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Abstract

Dynamic programming is an important technique widely used in many scientific
applications. In this chapter, we first motivate the importance of parallelizing DP algo-
rithms for large-scale data applications. Next, we have an extensive review for accel-
erating DP algorithms on specific applications and on different computing platforms.
As a concrete example, we present our research work on implementing generous par-
allel DP frameworks both for shared memory and distributed memory. We also discuss
some related issues such as fault tolerance, stragglers and load balance. Finally, we
give some open problems in this area, and a summary for this chapter.
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1. Introduction

Dynamic programming (DP) is a popular algorithm design technique for the solution to
many decision and optimization problems. It solves the problem by decomposing it into
a sequence of interrelated decisions or optimization steps, and then solving them one after
another. It has been widely applied in many scientific applications such as computational
biology. Typical applications include RNA and protein structure prediction [1], genome
sequence alignment [2], context-free grammar recognition [3], string editing, optimal static
search tree construction [4], and so on.

In contrast to other methods like the recursive method, dynamic programming can
achieve both optimality and efficiency for application results. Nevertheless, its comput-
ing cost is still too high especially when the application data is large. The parallelization of
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dynamic programming is a promising approach to alleviate it [5–7]. However, by virtue of
the strong data dependency of the dynamic programming, it’s often difficult and error-prone
for programmers to write a correct and efficient parallel DP program. Moreover, designing
highly efficient parallel programs that effectively exploit parallel computing systems is a
daunting task that usually falls on a small number of experts, since the traditional parallel
programming techniques, such as message passing and shared-memory data communica-
tion, are often cumbersome for most developers. They require the programmer to man-
age concurrency explicitly by creating and synchronizing multi-processes/multi-threads
through messages or locks, which is difficult and error-prone especially for the inexperi-
enced programmer.

To simplify parallel programming, many recent studies, such as MapReduce [8] and
Pregel [9], have shown that the model-based approach is a practical and effective solu-
tion. It consists of two key parts [10]: an abstract programming model that allows users
to describe applications and specify concurrency at the high level, and an efficient runtime
system which handles low-level threads/process creating, mapping, resource management,
and fault tolerance issues automatically regardless of the system characteristics or scale.

In this chapter, we consider the parallelism of DP applications on two classical parallel
computing systems, i.e., a single-node multi-core platform and a cluster system consist-
ing of multiple machines. For the multi-core platform, we introduce a DAG data driven
programming model and a multi-core runtime system called EasyPDP. In contrast, for the
distributed cluster system, we introduce DPX10, which is a distributed DP parallel comput-
ing framework based on X10 language [11] and APGAS (Asynchronous Partitioned Global
Address Space) model [12].

The chapter is organized as follows. We first give the background information about
parallel programming models and dynamic programming algorithms in Section 2. In Sec-
tion 3, we introduce DAG data driven model, which is a programming model that abstracts a
dynamic programming application as a directed acyclic graph. Section 4 presents EasyPDP,
a multi-core parallel programming system for large-scale DP applications, followed by a
distributed parallel DP system called DPX10 in Section 5. For the completeness of discus-
sion, Section 6 reviews existing work on accelerating dynamic programming algorithms. A
discussion of open problems is provided in Section 7. Finally, we conclude the chapter in
Section 8.

2. Overview of Parallel Programming Models
and DP Algorithms

In this section, we review parallel programming models and give the definition and classi-
fication of DP algorithms.

2.1. Parallel Programming Models

In traditional parallel computing, there are two classic programming models, i.e., distributed
memory model (e.g., MPI), and shared memory model (e.g., Pthread, OpenMP).

Distributed memory refers to a multiprocessor computer system in which no processor
has direct access to all the system’s memory. Computational tasks can only operate on local
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data, and if remote data is required, the computational task must communicate with one
or more remote processors. In contrast, a shared memory multiprocessor offers a single
memory space used by all processors. Processors do not have to be aware of where data
reside.

There’s another model called distributed shared memory. In distributed shared memory
model, each node of a cluster has access to a large shared memory in addition to each node’s
limited non-shared private memory.

Each model has its own merit. Specifically, shared memory model is good for
communication-intensive computing, but its scalability is a big problem. Distributed mem-
ory model has good scalability but the cost of data communication is high.

Many studies [12–16] have been presented to take advantage of both models and at the
same time, make it easier for developers to write efficient parallel and distributed applica-
tions. Partitioned global address space (PGAS) [16] is a parallel programming model that
attempts to combine the advantages of a SPMD programming style for distributed memory
systems with the data referencing semantics of shared memory systems. It assumes a global
memory address space that is logically partitioned, and a portion of it is local to each pro-
cess or thread. The novelty of PGAS is that the parts of the shared memory space may have
an affinity for a particular process, thereby exploiting locality of reference.

2.2. Dynamic Programming Algorithms

Dynamic programming is a powerful technique widely used for many scientific applica-
tions. DP problem is solved by decomposing the problem into a set of interdependent
subproblems, and using their results to solve larger subproblems until the entire problem is
solved [5]. There are two key attributes that a problem must have in order to make dynamic
programming applicable: optimal substructure and overlapping sub-problems. Optimal
substructure means that the solution to a given optimization problem can be obtained by
the combination of optimal solutions to its sub-problems. Such optimal substructures are
usually described by means of recursion. Overlapping sub-problems means that the space
of sub-problems must be small, that is, any recursive algorithm solving the problem should
solve the same sub-problems over and over, rather than generating new sub-problems.

DP problems can be classified in terms of the matrix dimension and the dependency
relationship of each cell on the matrix [6]: A DP algorithm is called a tD/eD algorithm if
its matrix dimension is t and each matrix cell depends on O(ne) other cells. It takes time
O(nt+e) provided that the computation of each term takes constant time. For example, three
DP algorithms are defined as follows:

Algorithm 3.1 (2D/0D): Given D[i,0] and D[0, j] for 1≤ i, j ≤ n,

D[i, j] = min{D[i−1, j]+ xi,D[i, j−1]+ yi}

where xi,yi are computed in constant time.
Algorithm 3.2 (2D/1D): Given w(i, j) for 1≤ i, j ≤ n;D[i, i] = 0 for 1≤ i,

D[i, j] = w(i, j)+mini≤k≤ j{D[i,k−1]+D[k, j]}

Algorithm 3.3 (2D/2D): Given w(i, j) for 1≤ i, j≤ 2n;D[i,0] and D[0, j] for 0≤ i, j≤
n,

D[i, j] = min0≤ j′≤ j,0≤i′≤i{D[i
′
, j
′
]+w(i

′
+ j

′
, i+ j)}



4 Chen Wang, Shanjiang Tang and Ce Yu

Figure 1. An example DAG.

3. Parallel Programming Model for DP Applications

The computation of a DP algorithm is a process of filling the DP matrix. The dependency
between cells in the matrix can be different in different DP algorithms. So we use the
directed acyclic graph (DAG) to represent the DP matrix and the dependency relationship
between cells.

3.1. DAG Data Driven Model

A directed Acyclic graph (DAG) is denoted as D = {V,E}, where V = {V1,V2, · · · ,Vn}
is a set of n vertices and E is a set of directional edges, as shown in Figure 1. In the
DAG, each vertex represents a cell on the matrix as discussed above. The edge describes
the dependency between cells and determines the execution order of them. For example,
epq = (vp,vq) ∈ E suggests that vq can start computing only when vp completes.

Moreover, there are many DP applications whose modeled DAG diagrams are almost
the same, except for their sizes. For the reuse purpose, we could make those frequently
used DAGs as DAG Patterns and establish a DAG pattern library to classify and store them.

