2} \in F_{2}\right\}$

The Regular Operations

Theorem

The class of regular languages is closed under the concatenation operation.

In other words, if A_{1} and A_{2} are regular languages, so is $A_{1} \circ A_{2}$.

The Regular Operations

Theorem

The class of regular languages is closed under the concatenation operation.

In other words, if A_{1} and A_{2} are regular languages, so is $A_{1} \circ A_{2}$.
Problem: M doesn't know where to break the input string?

Outline

(1) Finite Automata
(2) Nondeterminism

- Formal Definition of a Nondeterministic Finite Automaton
- Equivalence of NFAs and DFAs
- Closure Under the Regular Operations

Nondeterminism 非确定性

－Determinism：When the machine is in a given state and reads the next input symbol，we know what the next state will be it is determined．We call this deterministic computation．
－Nondeterminism：In a nondeterministic machine，several choices may exist for the next state at any point．

Nondeterminism 非确定性

－Determinism：When the machine is in a given state and reads the next input symbol，we know what the next state will be it is determined．We call this deterministic computation．
－Nondeterminism：In a nondeterministic machine，several choices may exist for the next state at any point．
－Nondeterminism is a generalization of determinism，
－so every deterministic finite automaton is automatically a nondeterministic finite automaton．

Nondeterministic Finite Automata

NFA N_{1}

- Nondeterministic finite automata may have additional features.

Nondeterministic Finite Automata

NFA N_{1}

－Nondeterministic finite automata may have additional features．

- DFA：deterministic finite automaton 确定型有穷自动机
- NFA：nondeterministic finite automaton 非确定型有穷自动机

NFAs

NFA N_{1}

- DFA:
(1) every state of a DFA always has exactly one exiting transition arrow for each symbol in the alphabet.
- NFA:
(1) a state may have zero, one, or many exiting arrows for each alphabet symbol.
(2) an NFA may have arrows labeled with members of the alphabet or ε.

Deterministic and Nondeterministic Computations

Deterministic computation

- start

Nondeterministic computation

!

accept

How Does an NFA Compute?

NFAs

NFA N_{1}

- $L\left(N_{1}\right)=$?

NFAs

NFA N_{1}

- $L\left(N_{1}\right)=$? $\{w \mid w$ contain either 101 or 11 as a substring $\}$

Example: NFA N_{2}

- The language A :
- \{the language consisting of all strings over $\{0,1\}$ containing a 1 in the third position from the end\}
- e.g., $000100 \in A, 0011 \notin A$

Example: NFA N_{2}

- The language A :
- $\{$ the language consisting of all strings over $\{0,1\}$ containing a 1 in the third position from the end\}
- e.g., $000100 \in A, 0011 \notin A$

Example (NFA N_{2})

Example: NFA N_{2}

- The language A :
- $\{$ the language consisting of all strings over $\{0,1\}$ containing a 1 in the third position from the end\}
- e.g., $000100 \in A, 0011 \notin A$

Example (NFA N_{2})

$$
L\left(N_{2}\right)=A
$$

Example: NFA N_{2}

Every NFA can be converted into an equivalent DFA.

Example (The equivalent DFA of NFA N_{2})

Example: NFA N_{3}

The convenience of having ε arrows

Example (NFA N_{3})

Example: NFA N_{3}

The convenience of having ε arrows

Example (NFA N_{3})

$L\left(N_{3}\right)=\left\{\right.$ all strings of the form 0^{k} where k is a multiple of 2 or 3.$\}$

Example: NFA N_{4}

Example (NFA N_{4})

Example: NFA N_{4}

Example (NFA N_{4})

- it accepts the strings ε, a, baba, baa
- it accepts it doesn't accept the strings b, bb, babba

Formal Definition of a Nondeterministic Finite Automaton

Definition (NFA)

A nondeterministic finite automaton (NFA) is a 5-tuple $\left(Q, \Sigma, \delta, q_{0}, F\right)$, where
(1) Q is a finite set of states,
(2) Σ is a finite alphabet,
(3) $\delta: Q \times \Sigma_{\varepsilon} \rightarrow \mathcal{P}(Q)$ is the transition function,
(3) $q_{0} \in Q$ is the start state, and
(5) $F \subseteq Q$ is the set of accept states.

