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ABSTRACT

Cloud gaming has been increasing in popularity recently, but issues

relating to maintaining low interaction delay for users to guaran-

tee satisfactory gaming experience is still prevalent. Interaction

delays caused by server-side processing are heavily influenced by

how the processes partition the resources. However, finding the

optimal partitioning policy that minimizes the response delay is

complicated by several critical challenges. In this paper, we pro-

pose Themis, a system that enables efficient and adaptive online

resource partitioning for reducing response delay in cloud gaming.

Briefly, Themis employs machine learning technology to build a

performance model which is able to capture the complex relation-

ships between resource partition and system performance. With

this model, Themis divides the processes into disjoint groups and

partitions resources among process groups, which greatly simplifies

the resource partition problem while ensuring high partitioning ef-

fectiveness. To tackle dynamic workload changes, Themis leverages

reinforcement learning to learn how different partitioning actions

affect system performance in an online manner, and adaptively

choose the best actions for minimizing response delay in real time.

We evaluate Themis in a real cloud gaming environment using sev-

eral real games. The experimental results show that Themis can

reduce the response delay by 17% to 36% compared to a system

without resource partitioning, and outperforms other resource par-

titioning policies significantly. To the best of our knowledge, this is

the first work to optimize response delay in cloud gaming through

resource partitioning.
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1 INTRODUCTION

Cloud gaming has become increasingly popular in recent years.

In cloud gaming, games run on cloud servers and the players in-

teract with games over the internet through thin clients. Cloud

servers encode the rendered game scenes into videos and stream

the videos to thin clients. The thin clients decode and display the

videos to players, and send the player’s control commands to the

cloud servers that are running the games. As opposed to tradi-

tional console gaming, cloud gaming puts the entire game running

workload onto the cloud, which greatly reduces the software and

hardware requirements for players running high-end games. In

this way, cloud gaming can deliver high-quality gaming experience

to players anytime, anywhere and on any device. With such supe-

rior features, cloud gaming has attracted great interest from both

academia and industry [1, 2, 4, 8].

It is common knowledge that the high-end gaming experience is

very sensitive to the games interaction delay. The interaction delay

in cloud gaming results from network delay (network round-trip

time), server-side response delay (for game rendering, video encod-

ing and transmission), and the client side playout delay (for video

decoding and displaying). According to the measurements in [5],
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Figure 1: Three different partitioning policies. (a) Fully-sharing, with a response delay of 84 ms; (b) Complete-isolation, with

a response delay of 103 ms; (c) Partially-sharing, with a response delay of 56 ms.

the server-side response delay usually dominates the interaction

delay in cloud gaming. Perhaps it is not too surprising that the

server-side response delay can be significant, as the bulk of the

computation, including game rendering, video encoding and trans-

mission, are all processed at the server side. Existing works have

attempted to reduce response delay in cloud gaming from many

perspectives, for example, speeding up the video encoding [3, 14],

speculating rendering frames [11] or tunning video streaming pa-

rameters [12, 15]. However, until now it appears that no published

work has considered optimizing the response delay in cloud gaming

by resource partitioning.

Cloud gaming system (referring to the server system used for

cloud gaming) is composed of a set of processes. If resources such

as CPU cores and Last Level Cache (LLC) are fully shared among

processes, there will be contention over the shared resources, which

will slow down game rendering, video encoding or transmission,

and thus increase the response delay. Some processes may have a

high demand for resources, but the benefit (in terms of reduction in

response delay) that the process gets from the resources may not

directly correlate with this demand. For example, while a process

from a video streaming service may access lot of unique cache

blocks, many cache blocks are unlikely to be reused again, implying

that a large amount of cache is required save on a little amount of

processing time. Therefore, it makes sense to reduce the response

delay through correctly partitioning the resources among processes

in cloud gaming.