The computation of a DAG-represented DP application consists of instantiating a DAG
pattern, where the vertices are distributed and initialized, followed by an execution phase
where all vertices are scheduled and computed until the algorithm terminates, and the final
stage for users to process the result.

In the execution phase, the vertices with in-degree of zero compute in parallel, each
executing the same user-defined compute method that expresses the logic of a given algo-
rithm. When a vertex completes, the in-degree of each of its children decreases by one. The
whole execution continues until all vertices completed.

We use the longest common substring(LCS) problem to illustrate these concepts. Given
two strings S and T , the LCS problem is to find their longest common substring. Its DP
formulation is:

F [i, j] =
{

F [i−1, j−1]+1 xi = y j

max{F [i−1, j],F [i, j−1]} xi ̸= y j

where F [i, j] records the length of LCS of S0...i and T0... j. So F [m,n] would be the length of
LCS of S and T , where m and n are the length of S and T .
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Figure 2. An example DAG of longest common substring problem.

Figure 2 shows a simple example: finding the LCS of string ABC and string DBC. At
the initial stage, the DAG is constructed and nine vertices are initialized with zero. The
computation starts from the zero in-degree vertex (0,0) and terminates when all vertices
are completed. The sequence of computation may be different since the vertices without
dependency relationship execute in parallel. For example, vertex (0,2) can be computed
before vertex (0,1). Finally, the result can be processed by using backtracking method to
get the substring BC.

3.2. The DAG Patterns for DP Algorithms

(1) Left_Upper_DAG (2) Left_LeftUpper_Upper_DAG (3) HalfUpperRightMost_Left_Lower_DAG

(4) Left_LeftUpper_DAG (5) Upper_LeftUpper_DAG

Figure 3. Some DAG Patterns for DP Algorithms.

There are often some applications whose DAG diagrams are almost the same except for
their sizes. For simplicity and reuse purposes, we could make those frequently used DAGs
as DAG patterns and establish a DAG pattern library to classify and store them.
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Here we present five common frequently used DAG patterns derived from the DP algo-
rithms shown in Figure 3. Each DAG pattern is given a unique identifier according to its
data dependency relationship.

Although DAG patterns are often summarized from the regular DP algorithms, they can
be used in many irregular ones. With the same DAG pattern, the difference between the
regular and irregular DP algorithms lies in the pattern-independent workload for each DAG
node that represents a block of data.

Essentially, there exist intrinsic connections between different patterns. For example,
Left Upper DAG pattern and Left LeftUpper Upper DAG pattern are topologically equiv-
alent. Both the Left LeftUpper DAG pattern and Upper LeftUpper DAG pattern can be
extracted from Left LeftUpper Upper DAG pattern by eliminating all its upper/left depen-
dencies. To put it another way, we could use the Left LeftUpper Upper DAG pattern instead
of Left LeftUpper DAG pattern and Upper LeftUpper DAG pattern in some cases, except
that it decreases the parallelization degree.

4. EasyPDP: A Multi-Core Runtime System
for DP Applications

In this section, we introduce EasyPDP [5], a multi-core programming system for DP appli-
cations. EasyPDP implements DAG Data Driven Model for shared-memory systems. Its
goal is to support efficient execution on multiple cores without burdening the programmer
with concurrency management for DP algorithms. EasyPDP consists of a simple API that is
visible to application programmers, runtime functions that are invisible to application pro-
grammers and an efficient runtime that handles parallelization, DAG operations and fault
recovery.

4.1. The EasyPDP Functions

The current EasyPDP implementation provides four types of functions for C and C++, i.e.
user programming API, DAG operation function, worker pool function and fault tolerance
function. However, similar functions can be defined for other languages such as Java or C#.
The details are summarized in Table 1.

The user programming API, which is visible to application programmers, includes two
sets of functions. One set is provided by EasyPDP but used in the programmer’s application
code to initialize the system(1 required function), and the other set is the user-defined func-
tions(1 required and 2 optional functions). Apart from the process function that takes on
the actual computation for the application algorithms, the user could provide a DAG pattern
initialization function for the user-defined DAG pattern as well as the data mapping func-
tion to map the DAG nodes to the application data blocks. For the EasyPDP API, it neither
relies on any specific compiler options nor requires a parallelizing compiler. However, it
assumes that its functions can freely use stack-allocated and heap-allocated structures for
private data on demand. It also assumes that there is no communication through shared-
memory structures other than the input/output buffers for these functions. For C/C++, we
can not check these assumptions statically for arbitrary programs. Although there are strin-
gent checks within the system to ensure that valid data are communicated between the user
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Table 1. The functions in the EasyPDP. R and O identify required and optional
functions, respectively.

Function Description R/O
User Programming API

int EasyPDP scheduler(scheduler args t * arg)
Initializes the EasyPDP runtime system. The scheduler args t provides the needed function & data

pointers.
R

void (*process t)(void *)
The application process function, defined by the user, called by the pool workers. R

void (*DAG Pattern init t)(void *)
DAG pattern initialization function, defined by the user, in order to support the user defined DAG

patterns. EasyPDP provides a default DAG pattern initialization function where there are lots of system
provided DAG patterns.

O

data blocks* (*DAG pattern node data mapping t)(void* arg, int DAG pattern node id)
Maps the DAG node with application data block, defined by the user. If not specified, EasyPDP uses

a default mapping function.
O

DAG Operation Related Function
void default DAG pattern init(scheduler args t* arg)

The default DAG pattern initialization function, where lots of system provided DAG patterns are
initialized.

O

void DAG pattern handle(int DAG pattern node id, DAGPattern args t* arg)
The DAG pattern operation function. It can parse the DAG pattern to discover current new computable

DAG nodes, and can update the DAG pattern by deleting a DAG node from DAG pattern.
R

data blocks* default DAG pattern node data mapping( scheduler args t* arg,int
DAG pattern node id

The default DAG pattern node mapping function. O
Worker Pool Related Function

void pool init (int thread num)
The worker pool initialization function. It initializes the pool queue, queue lock and creates

thread num threads.
R

int pool destroy ()
Destroys the pool and frees the memory space. R

int pool add worker (process t process, void *arg)
Adds a new task into the pool queue. R

void *thread routine (void *arg)
The pool threads runtime routine function. R

Fault Tolerance Related Function
void add timeoutQueue(int DAG pattern node id)

Adds a new computable DAG node into timeoutQueue. R
void remove timeoutQueue(int DAG pattern node id)

Removes the timeout DAG node or finished DAG node from timeoutQueue. R
void timeout check timeoutQueue(scheduler args t* arg)

Checks the timeoutQueue to see whether there are timeout DAG nodes. If existing, it removes the
timeout DAG nodes from timeoutQueue, cleans the timeout worker thread and redistributes the timeout
DAG node.

R

and the runtime code, eventually we trust the user to provide functionally correct code. For
Java and C#, static checks that validate these assumptions are possible.

For the DAG operation function, it has two optional default functions that initialize
the system-provided DAG patterns and map DAG nodes to data blocks. The DAG pattern
handle function can parse the DAG for finding new computable DAG nodes and update the
DAG pattern by deleting completed node from current DAG pattern.

To the worker pool function, it provides some basic thread pool operation functions.
The pool initialization function plays the role of initializing the pool queue together with
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queue lock and creating threads; pool destroy function is used to destroy threads and free the
memory space accordingly; pool queue tasks adding function and runtime thread routine
function take on the work of actual computation.