- $\mathcal{P}(Q)$ is the power set of Q
- $\Sigma_{\varepsilon}=\Sigma \cup\{\varepsilon\}$

Example: The Formal Definition of NFA N_{1}

Example (Recall the NFA N_{1})

$N_{1}=\left(Q, \Sigma, \delta, q_{1}, F\right)$, where

- $Q=\left\{q_{1}, q_{2}, q_{3}, q_{4}\right\}$
- $\Sigma=\{0,1\}$
- δ is given as
- q_{1} is the start state

	0	1	ε
q_{1}	$\left\{q_{1}\right\}$	$\left\{q_{1}, q_{2}\right\}$	\emptyset
q_{2}	$\left\{q_{3}\right\}$	\emptyset	$\left\{q_{3}\right\}$
q_{3}	\emptyset	$\left\{q_{4}\right\}$	\emptyset
q_{4}	$\left\{q_{4}\right\}$	$\left\{q_{4}\right\}$	\emptyset

- $F=\left\{q_{4}\right\}$

Formal Definition of Computation for an NFA

- Let $N=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be an NFA.
- Let w be a string over Σ.
- Then N accepts w if we can write w as $w=a_{1} a_{2} \cdots a_{n}$, where $a_{i} \in \Sigma_{\varepsilon}$ and a sequence of states $r_{0}, r_{1}, \ldots, r_{n}$ exists in Q with three conditions:
(1) $r_{0}=q_{0}$
(2) $r_{i+1} \in \delta\left(r_{i}, a_{i+1}\right)$, for $i=0, \ldots, n-1$
(3) $r_{n} \in F$

Equivalence of NFAs and DFAs

DFA and NFA recognize the same class of languages.

Equivalence of NFAs and DFAs

DFA and NFA recognize the same class of languages.

- Surprising: NFAs appear to have more power than DFAs, so we might expect that NFAs recognize more languages

Equivalence of NFAs and DFAs

DFA and NFA recognize the same class of languages.

- Surprising: NFAs appear to have more power than DFAs, so we might expect that NFAs recognize more languages
- Useful: describing an NFA for a given language sometimes is much easier than describing a DFA for that language

Equivalence of NFAs and DFAs

DFA and NFA recognize the same class of languages.

- Surprising: NFAs appear to have more power than DFAs, so we might expect that NFAs recognize more languages
- Useful: describing an NFA for a given language sometimes is much easier than describing a DFA for that language

Equivalent

Say that two machines are equivalent if they recognize the same language.

Equivalence of NFAs and DFAs

Theorem

Every nondeterministic finite automaton has an equivalent deterministic finite automaton.

Equivalence of NFAs and DFAs

Theorem

Every nondeterministic finite automaton has an equivalent deterministic finite automaton.

Proof.

- Let $N=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be the NFA recognizing some language A.
- We construct a DFA $M=\left(Q^{\prime}, \Sigma, \delta^{\prime}, q_{0}^{\prime}, F^{\prime}\right)$ recognizing A.
- Before doing the full construction, let's first consider the easier case wherein N has no ε arrows. Later we take the ε arrows into account.

Equivalence of NFAs and DFAs

Theorem

Every nondeterministic finite automaton has an equivalent deterministic finite automaton.

Proof.

(1) $Q^{\prime}=\mathcal{P}(Q)$
(2) For $R \in Q^{\prime}$ and $a \in \Sigma$,

$$
\delta^{\prime}(R, a)=\{q \in Q \mid q \in \delta(r, a) \text { for some } r \in R\}
$$

$$
\delta^{\prime}(R, a)=\bigcup_{r \in R} \delta(r, a)
$$

Equivalence of NFAs and DFAs

Theorem

Every nondeterministic finite automaton has an equivalent deterministic finite automaton.

Proof.

(3) $q_{0}^{\prime}=\left\{q_{0}\right\}$
(9) $F^{\prime}=\left\{R \in Q^{\prime} \mid R\right.$ contains an accept state of $\left.N\right\}$

Equivalence of NFAs and DFAs

Proof.

Now we need to consider the ε arrows.

Equivalence of NFAs and DFAs

Proof.

Now we need to consider the ε arrows.