According to our preliminary experimental results in Section 2,

the benefit of resource partitioning on response delay reduction

could be significant. Partitioning cache alone can reduce the re-

sponse delay by up to 30% compared to full cache sharing. Despite

its advantages, resource partitioning for delay reduction in cloud

gaming poses critical challenges:

Hardware limitation. Modern hardware only supports coarsely

sized partitions for some resources. For example, the LLC can only

be partitioned with cache way granularity. This limitation makes

the policy of complete-isolation (i.e., partitioning the cache into

isolated parts and allocating each process a separate part) subopti-

mal, because the expected cache allocation for a process may not

precisely align with the cache way size. Therefore, more effective

partitioning policy should be investigated.

Complex performance model. As multiple resources can be

partitioned, the number of possible partitions over all resources is

likely to be substantial. To find the optimal resource partition, we

require a mechanism that can estimate the performance (in terms

of response reduction) of any given partition, because testing all

possible partitions in a real system is impractical. However, it is

very challenging to build a performance model due to the complex

interactions and resource contention behaviors among processes.

Dynamic workload. Game scenes would vary over time, lead-

ing to dynamic workload of processes. Different workloads may

require different partitions for achieving minimal response delay.

However, the change of game workload is fast-paced and unpre-

dictable, and re-computing the optimal partition for each workload

change is impractical. Therefore, a dynamic and adaptive partition-

ing strategy is required.

Resource partitioning for improving system performance has

been extensively studied for general applications in prior work.

However, existing solutions do not adequately address all of the

previously mentioned challenges in cloud gaming. For example,

KPart [6] and Hypart [13] partition only one type of resource,

the works [7, 10] assume the workloads of applications are static,

and [9] only considers the complete-isolation policy which is not

effective as will be shown in this paper.

In this paper, we present Themis, a system that enables efficient

and adaptive resource partitioning for reducing the server-side

response delay in cloud gaming. Themis has several promising

features which adequately address the previously-mentioned chal-

lenges. To sidestep the deficiency caused by the hardware limita-

tion, Themis divides the processes into disjoint groups and partition

the resources among groups. By doing this, Themis ensures high

partitioning effectiveness while greatly simplifying the resource

partition problem. For searching the optimal process groups, Themis

builds a performance model by employing machine learning tech-

nology, which is able to capture the complex relationships between

resource partition and system performance. To adapt dynamic work-

load changes, Themis leverages reinforcement learning for online

partitioning. The crafted designed reinforcement learning model is

able to learn the impact of various partitioning actions on system

performance, and automatically selects the best partitioning actions

that minimize the response delay according to real time workload.

We validate Themis in a real cloud gaming environment using

real games. The experimental results show that Themis can reduce

the response delay by 17% to 36% compared to a system without

resource partitioning, and also outperforms other partitioning poli-

cies significantly. To the best of our knowledge, this is the first

work to optimize response delay in cloud gaming through resource

partitioning.
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2 MOTIVATION

In this section, we describe some preliminary experiments which

motivate our work. The experiments are performed in a real cloud

gaming environment (described in Section 4.1). We run the game

Nexuiz in the system and consider partitioning the LLC of the server

among seven major processes (nexuiz, server, video, audio, xorg,

rtsp and compiz) in the system. The server has 10 MB LLC and the

LLC is partitioned with 1 MB (the size of cache way) granularity.

In the first experiment, we let the game stay in a fixed game

scene (which generates a stable game workload) and measure the

server side response delay (using the approach proposed in [5])

under three different partitioning policies (as shown in Figure 1):

Fully-sharing. The fully-sharing policy (as shown in Figure

1(a)) assumes the entire LLC is shared among all the processes,

i.e., there is no partitioning. In this policy, the processes freely

compete for the LLC according to their demands, which may lead to

inefficient allocation because the LLC demands of processes are not

necessarily correlated with the response delay. In this experiment,

the fully-sharing policy incurs a response delay of 84 ms.

Complete-isolation. The complete-isolation policy divides the

LLC into isolated parts, and allocate each process a separate part.