The EasyPDP provides support for the fault tolerance. It detects faults through timeouts.
The critical fault tolerance function includes DAG node adding functions and DAG node
removing functions for the timeoutQueue, timeout checking function that detects the timeout
DAG nodes from timeoutQueue. Once detected, the timeout DAG node is removed from
the timeoutQueue, the timeout worker thread is cleaned up and then the removed nodes are
redistributed.

4.2. The EasyPDP Runtime System

In order to obtain a good load balance for both regular and irregular DP algorithms, the
EasyPDP runtime adopts the dynamic worker pool, which uses dynamic allocation and
scheduling algorithms. Moreover, the EasyPDP runtime is developed on top of Pthreads,
but can be easily ported to other shared-memory thread libraries.

4.2.1. Basic Operation and Control Flow

Workers Pool

WorkerMaster

In
p

u
t

Output

DAGPatternNodeFinishedStack

Worker

Figure 4. The basic data flow for the EasyPDP runtime.

Figure 4 shows the basic data flow for EasyPDP runtime system. The runtime is con-
trolled by the scheduler(master) and initialized by the user program. The programmer
provides the scheduler with all the required data and function pointers in terms of the
scheduler args t structure, which is the only data structure used for the basic function
and buffer allocation information to be communicated between between the user program
and the runtime. The fields of scheduler args t are presented in Table 2. The basic fields
provide both pointers to DP data buffers and user-provided functions. For the user’s DAG
pattern, the EasyPDP runtime system provides a basic data structure for user to define his
own DAG pattern and an interface (callback function) for adding the pattern into the DAG
pattern library. When configured with user’s DAG pattern, the runtime will automatically
call the user’s callback function to initialize the DAG pattern. The performance tuning fields
present some key arguments that affect the system performance. All the fields should be
properly set by the programmer before calling EasyPDP scheduler . After initialization,



Parallel Dynamic Programming for Large-Scale Data Applications 9

Table 2. The fields of scheduler args t data structure.

Field Description
Basic Fields

dp data The matrix DP data. All the data computa-
tions are based on it.

data row The number of rows for matrix dp data.
data col The number of columns for matrix dp data.
DAG pattern id The identity of user selected DAG pattern.
process Pointer to DP computation function.
DAG pattern init Pointer to the user defined DAG pattern ini-

tialization function.
DAG pattern node data mapping Pointer to the user Map function.

Performance Tuning Fields
block row The number of rows for data block.
block col The number of columns for data block.
thread num The number of threads.
timeout The value of timeout. If timeout≤0, the fault

recovery mechanism doesn’t work. Other-
wise, it works.

the master scheduler calls the DAG pattern init function to initialize the DAG pattern
and pool init function to startup the worker pool. After that, the master scheduler calls
DAG pattern handle function to discover new computable DAG nodes whose in-degrees
are zero and then DAG pattern node data mapping function to map DAG nodes to data
blocks before sending them into the pool buffer.

Once the pool buffer is not empty and there are idle workers, the worker pool will
distribute data tasks in the pool buffer to idle workers. The Process is called by worker
threads to do DP algorithm computation. When a worker thread completes a DAG node
task, it pushes the corresponding DAG node id into DAGPatternNodeFinishedStack for no-
tifying the master.

The master checks the DAGPatternNodeFinishedStack in a small regular time for com-
pleted DAG nodes. Once getting a DAG node, the master will call DAG pattern handle
to update DAG and parse the DAG to find new computable DAG nodes. The whole process
continues until all the DAG node tasks are completed. Finally, the output results return.

4.2.2. Fault Tolerance

The failure of a computing DAG node can cause all other nodes that depend on it directly
and indirectly to be incomputable, and the whole computations will eventually pause at a
place forever without fault tolerance and recovery mechanism. Therefore, it is critical and
necessary to build a fault tolerance and recovery mechanism to detect and recover from
faults.
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worker_DAGPatternNode_register 

 DAGPatternNodeFinishedStack 

Figure 5. The overall flow of EasyPDP fault tolerance mechanism.

EasyPDP detects faults through timeout. If a worker does not complete a task within a
reasonable amount of time, then a failure is assumed. Of course, a fault may cause a task to
complete with incorrect or incomplete data instead of failing completely. EasyPDP has no
way of detecting this case on its own and cannot stop an affected task from potentially cor-
rupting the shared memory. To address this shortcoming, one should combine the EasyPDP
runtime with other known error detection techniques [17] [18]. Two kinds of faults that
cause timeout are considered here. One is caused by the death of a worker thread. The
other case is that a computing worker thread goes into the dead-loop or deadlock for some
reasons.

Figure 5 presents the overall flow of EasyPDP fault tolerance mechanism. When the
user program calls EasyPDP scheduler , the following sequence of actions occur (the num-
bered labels in Figure 5 correspond to the numbers in the list below):

1. The master distributes computable DAG nodes discovered by parsing the DAG to
both the timeoutQueue and pool queue simultaneously. For the timeoutQueue, it has
a time start field that records the current time for each DAG node when it is put into
the timeoutQueue.

2. The worker pool gets computable DAG data tasks from the pool buffer and distributes
them to its idle worker threads dynamically.

3. When an idle worker thread obtains a DAG node task, it will register its thread id and
the DAG node id in the worker DAGPatternNode register before doing DP algorithm
computation.

4. Once a worker completes a DAG node task, it will push the DAG node id to the
DAGPatternNodeFinishedStack for notifying the master.

5. The master fetches the finished DAG node id from the DAGPatternNodeFinished-
Stack in a small regular time. Then it goes to step 7.



Parallel Dynamic Programming for Large-Scale Data Applications 11

6. The master checks the timeoutQueue to see whether there are timeout DAG nodes.
Note that the value of time start for each DAG node in the timeoutQueue strictly
increases from queue front to queue rear. Thereby the master needn’t check all nodes
in the timeoutQueue every time. Instead, it just needs to check nodes from the queue
rear to queue front in order until a non-timeout node is found. If a timeout DAG
node is detected, the master looks up the corresponding timeout thread id through the
worker DAGPatternNode register, and then makes the worker pool kill that thread
and instead create a new one, and go to step 7 to remove the timeout DAG node from
the timeoutQueue. After that, the master goes to step 1 to redistribute the timeout
DAG node.

7. The master removes a DAG node from the timeoutQueue. Then it goes to step 1.

The current EasyPDP does not provide fault recovery for the master scheduler itself.
The master scheduler runs only for a very small fraction of the time and has a small mem-
ory footprint, hence it is less likely to be affected. On the other hand, a fault in the master
scheduler has more serious implications for the correctness of the program . We can use
known techniques such as the redundant execution or checkpointing to address this short-
coming.

4.2.3. Buffer Operation and Management

Four types of temporary buffers shown in Figure 5 are necessary to store data and sup-
port fault tolerance. All buffers are allocated in shared memory but are accessed in a well
specified way by a few functions, and are not directly visible to user code.

The pool queue buffer is the only data interface between the master and the worker pool.
The master sends the computable data tasks into the pool queue buffer, and the worker pool
fetches data from it. The queue lock is used to guarantee that only one access exists every
time.

In order to notify the master to update the DAG in real time, the DAGPatternNodeFin-
ishedStack buffer is adopted. Every time the worker finishes the DAG node task, it writes
the DAG node id into the DAGPatternNodeFinishedStack buffer so that the master could
know it at once.