- For any state R of M,
$E(R)=\{q \mid q$ can be reached from R by traveling along 0 or more ε arrows $\}$
- $E(R)$ is the collection of states that can be reached from members of R by going only along ε arrows, including the members of R themselves.
- $\delta^{\prime}(R, a)=\{q \in Q \mid q \in E(\delta(r, a))$ for some $r \in R\}$
- $q_{0}^{\prime}=E\left(\left\{q_{0}\right\}\right)$

Equivalence of NFAs and DFAs

Proof.

Now we need to consider the ε arrows.

- For any state R of M,
$E(R)=\{q \mid q$ can be reached from R by traveling along 0 or more ε arrows $\}$
- $E(R)$ is the collection of states that can be reached from members of R by going only along ε arrows, including the members of R themselves.
- $\delta^{\prime}(R, a)=\{q \in Q \mid q \in E(\delta(r, a))$ for some $r \in R\}$
- $q_{0}^{\prime}=E\left(\left\{q_{0}\right\}\right)$

We have now completed the construction of the DFA M that simulates the NFA N.

Equivalence of NFAs and DFAs

Theorem

Every nondeterministic finite automaton has an equivalent deterministic finite automaton.

Corollary

A language is regular if and only if some nondeterministic finite automaton recognizes it.

Equivalence of NFAs and DFAs

Example (NFA N_{4})

NFA $N_{4}=\left(Q, \Sigma, \delta, q_{0}, F\right)$

- $Q=\{1,2,3\}$
- $\Sigma=\{a, b\}$
- δ
- $q_{0}=1$

- $F=\{1\}$

Construct a DFA D that is equivalent to N_{4}

Equivalence of NFAs and DFAs

NFA $N_{4}=\left(Q, \Sigma, \delta, q_{0}, F\right)$

DFA $D=\left(Q^{\prime}, \Sigma, \delta^{\prime}, q_{0}^{\prime}, F^{\prime}\right)$

Equivalence of NFAs and DFAs

NFA $N_{4}=\left(Q, \Sigma, \delta, q_{0}, F\right)$

DFA $D=\left(Q^{\prime}, \Sigma, \delta^{\prime}, q_{0}^{\prime}, F^{\prime}\right)$

- $Q^{\prime}=\{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}$

Equivalence of NFAs and DFAs

NFA $N_{4}=\left(Q, \Sigma, \delta, q_{0}, F\right)$

DFA $D=\left(Q^{\prime}, \Sigma, \delta^{\prime}, q_{0}^{\prime}, F^{\prime}\right)$

- $Q^{\prime}=\{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}$
- $\Sigma=\{\mathrm{a}, \mathrm{b}\}$

Equivalence of NFAs and DFAs

NFA $N_{4}=\left(Q, \Sigma, \delta, q_{0}, F\right)$

DFA $D=\left(Q^{\prime}, \Sigma, \delta^{\prime}, q_{0}^{\prime}, F^{\prime}\right)$

- $Q^{\prime}=\{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}$
- $\Sigma=\{\mathrm{a}, \mathrm{b}\}$
- $q_{0}^{\prime}=E\left(\left\{q_{0}\right\}\right)=E(\{1\})=\{1,3\}$

Equivalence of NFAs and DFAs

NFA $N_{4}=\left(Q, \Sigma, \delta, q_{0}, F\right)$

DFA $D=\left(Q^{\prime}, \Sigma, \delta^{\prime}, q_{0}^{\prime}, F^{\prime}\right)$

- $Q^{\prime}=\{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}$
- $\Sigma=\{\mathrm{a}, \mathrm{b}\}$
- $q_{0}^{\prime}=E\left(\left\{q_{0}\right\}\right)=E(\{1\})=\{1,3\}$
- $F^{\prime}=\{\{1\},\{1,2\},\{1,3\},\{1,2,3\}\}$

Equivalence of NFAs and DFAs

Example (DFA D that is equivalent to the NFA N_{4})

Equivalence of NFAs and DFAs

Example (DFA D after removing unnecessary states)

- No arrows point at states $\{1\}$ and $\{1,2\}$
- They may be removed without affecting the performance of DFA.

Closure Under the Regular Operations

Theorem

The class of regular languages is closed under the union operation.