Resource isolation eliminates the impact of LLC contention. How-

ever, as the hardware does not support fine-grained partitions for

the LLC, complete-isolation may downgrade the effectiveness of

partitioning. Figure 1(b) shows the best complete-isolation plan

(i.e., the plan that incurs the minimum response delay among all

complete-isolation plans), which incurs a response delay of 103 ms,

even higher than that with fully-sharing.

Partially-sharing. The partially-sharing policy is more flexible

than complete-isolation, which allows each block of the LLC to be

shared by more than one processes. In this manner, when a process

does not need a whole block of LLC, it can share the block of

LLC with other processes so that the LLC can be utilized more

efficiently. For example, the partially-sharing plan shown in Figure

1(c) incurs a response delay of 56 ms, which is much lower than

that with fully-sharing. However, partially-sharing will lead to

complex sharing relationships and contention behaviors among

processes, making finding an optimal solution to the corresponding

partitioning problem challenging.

The first experiment motivates our work in two ways: (1) re-

source partitioning could significantly reduce the response delay

compared to fully-sharing; and (2) the policies of complete-isolation

and partially-sharing are both not suitable for our partitioning prob-

lem, and a more efficient partitioning policy is possible.

In the second experiment, we consider four different game scenes.

For each game scene, we generate a "good" LLC partitioning plan,

which incurs much lower response delay compared to fully-sharing.

We run the game in each game scene under the four "good" par-

titioning plans, and measure the response delay under each case.

Figure 2 presents the results. As can be seen, the partitioning plan

that is good for one game scene may not be good for other game

scenes. For example, using partitioning plan 1 is good for game

scene 1 (with a response delay of 59 ms), but not good for game

scene 3 (with a response delay of 78 ms, which is much higher

than the response delay using the partitioning plan 3). The second

Part. Plan 1 Part. Plan 2 Part. Plan 3 Part. Plan 4
20

40

60

80

100

120

140

R
es
p
o
n
se

D
el
ay

(m
s) Game Scene 1 Game Scene 2 Game Scene 3

Game Scene 4

Figure 2: Response delays of game Nexuiz under different

partitioning plans

experiment implies that a static partitioning plan is inefficient and

motivates us to design an adaptive online resource partitioning

strategy.

3 THEMIS DESIGN

3.1 Overview

Consider a cloud gaming system. Denote by P the set of major

processes when the system runs a game on a cloud server (a physical

server or a virtual machine), including the processes of the game,

the processes for video encoding and transmission, etc. Denote by

R the set of resources which can be partitioned in the cloud server.

We aim to partition the resources in R among the processes in P so

that the server side response delay of the game is minimized, where

the response delay refers to the total server-side processing delay,

including game’s rendering delay, video encoding and transmission

delay, etc.

Figure 3 describes the design of Themis, which can be divided

into an offline phase and an online phase. In the offline phase,

Themis first divides the processes in P into several disjoint groups.

The resources will be partitioned among groups, and the processes

in the same group will share the resources allocated to that group.

The benefits of this mechanism are twofold: first, letting the pro-

cesses in the same group share resources counteracts the negative

effects of coarse partitioning granularity limited by the hardware,

which improves the effectiveness of partitioning; second, isolating

resources among groups significantly simplifies the partitioning

problem compared to partially-sharing.

To assist in finding optimal process groups, a machine learning

model is built that can help to estimate the benefit of any given

grouping planwithout testing the plan in a real system. Based on the

machine learning model, a heuristic algorithm is used to find a near-

optimal grouping solution. Based on the grouping results, Themis

leverages reinforcement learning (Q-Learning) to implement online

partitioning. The learning model is trained by running the game on

the cloud server for a period of time. In the online phase, each time

the system starts running the game, the well-trained model will be

used to adaptively partition resources among processes according

to real-time system states. Note that the procedures in the offline

phase need to be done only once for a specific game.