The worker DAGPatternNode register buffer and timeoutQueue buffer are two critical
parts of fault tolerance mechanism. For the timeoutQueue buffer, it is only visible to mas-
ter and has a time start field that records the distributed time for each DAG node. The
master repeatedly checks it with the current time to see whether it exceeds the timeout
in a regular time. If a DAG node is assumed to be timeout, the master will notify the
worker pool to kill the dirty worker just in case there are dead-loop threads or deadlock
threads. Since the EasyPDP adopts dynamic worker pool, the master cannot know which
worker thread did the timeout DAG node task without worker DAGPatternNode register
buffer. Every time a worker gets a DAG node task, it will register its thread id in
worker DAGPatternNode register buffer for that DAG node.
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4.2.4. Refinements

Table 2 shows the performance tunable arguments that the user could use to optimize
his/her application. Some optimization topics about these arguments are described below.

Block Size: The user setting of arguments block row and block col determines the
size of a data block. Note that each block size setting will directly affect the size of the
corresponding DAG pattern for a DP application, which in turn affects the parallelization
degree indirectly. For the irregular DP algorithms such as (d) of Figure 1 of Supplemental
Material, since computation workloads of matrix cells are unequal(irregular), the workload
of each DAG node is sharply unequal(irregular) when the size of data block is larger.

Number of Threads: In systems with multiple cores, since DP applications are data-
intensive, it’d better set the value of argument thread num as the number of available cores
in order to typically maximize the system throughput even if an individual task takes longer
time.

Timeout: If a failure occurs during the runtime execution, the timeout value will be a
critical criterion for the fault tolerance and recovery mechanism to detect the fault in real
time. On one hand, too large value of timeout will make the fault tolerance and recovery
mechanism obtuse to discover faults; on the other hand, too small value of timeout will
make the fault tolerance and recovery mechanism wrongly assume that a being computed
task is failed and recompute that task, which also adversely influences the performance.
Therefore, the user’s proper value setting of timeout is important according to the specific
characteristics for various DP applications. For the irregular DP algorithms, the workload
for each DAG node task may be unequal, which means that the user’s timeout value setting
may not suit most irregular DAG node tasks. To address this shortcoming, we present a self-
adjusted/adaptive mechanism for timeout. That is, according to the successfully completed
DAG node task from DAGPatternNodeFinishedStack, the total execution time for that DAG
node task can be calculated by subtracting time start for that DAG node in timeoutQueue
from the current time. If the total execution time is less than timeout but greater than eighty
percent of timeout, it indicates that the timeout is a bit small at present and then our self-
adjusted/adaptive mechanism will double the current timeout value.

4.3. Performance Evaluation

This section presents the performance evaluation results for EasyPDP running on Dell Pow-
erEdge 2950 Dual Quad Core server with Xeon E5310 processors of 64K L1 cache and
4096K L2 cache. Four popular DP algorithms are evaluated. Specifically, the Smith-
Waterman algorithm with linear and affine gap penalty (SWLAG), and Syntenic align-
ment(SA) algorithm are regular DP algorithms, whereas the Smith-Waterman algorithm
with general gap penalty (SWGG), and Viterbi Algorithm(VA) are irregular DP algorithms.

4.3.1. Dependency on Block Size

The BlockSize is a critical performance argument in DP algorithm parallelization. Its setting
is a tradeoff between the load balancing and communication time. Both too big and too
small values of BlockSize will adversely affect the program performance. And often the
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Figure 6. The EasyPDP run time results with different block sizes. In Figure (a), the most
suitable block size is between 400 × 400 and 500 × 500. While in Figure (b), the most
suitable block size is between 8 × 8 and 20 × 20.

value of the most suitable block size for regular DP algorithm is much bigger than that of
the irregular DP algorithm, due to workload of the data blocks. In general, the practical
computation workload for a irregular data block is often many times or more than that for
a regular data block with the same block size. The running time results for various block
sizes are illustrated in Figure 6. We can observe that each of them has a most suitable block
size, and for regular SWLAG DP algorithm, its most suitable block size is between 400 ×
400 and 500× 500, whereas the most suitable block size for irregular SWGG DP algorithm
is between 8 × 8 and 20 × 20.

4.3.2. Dependency on Number of Threads

Figure 7(a) presents the speedups and comparisons against EasyPDP when ’the number of
worker threads’ is set to be one as we scale the number of worker threads for four popular
DP algorithms in the dual quad cores system. It is obvious that all the speedup curves
are much close to the ideal speedup curve except their last points for which the number of
worker threads is 8. The phenomenon illustrates that the EasyPDP has a good scalability
in its performance improvement. We know that when the number of threads is equal to the
number of system cores, the speedup is often the best. Since our EasyPDP is implemented
as the master-slave model, the number of application threads in fact should be 9 when we
set the number of worker threads to be 8, which just exceeds the number of processor cores
by one.

Figure 7(b) gives out the comparisons between the sequential iterative code and
EasyPDP when we scale the number of EasyPDP worker threads. We can note that the
curve of SWGG is above the ideal speedup line, while the others are not. The reason is
that the affection of cache miss for the algorithm SWGG in EasyPDP is non-negligible,
while other algorithms are not. By comparing curves between (a) and (b) of Figure 7 for
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Figure 7. The dependency on the number of threads. (a) The speedups and comparisons
against EasyPDP when ’the number of worker threads’ is set to be one for four DP algo-
rithms as we scale the number of worker threads. (b) The comparisons against the sequential
iterative code as we scale the number of EasyPDP worker threads for four DP algorithms.

algorithms SWLAG, SA, and VA, it is apparent that the curves in (b) of Figure 7 are a bit
further away from the ideal speedup curve. This is due to the influence from the EasyPDP
overhead.

5. DPX10: A Distributed Parallel DP Computing System

In this section, we propose DPX10 [19, 20], a DAG-based X10 [11] framework for DP
applications. DPX10 is a vertex-centric system for the simplicity, reliability, efficiency and
scalability of parallel DP programming and execution. It is based on X10 language and
APGAS (Asynchronous Partitioned Global Address Space) model [12]. In the following,
we start by introducing the interface of DPX10. Then we describe the system design and
implementation details.

5.1. The Programming Interface

Writing a DPX10 application involves implementing the predefined DPX10App interface
(see Figure 8). Its template argument defines the value type associated with vertices. Each
vertex has an associated computing result of the specified type.

The compute method should be implemented by users. It performs on each vertex
at runtime. Parameter (i, j) is a unique identifier indicating which vertex is computing.
The communication between vertices is hidden from users. The dependencies are resolved
automatically by DPX10 and passed as a parameter vertices. Users can inspect the value
associated with these vertices via getResult method in Vertex class.
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public interface DPX10App[T] {

def compute(i:Int, j:Int, vertices:Rail[Vertex[T]]):T;

def appFinished(dag:Dag[T]):void;

}

public class Vertex[T] {

val i:Int, j:Int;

def getResult():T;

}

Figure 8. The DPX10App and Vertex API foundations.

DAG

Split 0 Split 1

Place 0 ~ Place N

Worker Worker

Split N

Worker

…

…

Split and distribute

Schedule

and execute

Place 0 Place 1 Place N

Figure 9. Logical flow of DPX10’s execution.

When the program terminates, the appFinished method is invoked where the final result
should be processed. The argument dag can be used to access the results of all vertices.

5.2. System Design and Implementation

The goal of DPX10 is to support efficient execution on multiple nodes and multiple cores
without burdening programmers with concurrency management. DPX10 consists of a DAG
pattern library to represent a DP algorithm, some useful APIs and the runtime that handle
distribution, scheduling and fault recovery.