Closure Under the Regular Operations

Theorem

The class of regular languages is closed under the union operation.

Proof.

Closure Under the Regular Operations

Theorem

The class of regular languages is closed under the union operation.

Proof.

Let $N_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}\right)$ recognize A_{1}, and
$N_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{2}, F_{2}\right)$ recognize A_{2}.

Closure Under the Regular Operations

Theorem

The class of regular languages is closed under the union operation.

Proof.

Let $N_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}\right)$ recognize A_{1}, and
$N_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{2}, F_{2}\right)$ recognize A_{2}.
Construct $N=\left(Q, \Sigma, \delta, q_{0}, F\right)$ to recognize $A_{1} \cup A_{2}$.

Closure Under the Regular Operations

Theorem

The class of regular languages is closed under the union operation.

Proof.

Let $N_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}\right)$ recognize A_{1}, and
$N_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{2}, F_{2}\right)$ recognize A_{2}.
Construct $N=\left(Q, \Sigma, \delta, q_{0}, F\right)$ to recognize $A_{1} \cup A_{2}$.
(1) $Q=\left\{q_{0}\right\} \cup Q_{1} \cup Q_{2}$

Closure Under the Regular Operations

Theorem

The class of regular languages is closed under the union operation.

Proof.

Let $N_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}\right)$ recognize A_{1}, and
$N_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{2}, F_{2}\right)$ recognize A_{2}.
Construct $N=\left(Q, \Sigma, \delta, q_{0}, F\right)$ to recognize $A_{1} \cup A_{2}$.
(1) $Q=\left\{q_{0}\right\} \cup Q_{1} \cup Q_{2}$
(2) q_{0} is the start state of N

Closure Under the Regular Operations

Theorem

The class of regular languages is closed under the union operation.

Proof.

Let $N_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}\right)$ recognize A_{1}, and
$N_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{2}, F_{2}\right)$ recognize A_{2}.
Construct $N=\left(Q, \Sigma, \delta, q_{0}, F\right)$ to recognize $A_{1} \cup A_{2}$.
(1) $Q=\left\{q_{0}\right\} \cup Q_{1} \cup Q_{2}$
(2) q_{0} is the start state of N
(0) $F=F_{1} \cup F_{2}$

Closure Under the Regular Operations

Theorem

The class of regular languages is closed under the union operation.

Proof.

Let $N_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}\right)$ recognize A_{1}, and
$N_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{2}, F_{2}\right)$ recognize A_{2}.
Construct $N=\left(Q, \Sigma, \delta, q_{0}, F\right)$ to recognize $A_{1} \cup A_{2}$.
(1) $Q=\left\{q_{0}\right\} \cup Q_{1} \cup Q_{2}$
(- For any $q \in Q$ and any $a \in \Sigma_{\varepsilon}$
(2) q_{0} is the start state of N
(3) $F=F_{1} \cup F_{2}$

Closure Under the Regular Operations

Theorem

The class of regular languages is closed under the union operation.

Proof.

Let $N_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}\right)$ recognize A_{1}, and
$N_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{2}, F_{2}\right)$ recognize A_{2}.
Construct $N=\left(Q, \Sigma, \delta, q_{0}, F\right)$ to recognize $A_{1} \cup A_{2}$.
(1) $Q=\left\{q_{0}\right\} \cup Q_{1} \cup Q_{2}$
(2) q_{0} is the start state of N
(3) $F=F_{1} \cup F_{2}$
(1. For any $q \in Q$ and any $a \in \Sigma_{\varepsilon}$

$$
\delta(q, a)= \begin{cases}\delta_{1}(q, a) & q \in Q_{1} \\ \delta_{2}(q, a) & q \in Q_{2} \\ \left\{q_{1}, q_{2}\right\} & q=q_{0} \text { and } a=\varepsilon \\ \emptyset & q=q_{0} \text { and } a \neq \varepsilon\end{cases}
$$

Closure Under the Regular Operations

Construction of an NFA N to recognize $A_{1} \cup A_{2}$

Closure Under the Regular Operations

Construction of an NFA N to recognize $A_{1} \cup A_{2}$

Closure Under the Regular Operations

Theorem

The class of regular languages is closed under the concatenation operation.

Closure Under the Regular Operations

Theorem

The class of regular languages is closed under the concatenation operation.