3.2 Process Grouping

In this section, we present our approach that unearths the optimal

or near-optimal process grouping plan that minimizes the response
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delay. To find the optimal groups, we need to evaluate the perfor-

mance (in terms of response delay) of any given grouping plan.

However, the number of possible grouping plans could be substan-

tial, and testing all of them in a real system is expensive. A more

efficient way is to build a performance model to estimate the perfor-

mance of grouping plans without testing them on a server. However,

precise prediction of the response delay is very challenging because

it is affected by many factors, including the grouping plan, resource

partition among groups, resource contention and game workload.

To address this issue, we leverage machine learning techniques

to build a performance model. Machine learning is good at cap-

turing complex relationships and has been widely used in various

scenarios for prediction. To train a machine learning model, we

generally need to collect a large number of samples from real sys-

tem. However, the measurement of response delay in cloud gaming

is rather nontrivial [5]. We observe that the response delay has a

strong linear correlation with the processes’ IPCs (Instructions Per

Cycle, a metric indicating the execution speed of a process), i.e., the

response delay can be represented by

c +
∑
p∈P

αp · IPCp (1)

, where IPCp is the IPC of process p, αp is the coefficient associated

with p and c is the constant term (the validation is presented in

Section 4). Based on this observation, instead of predicting the

response delay directly, we use the machine learning model to

predict the IPCs of processes, and then use the linear model defined

in (1) to approximate the response delay according to the IPCs. This

technique reduces the overhead for measuring response delays

significantly.

The machine learning model is defined as follows: the input fea-

tures include the members of a group (i.e., the processes belonging

to a group), and the output is the weighted sum of the IPCs of the

processes in this group. Consider a process group G . The weighted
sum of the IPCs for G, which we call W-IPC of group G, is defined
asWIPCG =

∑
p∈G αp · IPCp (αp has the same meaning as in (1)).

To represent the group members and resource allocation of G,
we index the processes in P from 1 to |P |, and the resources in R
from 1 to |R |. The members of group G is denoted by XG , which
is a 0-1 vector of size |P |, with the jth element indicating whether

the jth process in P appears in groupG (1 indicates inclusion and 0

indicates exclusion). The resources allocated toG is denoted by YG ,

which is a vector of size |R |, with the jth element representing the

amount of resource j in R that has been allocated to the group G.
Based on the above definitions, the machine learning model for

predicting the W-IPC of G can be represented by:

�WIPCG = ML(XG ,YG ), (2)

where �WIPCG is the output of the prediction from W-IPC of the

group G. Note that the W-IPC may vary as the game workload

changes. Here �WIPCG refers to an average value of the W-IPC

under various workloads. With the prediction model, given a parti-

tioning plan, the W-IPC of each process group can be predicted and

the response delay can be estimated according to (1) accordingly.

A brute-force search for the optimal grouping plan is expensive.

Therefore, we propose a heuristic algorithm to obtain a near optimal

solution. The details are presented in Algorithm 1. We first put all

the processes in one group and allocate all the resources to the group

(lines 3-5). Then, each time we try to split a group (the maximum

sized group that can be split) into two groups until no group can

be further split. To split a group G, we first create an empty group,

denoted byG ′. Then, we try to shift the processes one by one from

G toG ′ (lines 11-13). The result of shifting a process p fromG toG ′

is that the response delay after shifting is smaller than the response

delay before shifting. The response delay after shifting refers to the

minimum achievable response delay by reallocating the resources

ofG (i.e., YG ) amongG andG ′. The response delay under a specific

resource allocation is obtained according to the prediction model

defined by (2). If G ′ is not empty after this splitting procedure, the

split process is successful. For a successful split, we reallocate the

resources of G among G and G ′ such that the response delay is

minimized (line 16). If G ′ is empty (implying that splitting G has

no benefit in terms of response delay reduction), then we mark G
as a process group that cannot be split (lines 20).