5.2.1. Execution Overview

Figure 9 shows the overall flow of a DPX10 operation in our implementation. The gray
curves with double-headed arrow indicate data communications between workers in differ-
ent places. In the absence of faults, the execution of a DPX10 program consists of several
stages:

1. The DPX10 runtime first distributes and initializes all vertices of the input DAG
across available places in parallel. Then it examines vertices on each place and inserts
those with zero in-degree into a local ready list to wait for scheduling.
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public abstract class Dag[T] {

val width:Int;

val height:Int;

def this(width:Int, height:Int);

def getVertex(i:Int, j:Int):Vertex[T];

abstract def getDenpendency(i:Int, j:Int):Rail[VertexId];

abstract def getAntiDenpendency(i:Int, j:Int):Rail[VertexId];

}

Figure 10. The DAG API foundations.

2. DPX10 spawns one worker on each place. Each worker is responsible for schedul-
ing local vertices and executing users compute method on vertices. Once all local
vertices are finished the worker exits.

3. When all workers complete, the computation is finished. DPX10 then invokes the
user-defined appFinished method to notify the user.

5.2.2. DAG Pattern Library

The DAG pattern is an abstract for a set of DP algorithms which excepts the size, has the
same data dependency between vertices, as shown in Section 3.2. Some important APIs of
DAG operations are shown in Figure 10. Its template argument is the same as Vertex class.
The constructor takes two parameters height and width to determine the size of the DAG.

Two key methods are getDependency and getAntiDependency which describe the de-
pendency between vertices. They are used by DPX10 runtime to resolve the dependencies
automatically. They need to be implemented by the user when creating a custom DAG
pattern. The getDependency method returns a list of identifiers that represent vertices that
should be completed before the vertex (i, j). Another method returns a list of identifiers
of vertices that is dependent on the given vertex (i, j). The indegree of these vertices will
decrement when vertex (i, j) is finished.

Each vertex in a DAG has a unique 2D coordinate marked as (i, j), and an indegree
field indicates the unfinished number of its predecessors. Vertices with zero in-degree are
schedulable. In addition, a finish flag is kept for each vertex to identify its status and to help
recover the result after a node failure.

Users can define the partition and distribution of the DAG through a Dist structure to
achieve a better locality. At the current stage, three type of distributions are supported by
DPX10, which can be configured by command line. Figure 11 demonstrates these three
distributions on 4 places. The first two are BLOCK COLUMN and BLOCK ROW, which
split vertices into columns and rows. The last one is BLOCK BLOCK, which divides ver-
tices into blocks of equal size. The number of partitions is equal to the number of places.
The DAG distribution and assignment play a vital role in achieving high performance. It
involves many factors, including the dependencies between the vertices, the dimensions of
the graph and the number of computing nodes.

We use the LCS example again to demonstrate the DAG distribution and communica-
tions between workers. Figure 12 shows a DAG consisting of nine vertices which are dis-
tributed (BLOCK COLUMN) into three places. Vertices with a check marker below their
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Figure 11. Three type of distributions.
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Figure 12. An LCS example to show the DAG distribution and communications between
workers. All vertices are divided by columns and distributed into three places. Vertices
with a check marker below their coordinates are finished vertices.

coordinates are finished vertices. And those without a parent indicate an in-degree of zero.
As shown in Figure 12 (b), when vertex (0,0) completes, the in-degrees of vertices(0,1)
and (1,0) decrease to zero. To compute vertex (0,1), worker 1 needs to communicate with
worker 0 and copy the result of vertex (0,0) from it. When computations of vertices (0,1)
and (1,0) are done (shown in Figure 12 (c)), vertices (0,2), (1,1) and (2,0) become schedu-
lable and the program goes on as the same.

The default initialization method can be overridden to initialize the vertices on demand
such as setting the unneeded vertices as finished. For example, as in the longest palindromic
subsequence problem (will be discussed in Section 5.3), all the vertices below the diagonal
are useless. Consequently, these vertices are marked as finished at the initialization phase.

5.2.3. Worker Computation

On each place, a portion of vertices are assigned in the initial stage. The worker on each
place is responsible for computing all its local vertices. There is a ready list that contains
executable and uncompleted vertices. Workers repeatedly pull vertices from the list and
execute them until all local vertices are finished. A finished vertices counter is used to
determine the termination of the worker.

When a vertex is ready for computation, the worker spawns a new activity which is
parallel with the current one. In this activity, the worker first retrieves its parent vertices
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through getDependency method that we discussed in Section 5.2.2 and passes them along
with the identifier of the current vertex to user-defined compute method. So users can im-
plement the logic of the algorithm without considering dependencies and communications.
After the compute method returned, the worker updates the value of the computing vertex
and decreases the in-degree of vertices which rely on the current one. If a vertex’s in-dgree
goes to zero, it is then ready for computation and is inserted into the ready list on its local
place. Finally, the worker marks the vertex as finished and increases the finished vertices
counter.

The dependent vertices retrieved before calling the compute method may be located at
remote places, which means network communications may occur. To reduce the overhead
of data transmission, the worker maintains a cache list that caches recently transmitted
vertices. For efficiency, the cache list is implemented by a static array and its size can
be specified by users. We adopt a simple FIFO replacement mechanism for the cache,
considering that the DP algorithm normally has a regular DAG pattern and each vertex may
only be needed for a short period.

5.2.4. Fault Tolerance

Fault tolerance is important because hardware and software faults are ubiquitous [21]. The
X10 team has been extending X10 to “Resilient X10”, where a node failure is reported as a
DeadPlaceException.

Three basic methods are introduced by X10 to handle the node failures: (a) Ignor-
ing failures and using the results from the remaining nodes, (b) Reassigning the failed
nodes work to the remaining nodes, or (c) Restoring the computation from a periodic snap-
shot [22]. The first method is suitable for problems where the loss of some portion of
results may only have minor impacts on accuracy, which is unacceptable for our scenario
since users usually need all data to compute the final result accurately. The second method
is often adopted in iterative computations, such as the KMeans algorithm [23], for which
in each iteration step the master dispatches tasks to workers. The master maintains the
computation status and the intermediate results. Once a worker node fails, the master can
dispatch tasks to remaining workers. But this method is not fit for DPX10. The reason
is that the intermediate result isn’t possessed by the master. In contrast, every worker in
DPX10 holds a partition of the DAG and is responsible for scheduling the local vertices.
The third method is checkpoint, which uses a periodic snapshot to rearrange and restore
the distributed array among remaining places after a node failure. The ResilientDistArray
class implements this function as a fault-tolerant extension of the DistArray [22]. However,
the checkpoint mechanism is infeasible because a large volume of intermediate results may
be produced in the progress of computing. To address it, we propose a new fault tolerant
approach as follows.

Algorithm 1 is a pseudo-code that demonstrates this recovery process. Once a Dead-
PlaceException raised, the program stops and enters the recovery mode. Data stored in dead
nodes is now inaccessible. DPX10 then creates a new distributed array among remaining
places (Line 1), which has the same distribution manner as the old one. We denote the new
distributed array as newArray and the old distributed array as oldArray. DPX10 visits all
accessible vertices (stored in living places) of oldArray and copies the results of finished
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vertices into newArray (Line 4 - 10). Then we initialize all unfinished vertices in newArray
by estimating in-degrees of them with the getDependency method (Line 12 - 14). Next, we
revisit the finished vertices and decrease the in-degrees of unfinished vertices by the size of
vertices returned by the getAntiDependency method (Line 16 - 23). Finally, we replace
ODA with NDA (Line 24 - 25).