Proof.

Closure Under the Regular Operations

Theorem

The class of regular languages is closed under the concatenation operation.

$$
\begin{aligned}
& \text { Proof. } \\
& \text { Let } N_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}\right) \text { recognize } A_{1} \text {, and } \\
& N_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{2}, F_{2}\right) \text { recognize } A_{2} .
\end{aligned}
$$

Closure Under the Regular Operations

Theorem

The class of regular languages is closed under the concatenation operation.

```
Proof.
Let \(N_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}\right)\) recognize \(A_{1}\), and \(N_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{2}, F_{2}\right)\) recognize \(A_{2}\).
Construct \(N=\left(Q, \Sigma, \delta, q_{1}, F_{2}\right)\) to recognize \(A_{1} \circ A_{2}\).
```


Closure Under the Regular Operations

Theorem

The class of regular languages is closed under the concatenation operation.

Proof.

Let $N_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}\right)$ recognize A_{1}, and $N_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{2}, F_{2}\right)$ recognize A_{2}.

Construct $N=\left(Q, \Sigma, \delta, q_{1}, F_{2}\right)$ to recognize $A_{1} \circ A_{2}$.
(1) $Q=Q_{1} \cup Q_{2}$

Closure Under the Regular Operations

Theorem

The class of regular languages is closed under the concatenation operation.

Proof.

Let $N_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}\right)$ recognize A_{1}, and $N_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{2}, F_{2}\right)$ recognize A_{2}.

Construct $N=\left(Q, \Sigma, \delta, q_{1}, F_{2}\right)$ to recognize $A_{1} \circ A_{2}$.
(1) $Q=Q_{1} \cup Q_{2}$
(2) q_{1} is the same as the
start state of N_{1}

Closure Under the Regular Operations

Theorem

The class of regular languages is closed under the concatenation operation.

Proof.

Let $N_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}\right)$ recognize A_{1}, and $N_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{2}, F_{2}\right)$ recognize A_{2}.
Construct $N=\left(Q, \Sigma, \delta, q_{1}, F_{2}\right)$ to recognize $A_{1} \circ A_{2}$.
(1) $Q=Q_{1} \cup Q_{2}$
(2) q_{1} is the same as the start state of N_{1}
(3) The accept states F_{2} are the same as the accept states of N_{2}

Closure Under the Regular Operations

Theorem

The class of regular languages is closed under the concatenation operation.

Proof.

Let $N_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}\right)$ recognize A_{1}, and $N_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{2}, F_{2}\right)$ recognize A_{2}.
Construct $N=\left(Q, \Sigma, \delta, q_{1}, F_{2}\right)$ to recognize $A_{1} \circ A_{2}$.
(1) $Q=Q_{1} \cup Q_{2} \quad$ (1) For any $q \in Q$ and any $a \in \Sigma_{\varepsilon}$
(2) q_{1} is the same as the start state of N_{1}
(3) The accept states F_{2} are the same as the accept states of N_{2}

Closure Under the Regular Operations

Theorem

The class of regular languages is closed under the concatenation operation.

Proof.

Let $N_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}\right)$ recognize A_{1}, and $N_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{2}, F_{2}\right)$ recognize A_{2}.

Construct $N=\left(Q, \Sigma, \delta, q_{1}, F_{2}\right)$ to recognize $A_{1} \circ A_{2}$.
(1) $Q=Q_{1} \cup Q_{2}$
(1) For any $q \in Q$ and any $a \in \Sigma_{\varepsilon}$
(2) q_{1} is the same as the start state of N_{1}
(3) The accept states F_{2} are the same as the accept states of N_{2}

$$
\delta(q, a)= \begin{cases}\delta_{1}(q, a) & q \in Q_{1} \text { and } q \notin F_{1} \\ \delta_{1}(q, a) & q \in F_{1} \text { and } a \neq \varepsilon \\ \delta_{1}(q, a) \cup\left\{q_{2}\right\} & q \in F_{1} \text { and } a=\varepsilon \\ \delta_{2}(q, a) & q \in Q_{2}\end{cases}
$$

Closure Under the Regular Operations

Construction of N to recognize $A_{1} \circ A_{2}$

Closure Under the Regular Operations

Construction of N to recognize $A_{1} \circ A_{2}$

Closure Under the Regular Operations

Theorem

The class of regular languages is closed under the star operation.