In Algorithm 1, the while-loop (lines 6-22) repeats for at most

|P | rounds, because there are at most |P | groups generated. Each
group contains at most |P | processes, so the for-loop (lines 10-

14) also repeats for at most |P | rounds. In each round, for each

resource i , there will be at most Ci reallocating choices. So, the

overall complexity of Algorithm is O(|P |2
∏

1≤i ∈ |R | Ci ). As |P |, |R |
andCi (1 ≤ i ≤ |R |) are generally not very large in practical system,

the complexity of Algorithm 1 is acceptable.
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Algorithm 1 Process Grouping Algorithm

1: Input: the set of all processes, denoted by P
2: Output: the set of process groups, denoted by S
3: S ← {P} /*put all processes into one group*/

4: Ci ← total amount of the ith resource, 1 ≤ i ≤ |R |
5: YP ← [C1,C2, . . . ,C |R | ] /*allocate all resources to P*/
6: while S � ∅ do

7: G ← the maximum group in S that can be splitted

8: d ← response delay under current partitioning plan

9: G ′ ← ∅ /*create a new empty group*/

10: for each p ∈ G do

11: shift p from G to G ′

12: d∗ ← the minimum achievable response delay by reallo-

cating YG among G and G ′

13: If d∗ < d , do d ← d∗, otherwise, move back p to G
14: end for

15: if G ′ � ∅ then

16: Y ∗ ← the amount of resources (in YG ) should be allocated
to G ′ for achieving the minimum response delay

17: YG′ ← Y ∗, YG ← YG − Y ∗

18: S ← S ∪G ′

19: else

20: Mark G as the process group that cannot be split

21: end if

22: end while

3.3 Reinforcement Learning Model

Theworkload changewithin a game is usually fast-paced and unpre-

dictable. We propose using a reinforcement learning (RL) technique

to implement dynamic resource partitioning. The RL is a kind of

reward-based machine learning technology implemented using

Markov Decision Process (MDP) framework. It interacts with a

dynamic environment through an autonomous agent and learns

the optimal control policy based on the rewards earned for the

various actions by trial. The reason we use RL for dynamic parti-

tioning is that RL can learn to distinguish good partitions without

complex offline profiling, and make immediate decisions according

to real-time system states.

Q-Learning is one of the most popular RL algorithms, which has

been widely used in many applications. In Q-Learning, Q repre-

sents the Action-Utility function (represented by a Q-Table), with

the value Q(s,a) representing the expected reward of performing

action a in state s . The main idea of Q-Learning is to learn the

function Q by interacting with the dynamic environment, and use

the learned functionQ to guide action selection so that the benefits

are maximized. A one-step Q-Learning model can be represented

by

Q(s,a) ← Q(s,a) + β[r + γ ×max
a′

Q(s ′,a′) −Q(s,a)], (3)

where an agent performs an action a in state s , to receive a reward

r after the action is performed. The state s ′ is the state after a is

performed, β is the learning rate, and γ is the reward discount

factor.

As we want to partition resources among several process groups,

if we create a single agent (i.e., one Q-Table) for all groups, there

would be a large number of state-action pairs to be learned, making

the RL model unfeasible. Therefore, we create one agent for each

group, which maintains its own learning in a Q-Table. We use a

central coordinator to search for the globally optimal joint action

for the agents. Each agent updates its own Q-Table according to

the rewards observed after each action is performed.

3.3.1 Agent Model. The effectiveness of Q-Learning is highly

dependent on how the agent model is defined. We propose to exe-

cute one agent per process group. The details of the agent model

are as follows.

State Space. Resource partitioning aims to minimize the re-

sponse delay. Consider a process group G. According to (1), the

response delay contributed by group G can be represented by the

W-IPC ofG , i.e.,
∑
p∈G αp · IPCp . The response delay is determined

by two factors: the resources allocated to groupG and the current

game workload. So, we use 〈YG ,WIPCG 〉 to capture the system

state of the agent model associated with G, where vector YG de-

notes the resources allocated toG andWIPCG denotes the W-IPC

of group G. When YG is fixed, a heavy game workload will lead

to a largeWIPCG (corresponding to a large response delay) and

vice versa. So, the change inWIPCG is a consequence of resource

reallocation actions of the agent and the game workload changes.