Algorithm 1: Recovery Procedure

1 newArray← create a new distributed array;
2 oldArray← the old distributed array;

3 // Resotre accessible and finished vertices from oldArray
4 foreach accessible vertex of oldArray do
5 if vertex is finished then
6 i← vertex.i;
7 j← vertex. j;
8 newArray(i, j)← vertex;
9 end

10 end

11 // Set in-degree of vertices in newArray
12 foreach vertex of newArray do
13 vertex.indegree← getDependency( vertex) .size() ;
14 end

15 // Decrease the in-degree of unfinished vertices in newArray
16 foreach vertex of newArray do
17 if vertex is finished then
18 depVertices← getAntiDependency( vertex);
19 foreach v of depVertices do
20 decreaseIndegree( v);
21 end
22 end
23 end

24 // Replace oldArray with newArray
25 oldArray← newArray;

Figure 13 demonstrates this recovery process with an example containing a DAG ma-
trix of 3 × 6 partitioned into 3 parts for three places. As shown in Figure 13(a), the old
distributed array (the old DAG) divides the vertices by the column and distributes them into
3 places (0, 1, 2). Gray vertices denote completed tasks, whereas white vertices represent
pending tasks. Assuming place 2 failed, DPX10 creates a new DAG with the same size
as the old one and creates a new distributed array to store the new DAG. The vertices are
also divided by the column and distributed into remaining places (0, 1), as shown in Figure
13(b). The vertices of oldArray stored in place 2 become inaccessible, which means the re-
sults of finished vertex (1, 5) and vertex (1, 6) are lost. Other finished vertices of oldArray
stored in place 0 and place 1 can be copied to newArray, as shown in Figure 13(c). Notice
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Figure 13. An example of recovery process. Gray vertices denote completed vertices. When
a failure occurs, a new DAG with the same size as the old one is constructed. All completed
vertices except the inaccessible or remote ones are restored into the new DAG.

that the results of vertex (1, 3) and vertex (2, 3) are not restored. The vertices of the third
column was stored in place 1 before the failure occurs. And now they are stored in place 0.
By default, DPX10 will not restore finished vertices in remote places, such as in this case,
the results of vertex (1, 3) and (2, 3) are dropped. The recovery process performs in parallel
on all alive places.

5.2.5. Straggler Mitigation Strategy

In practice, due to many unexpected factors such as faulty hardware and software mis-
configuration, it often occurs that some tasks run much slower than other tasks (named as
straggler tasks). These tasks can slow down the whole process since other tasks have to wait
for the result of them. The straggler is prone to occur and become a thorny issue when a
program is executed on a heterogeneous cluster or a cloud environment, such as Amazon’s
Elastic Compute Cloud(EC2) [24]. These environments offer an economic advantage - the
ability to own large amounts of computing power only when needed - but they come with
the caveat of having to run on virtualized resources with potentially uncontrollable variance.

We classify the straggler tasks into two types, namely, Hard Straggler and Soft Strag-
gler, defined as follows:

• Hard Straggler: A task that goes into a deadlock status due to endless waiting for
certain resources (e.g. the network is broken). It cannot stop and complete unless we
kill it.

• Soft Straggler: A task that can complete its computation successfully, but will take
much longer time than common tasks.

For a hard straggler, we should kill it and run another equivalent task, or called backup
task, immediately once it was detected. And for a soft straggler, there are two possibilities:

• P1). Soft straggler completes before its backup task, which means there is no need to
run a backup task at the beginning.

• P2). Soft straggler finishes later than its backup task. So we should kill it when
the backup task is completed. In that way, the straggler task would not occupy the
resources to do useless work.
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In Hadoop [25], each task keeps track of a progress score, which then can be used
to estimate the finish time and to determine straggler tasks. Once a straggler task is de-
tected, a backup task is spawned to run concurrently with the straggler (i.e., speculative
execution) [24]. The task killing operation occurs when either of two tasks complete. The
drawback of this solution is, no matter which possibility (P1 or P2) takes place, the backup
task and the straggler are always running concurrently for a period of time. In other words,
it leads to some unnecessary cost, especially for the case of P2. Instead, in DPX10 we
do not run a backup task right away. We put it in the end of the ready list, which means
some extra time is given to allow the straggler task to earn its second chance. Moreover, a
task in DPX10 is a block of vertices. And due to the characteristics of DP applications, the
execution time of a vertex in the DAG is usually very short, which makes it expensive for a
node to keep a progress score and notify other nodes during the computations.

Adaptive Timeout-based Straggler Mitigation Strategy. The intuitive way to detect
a straggler is to use a time-out mechanism. Once the execution time of a currently running
block exceeds the time limit, the block is marked as a straggler task. However, it is hard
for users to choose a proper time-out value since the execution time of a block differs in
different computing resources. The time-out value that is too large or too small could fail
to detect a straggler or detect too many unnecessary straggler tasks. In DPX10, we adopt
an adaptive time-out mechanism. Every node keeps track of three values ti,b,Ti and Tavg.

• ti,b is the elapsed time of the current running block b on node i.

• Ti is the average computation time of the latest m blocks completed on node i; Ti =
Ti1+Ti2+···+Tim

m , where Ti j (1≤ j≤m), is the execution time of the latest jth block. The
reason that we use the average time instead of a single latest execution time is based
on the consideration that the computing power might have a sudden change in a short
moment.

• Tavg is the average of Ti; Tavg = T1+T2+···+Tn
n , where n is the number of computing

nodes.

For each node, these three values are updated after a block completes. During the
computation of a block b on node i, there are two possibilities: (a) ti,b > xTavg; (b) ti,b ≤
xTavg, where x is an empirical value which is set to 1.4 in DPX10. We consider b as a
straggler task only for case (a) since it has slowed down other computing nodes.

5.3. Experiments

In this section, we evaluate the performance of DPX10 by running four different DP ap-
plications on Tianhe-1A [26]. Each computing node of Tianhe-1A system is a multi-core
SMP server which has dual 2.93Ghz Intel Xeon 5670 six-core processors (total 12 cores
per node/24 hardware threads). Each node has 24GB memory and 120GB SSD, connected
with Infiniband QDR. The Kylin Linux system is deployed. We used the latest X10 release
version, X10 2.5.1. The X10 distribution was built to use Socket runtime.

Two important environment variables needed to be set. X10 NPLACES specifies the
number of places, which usually equals to the number of processors. And X10 NTHREADS
indicates the number of threads, which usually equals to the number of cores. So here we
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set X10 NTHREADS to 6 in all our experiments. And X10 NPLACES was twice the number
of computing nodes used in the experiment.

We carried out four DP applications with a different number of places and graph sizes
to show the simplicity, scalability, and efficiency of DPX10. The four DP applications
were: (a) Smith-Waterman algorithm with linear and affine gap penalty (SW), (b) Man-
hattan Tourists Problem (MTP), (c) Longest Palindromic Subsequence(LPS), and (d) 0/1
Knapsack Problem (0/1KP). Moreover, SW was utilized to demonstrate the performance of
our new recovery method and the straggler strategy.

The Smith-Waterman algorithm and Knapsack problem are already discussed. The re-
cursive formulation of another two applications is as following.

• The Manhattan Tourists Problem:

D(i, j) = max

{
D(i−1, j)+w(i−1, j, i, j)
D(i, j−1)+w(i, j−1, i, j)

where w(i1, j1, i2, j2) is the length of the edge from (i1, j1) to (i2, j2).