Closure Under the Regular Operations

Theorem

The class of regular languages is closed under the star operation.

Proof.

Closure Under the Regular Operations

Theorem

The class of regular languages is closed under the star operation.

Proof.

Let $N_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}\right)$ recognize A_{1}.

Closure Under the Regular Operations

Theorem

The class of regular languages is closed under the star operation.

Proof.

Let $N_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}\right)$ recognize A_{1}.
Construct $N=\left(Q, \Sigma, \delta, q_{0}, F\right)$ to recognize A_{1}^{*}.

Closure Under the Regular Operations

Theorem

The class of regular languages is closed under the star operation.

Proof.

Let $N_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}\right)$ recognize A_{1}.
Construct $N=\left(Q, \Sigma, \delta, q_{0}, F\right)$ to recognize A_{1}^{*}.
(1) $Q=\left\{q_{0}\right\} \cup Q_{1}$

Closure Under the Regular Operations

Theorem

The class of regular languages is closed under the star operation.

Proof.

Let $N_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}\right)$ recognize A_{1}.
Construct $N=\left(Q, \Sigma, \delta, q_{0}, F\right)$ to recognize A_{1}^{*}.
(1) $Q=\left\{q_{0}\right\} \cup Q_{1}$
(2) q_{0} is the new
start state.

Closure Under the Regular Operations

Theorem

The class of regular languages is closed under the star operation.

Proof.

Let $N_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}\right)$ recognize A_{1}.
Construct $N=\left(Q, \Sigma, \delta, q_{0}, F\right)$ to recognize A_{1}^{*}.
(1) $Q=\left\{q_{0}\right\} \cup Q_{1}$
(2) q_{0} is the new
start state.
(3) $F=\left\{q_{0}\right\} \cup F_{1}$

Closure Under the Regular Operations

Theorem

The class of regular languages is closed under the star operation.

Proof.

Let $N_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}\right)$ recognize A_{1}.
Construct $N=\left(Q, \Sigma, \delta, q_{0}, F\right)$ to recognize A_{1}^{*}.
(1) $Q=\left\{q_{0}\right\} \cup Q_{1}$
(1) For any $q \in Q$ and any $a \in \Sigma_{\varepsilon}$
(2) q_{0} is the new
start state.
(3) $F=\left\{q_{0}\right\} \cup F_{1}$

Closure Under the Regular Operations

Theorem

The class of regular languages is closed under the star operation.

Proof.

Let $N_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}\right)$ recognize A_{1}.
Construct $N=\left(Q, \Sigma, \delta, q_{0}, F\right)$ to recognize A_{1}^{*}.
(1) $Q=\left\{q_{0}\right\} \cup Q_{1}$
(1) For any $q \in Q$ and any $a \in \Sigma_{\varepsilon}$
(2) q_{0} is the new start state.
(3) $F=\left\{q_{0}\right\} \cup F_{1}$

$$
\delta(q, a)= \begin{cases}\delta_{1}(q, a) & q \in Q_{1} \text { and } q \notin F_{1} \\ \delta_{1}(q, a) & q \in F_{1} \text { and } a \neq \varepsilon \\ \delta_{1}(q, a) \cup\left\{q_{1}\right\} & q \in F_{1} \text { and } a=\varepsilon \\ \left\{q_{1}\right\} & q=q_{0} \text { and } a=\varepsilon \\ \emptyset & q=q_{0} \text { and } a \neq \varepsilon\end{cases}
$$

Closure Under the Regular Operations

Construction of N to recognize A_{1}^{*}

Closure Under the Regular Operations

Construction of N to recognize A_{1}^{*}

Conclusion

Conclusion

- DFA
- Formal Definitions of a DFA
- Computation of a DFA
- From DFAs to languages
- From languages to DFAs
- The Regular Operations

Conclusion

- DFA
- Formal Definitions of a DFA
- Computation of a DFA
- From DFAs to languages
- From languages to DFAs
- The Regular Operations
- NFA
- Formal Definitions of an NFA
- Equivalence of NFAs and DFAs
- Closure Under the Regular Operations