In the real implementation, the values ofWIPCG are quantized into

k different levels corresponding to k states (k is a tunable integer

parameter).

Action Space.The actions of the agentmodel represent resource

reallocation. A reallocation action is represented by a vector of size

|R |, denoted by 〈r1, r2, . . . , r |R | 〉, where ri ∈ [−wi ,+wi ] is an inte-

ger which refers to the requested changes in the units of resource i ,
andwi is the maximum units that resource i can be reassigned in

a single step. Positive and negative numbers in the above actions

represent allocation and deallocation respectively.

Reward. The reward is the motivation for the agent which helps

to distinguish between beneficial and detrimental actions from a

particular state. Therefore, the reward should be able to reflect the

desired metric that we wish to optimize. Since we want to optimize

for response delay, we propose to useW-IPC as a motivating reward

for the agent associated with each group. As a result, the agent will

work towards minimizing the response delay by finding the best

resource partition.

3.3.2 Joint Action Selection. Generally, Q-Learning selects the

action that maximizes the performance metric being optimized.

The agent model defined above would request resources for the

minimum possible W-IPC of the associated group. Such a model

would motivate each agent to request as many resources as possi-

ble. However, not all the requests from the agents can be satisfied

because the total amount of resources is fixed. Hence, the agents

need to work together towards a common goal.

Brute-force search for the optimal joint action is expensive. We

propose a heuristic algorithm to find the near-optimal solution.

Given the current states and the Q-Tables of the agents, the algo-

rithm accesses the Q-Tables and attempts to select a joint action

that minimizes the sum of W-IPCs. The details of the algorithm are

presented in Algorithm 2. For each agent i , the action of agent i
(denoted by ai ) is represented by a vector 〈r i1, r

i
2, . . . , r

i
|R |

〉, where

r ij refers to the allocation/deallocation action for resource j. The
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Algorithm 2 Joint Action Selection Algorithm

1: Input: N ← number of agents

2: si ← current state of agent i , 1 ≤ i ≤ N
3: Qi (s,a) ← Q-value of agent i by picking action a in state s
4: Output: ai ← action of agent i , denoted by 〈r i1, r

i
2, . . . , r

i
|R |

〉

5: Initialize 〈r i1, r
i
2, . . . , r

i
|R |

〉 by 〈0, . . . , 0〉 for each i from 1 to N

6: for each k from 1 to |R | do
7: repeat

8: for each agent pair i, j such that r i
k
< wk , r

j

k
> −wk do

9: r i
k
← r i

k
+ 1, r

j

k
← r

j

k
− 1

10: di, j ← Qi (si ,a
i ) +Q j (sj ,a

j )

11: r i
k
← r i

k
− 1, r

j

k
← r

j

k
+ 1

12: end for

13: i∗, j∗ ← the agent pair i, j achieving the minimum di, j
14: if di∗, j∗ < Qi (si ,a

i ) +Q j (sj ,a
j ) then

15: r i
∗

k
← r i

∗

k
+ 1, r

j∗

k
← r

j∗

k
− 1

16: end if

17: until no action is taken for resource k
18: end for

actions are all initialized by 0 (line 5), indicating that no alloca-

tion/deallocation is taken. Then, the algorithm determines the ac-

tions in a greedy manner by considering each resource indepen-

dently (lines 6-18). To determine the actions for resource k , the
algorithm repeats for multiple rounds until no action will be taken

for resource k (lines 7-17). In each round, it iterates over all the pos-

sible agent pairs such that the allocation/deallocation of resource

k are still valid for the agents (the total amount of allocation/deal-

location for each agent does not exceed the limitation). For each

agent pair i, j, the algorithm computes the W-IPC sum of agent i
and agent j by hypothetically allocating one unit of resource k to