• Longest Palindromic Subsequence:

D(i, i) = 1

D(i, j) =


2,

xi = x j,
j = i+1

D(i+1, j−1)+2,
xi = x j,
j ̸= i+1

max{D(i+1, j),D(i, j−1)}, xi ̸= x j

where xi,x j is the ith and jth character of the string.

The time for initializing the cluster, generating test graphs, and verifying results were
not included in the measurements.

5.3.1. Line of Code

One goal of DPX10 is to provide an easy way for developers to write distributed DP pro-
grams. Thus, we use the line of code(LOC) to evaluate the simplicity of writing DP pro-
grams with DPX10. We compared the same applications written with DPX10 and with X10
directly. The codes of pre-processing, post-processing, comments and blank lines were not
included.

The result is showing at Table 3. With X10 used directly, a distributed program is about
4 times more than the LOC a serial version. And there are many repeated codes in dif-
ferent distributed DP programs such as the distribution of vertices and the communication
between workers. DPX10 tries to handle these parts of work automatically and let develop-
ers focus on the logic of the algorithm. As we can see, the LOC of four DPX10 programs
are about one-third of the same programs written with X10 directly. Moreover, the first
three programs nearly have the same LOC with their serial versions. Unlike the first three
applications, 0/1KP wrote with DPX10 has fewer more lines. The reason is that the DAG of
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Table 3. The LOC of four DP applications

Applications X10 (Serial) X10 (Distributed) DPX10
SW 44 147 42

MLP 29 146 46
LPS 28 172 33

0/1KP 21 154 76

0/1KP is not provided by DPX10. So users need to implement it by themself, which costs
45 extra lines. Even though, implementing a custom DAG is much easier since it doesn’t
involve any parallel programming.

5.3.2. Scalability

As an indication of how DPX10 scales with places, Figure 14 shows the runtime for SW,
MTP, LPS, and 0/1KP with 1 billion vertices. We run our experiments on up to 20 nodes(40
places) because that is all that we have permission to access. In future work, we hope to
study DPX10 using larger system/partition sizes to better understand its scalability.

The execution time goes down quickly at first and then reaches a plateau as the number
of places increases. The increase of places can reduce the time for executing non-dependent
vertices but can also increase the cost of data transmission. Because of the strong data
dependency, the speedup curves are not ideal. Figure 14(a) to Figure 14(c) reveal a speedup
of about 4 for a 5 fold increase in nodes and Figure 14(d) represents a speedup of about 2.5.
In other words, SW, MTP and LPS have a better acceleration performance than 0/1KP. One
reason is that 0/1KP has non-deterministic dependencies. And another reason is that given
the same data distribution (divided by columns), 0/1KP requires more communications due
to its dependency relationship between vertices.

To show how DPX10 scales with graph sizes, we keep the number of places unchanged
(40 places on 20 nodes) and vary the size of vertices from 200 million to 2 billion. The result
is shown in Figure 15. LPS spend the minimum time since nearly a half of its vertices are not
computed. 0/1KP take a little longer since it needs more time to resolve the dependencies
as we discussed above. From the four experiments, it can be observed that DPX10 provides
a linear scalability with graph sizes.

5.3.3. Fault Tolerance Evaluation

A node failure might occur at an arbitrary point during the program execution. The ver-
tices and other information on that node would be lost, but the remaining nodes still keep
their portion of the DAG. DPX10 catches the DeadPlaceException and starts the recovery
process.

Figure 16 shows three normal circumstances of node failures. The first one illustrates
a scenario of a node failure before the computation start. As shown in Figure 16(a). At
that time, node 3 hasn’t been participating in the computation. Therefore, after recovery
the DAG is re-constructed and the parallelism is not diminished. Whereas the second cir-
cumstance is about the failure that is occurred during the computation. As shown in Figure
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Figure 14. Execution time of four DP applications with 1 billion vertices on different num-
ber of places (up to 40 places on 20 nodes). Figures (a,b,c) show a speedup of about 4 for a
5 fold increase in nodes and Figure (d) represents a speedup of about 2.5.
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Figure 15. Execution time of four DP applications on 20 nodes (240 cores) with the number
of vertices varying from 200 million to 2 billion.
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Figure 16. Three different circumstances of node failures. Gray vertices are finished.

16(b), the node 1 fails in the middle of the computation. Almost a half of its vertices are
finished and we need to re-compute those vertices. Worse, those finished vertices in node
1 are parents of vertices in node 2. In other words, the maximum parallelism cannot be
achieved until those vertices in node 1 have been recovered. Figure 16(c) shows the third
situation that the failure occurs after computations. Node 0 fails after it completes all its
vertices. And there are no unfinished vertices in other nodes that still rely on the vertices in
node 0. Hence the vertices in node 0 will be re-computed but no other nodes are infected.

In those three circumstances, the second case does the most damage. So in this section,
we try to simulate the second situation. We evaluate the price of fault tolerance by using
the SW algorithm on 4 and 8 nodes with the number of vertices varying from 100 million
to 500 million. The DAG is split by columns. The failure is triggered manually on node
1 in the middle of the execution. The program continues on the remaining nodes after the
recovery. So a half of vertices are computed on 4 and 8 nodes, and more than half of them
are computed on 3 and 7 nodes.

Figure 17(a) shows the time for recovering the distributed array. The time increases
from 13 to 65 seconds on 4 nodes and from 6 to 30 seconds on 8 nodes, of which the result
shows that the recovery time follows a good linear growth. On the other hand, the time for
recovering on 8 nodes is half of it on 4 nodes since the recovery is processed in parallel, as
discussed in Section 5.2.4.

For one fault injection, Figure 17(b) presents the normalized execution time. It is ap-
parent that the impact of one failure reduces with the increase in the number of computing
nodes.

5.3.4. Straggler Strategy Evaluation

The straggler condition is very likely to happen at runtime, in particular in a heterogeneous
environment. Straggler tasks can substantially slow down the whole program since the
tasks in the DP matrix have a strong data dependency between them. Figure 18 is a regular
DAG of DP algorithms. According to the number of computing vertices (tasks) and the
number of activities, we can classify the whole computation into three computing domains:
two non-saturated computing domains and one saturated computing domain. In the non-
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(a) The time of recovering on 4 and 8 nodes.
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Figure 17. The fault tolerance evaluation results with SW algorithm running on 4 and 8
nodes.
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Figure 18. The computing distribution model for a regular DP algorithm.

saturated computing domain, its maximum parallelization degree is less than the number of
computing activities. It implies that there must be some idle activities when the computation
is going on. For the saturated computing domain, its maximum parallelization degree is
greater than or equal to the number of computing activities. All activities should be busy,
and no idle activities exist during the computation in this domain. Therefore, straggler tasks
in saturated domains would cause less damage than in non-saturated domain since the delay
of saturated straggler tasks is more likely to be hidden.

We use the Smith-Waterman algorithm with 100 million vertices on 5 computing nodes
to evaluate our straggler strategy. To emulate a straggler task, a sleep method (10ms) is
invoked before the real work starts. The number of straggler tasks is set to 1000. We
vary the percent of non-saturated tasks in all straggler tasks to see the different impact of
straggler condition happening in the saturated region and the non-saturated region. The
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Figure 19. The compared performance results for DPX10 with straggler strategy to that
without straggler strategy.

result is shown in Figure 19(a). The running time is normalized to the program without
straggler tasks. As the percent of non-saturated region increases from 0 to 1, normalized
time increases from 1.08 to 1.82, implying that the straggler tasks in the non-saturated
domain have a larger impact on the performance than those in the saturated domain. The
explanation is that, in the non-saturated domain, the number of computing tasks is less
than the number of activities as we discussed above. More straggler tasks will make idle
activities waiting for a longer time for computing vertices, whereas in saturated domains
there are sufficient computing vertices. With the straggler strategy enabled, the normalized
time increases from 1.01 to 1.59, i.e., there is about 14% performance improvement with
straggler strategy.

Moreover we conduct another experiment with a different number of straggler tasks.
The percent of non-saturated tasks is set to 0.2 and the number of straggler tasks increases
from 1000 to 5000. The result is presented in Figure 19(b). As we can see, our straggler
strategy can reduce the execution time (average 20%) in the case of stragglers, especially
when the number of tasks is large.

6. Related Work on Accelerating DP Algorithms

In this section we review related work close to us from the following three aspects: 1) DP
Parallelization; 2) Graph Processing Framework; 3) X10 and APGAS.

6.1. DP Parallelization

There are an abundant of literature work for DP parallelization. Zheng et al. [27] intro-
duced parallel DP based on stage reconstruction and then applied it to solve the optimized
operation of cascade reservoirs. Hamidouche et al. [28] proposed a parallel BSP (Bulk
Synchronous Parallel) strategy to execute Smith-Waterman algorithm on multiple multi-
core and manycore platforms. The hardware like GPU and FPGA has also been used in
work [29–31] to accelerate the DP algorithm that is designed for sequence alignment prob-
lems. All those work target at a particular application so the features of the problem can be
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utilized to accelerate the program. DPX10 aims at a kind of DP algorithms. The goal of
DPX10 is not only the performance but also the simplicity and reliability.

Maleki et al. [32] proposes a new parallel approach for a class of DP algorithms called
“linear-tropical dynamic programming (LTDP)”. It breaks data-dependencies across stages
and fixes up incorrect values later in the algorithm, which allows multiple stages to be
computed in parallel despite dependencies among them. The drawback to this approach is
it brings more work to users to write DP programs.

6.2. Graph Processing Framework

Hadoop [25] is an open source implementation of MapReduce [8]. It has been a popular
platform for batch-oriented applications, such as information retrieval. The computation
is specified by the map and the reduce function. And some recent systems add iteration
capabilities to MapReduce. CGL-MapReduce is a new implementation of MapReduce that
caches static data in RAM across MapReduce jobs [33]. HaLoop extends Hadoop with the
ability of evaluating a convergence function on reducing outputs [34]. But neither CGL-
MapReduce nor HaLoop provide fault tolerance across multiple iterations. Moreover, the
data flow of these systems is limited to a bipartite graph, which cannot represent the DP
algorithms.

Pregel [9] is a computational model for processing large graphs. Programs are expressed
as a sequence of supersteps. Within each superstep the vertices compute in parallel, each
executing the same user-defined function that expresses the logic of a given algorithm [9].
DPX10 has a similar idea as Pregel, “think like a vertex”. But DPX10 is a tailored system
for DP applications. Different from Pregel, it contains a DAG pattern library to further
simplify the graph programming based on the observation that most of DP algorithms are
of the same DAG structure except their data size. Moreover, the implementation of Pregel
adopts the distributed memory model, whereas DPX10 takes the APGAS model, which is
a hybrid model of the shared memory model and the distributed memory model.

There are also some general-purpose DAG engine like Dryad [35], DAGue [36] and
CIEL [37]. They allow data flow to follow a more general directed acyclic graph. These
systems target on a large kind of problems which may have various DAGs. So the pro-
grammer needs to explicitly express the algorithm as a DAG of tasks and have to handle
the communications on their own. In contrast, DPX10 provides a simple interface to ex-
press DP algorithms and handles all parallel complexities automatically. In addition, eight
commonly used DAG patterns are shipped with DPX10 for immediate use.

Several recent projects [38, 39] have proposed a task-based programming model. They
mainly focus on the applications that consist of dependent tasks where each task normally
runs for a long time. They are not suitable for computing-intensive DP problems, which
consist of plenty of computing tasks but each of them has a relatively short execution time.

6.3. X10 and APGAS

PGAS model assumes a global memory address space that is logically partitioned and a
portion of it is local to each process or thread [40]. The novelty of PGAS is that the portions
of the shared memory space may have an affinity for a particular process, thereby exploiting
locality of reference. The PGAS model is the basis of Unified Parallel C [41], UPC++ [42],
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Co-Array Fortran [43], Global Arrays [44], SHMEM [45], etc. APGAS model permits
both local and remote asynchronous task creation [12]. Two programming languages that
use this model are Chapel [15] and X10 [11].

There have been few X10 libraries or frameworks built on top of APGAS. ScaleGraph is
an X10 library targeting billion scale graph analysis scenarios. Compared with non-PGAS
alternatives, ScaleGraph defines concrete and simple abstractions for representing massive
graphs [46]. Acacia [47] is a distributed graph database engine for scalable handling of
large graph data. Acacia operates between the boundaries of private and public clouds.
It will burst into the public cloud when the resources of the private cloud are insufficient
to maintain its service-level agreements. ClusterSs is a StarSs [48] member designed to
execute on clusters of SMPS. Tasks of ClusterSs are asynchronously created and assigned
to available resources with the support of the APGAS runtime [49].

Since X10 and APGAS are new for the HPC community, we believe a lot of libraries
or frameworks need to be developed to support the language to achieve its productivity
goals [46].

7. Open Problems

Despite many recent efforts on parallelizing dynamic programming algorithms, there are a
number of open problems remained to be explored in future. We elaborate some of them
from the following aspects.

7.1. Generality and Simplicity

There have been a number of parallelization proposals [5, 7, 32, 50–52] on DP. Many of
them are targeting a specific problem. For example, the Smith-Waterman (SW) algorithm,
based on dynamic programming, is one of the most fundamental algorithms in bioinformat-
ics. Some work [50, 51] implement it on a single general purpose microprocessor. They
parallelized the algorithm with SIMD method at the instruction level. SparkSW [52] is a
distributed implementation of SW algorithm based on Apache Spark [53]. Most of these
studies only work for a single DP algorithm and lack generality and simplicity for support-
ing other DP algorithms parallelization. As we proposed in Section 5, EasyPDP and DPX10
concentrate on the distribution and parallelization of DP algorithms of the type 2D/0D. So
there are still more work need to be done to support the type of 2D/iD(i >= 1).

7.2. Exploring Emerging Hardware

Emerging hardware is available at different layers. For example, in the storage layer, we
now have solid-state disk and nonvolatile RAM, which are much faster than Hard Disk
(HD). In the computation layer, there are a set of accelerators such as GPU, AMD Accel-
erated Processing Unit (APU), and Field Programmable Gate Array (FPGA). Moreover, in
the network layer, remote direct memory access is an efficient hardware tool for speeding
network transfer. For a computing system, it is important to adopt this emerging hardware
to improve the performance of applications. Currently, generous frameworks or systems for
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DP applications are mostly designed for the CPU platform. More research efforts are re-
quired to efficiently utilize this emerging hardware at different layers for existing computing
systems.

8. Conclusion

In this chapter, we have discussed the importance of dynamic programming techniques in
various areas. The chapter reviewed the classic parallel programming models, i.e. shared
memory and distributed memory along with a new model PGAS and some PGAS-based
languages. A DAG data driven model was proposed for parallel programming of DP appli-
cations. Based on this model, two parallel computing systems (i.e., EasyPDP and DPX10)
were introduced for multi-core and distributed computing systems, respectively. Some open
problems are also presented for future exploration.
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