agent i and deallocating one unit of resource k from agent j (line 9).
Among all the agent pairs, the algorithm picks the pair achieving

the minimum W-IPC sum, denoted by i∗, j∗ (line 13). If the W-IPC

sum is smaller than that of last round, the algorithm allocates one

unit of resource k to agent i∗ and deallocates one unit of resource

k to agent j∗ (line 15).
Let NA note the number of agents. It is easy to see Algorithm 2

incurs a complexity ofO(|R |N 2
A
). As |R | and NA are generally small

in practical system, the computing time of Algorithm is negligible.

3.3.3 Training and Online Partitioning. Q-Learning learns the

Q-function by interacting with the real environment. In our imple-

mentation, the learning process is as follows. The entries of Q-Tables

are all initialized by 0. Then, we run the game in the cloud gaming

system for multiple episodes. At the beginning of each episode, we

randomly partition the resources among the process groups. At

each time step in the episode, we select the joint action according to

Algorithm 2, and allocate/deallocate resources for process groups

according to the actions. We observe the rewards (W-IPCs) after

the actions are performed and update the corresponding entries in

the Q-Tables according to (3). The learning process converges if the

changes to the entries in the Q-Table are below a certain threshold

value.

After the model is learned, it can be used for online resource par-

titioning. Specifically, each time a new instance of the game starts

running in the system, the learned model periodically observes the

real-time system states (i.e., W-IPCs) and computes the joint action

according to Algorithm 2. It is worth noting that the Q-Tables can

also be updated in the online phase based on the rewards observed.

4 EVALUATIONS

4.1 Experimental Setup

We use GamingAnywhere (GA) to build the cloud gaming envi-

ronment, which is a popular open-source cloud gaming platform

[8]. The GA has two components: GA server (for running games,

encoding and streaming videos) and GA client (for decoding and

displaying videos, and transmitting user commands). We set up

the GA server on a physical machine, configured with a 8 Cores

Intel i7-7700 3.4 GHz CPU, 10 MB LLC, 24 GB memory, an NVIDIA

GeForce GTX 1060 GPU and Linux OS. We set up a laptop and

install GA client on it. The two machines used in the experiment

are connected directly via a cable.

We implement Themis on the cloud gaming system. Specifically,

we consider partitioning two resources, CPU and LLC, which are

the most important resources whose partitioning can be supported

by the hardware. The CPU can be partitioned by cores or by usage,

using the Linux cgroup tool. In this paper, we partition the CPU

by cores, while the proposed solution can easily be applied to the

case that partitions the CPU by usage. The LLC is partitioned using

Intel’s CAT (Cache Allocation Technology) technology, where the

minimum partitioning granularity is 1 MB. We use Intel’s perf tool

to measure the IPCs of processes. The server side response delay in

each experiment is measured using the approach proposed in [5].

We have tested 5 real games, which are Dota2, Nexuiz, Alien-

arena, Supertux2 and Valley. Dota2 is a 3D Real Time Strategy (RTS)

game, Nexuiz and Alienarena are 3D First Person Shooting (FPS)

games, Supertux2 is a 2D Adventure (AVG) game, and Valley is a

3D benchmark. Among all the games, Dota2 and Valley are more

resource intensive, while Supertux2 is the most light weighted.

4.2 Process Grouping

Validation of linear correlation. We first validate the linear

correlation between the response delay and the IPCs of processes.

For each game, we randomly generate 20 partitioning plans (the

number of process groups, the members of each group and the

resource partition among groups in each partitioning plan are all

randomly generated). For each generated partitioning plan, we run

the game on the GA server for a period of 10 minutes. During the

running period, we measure the response delay and the IPCs of

processes in every 20 seconds. Using the samples collected, we

determine the parameters of formula (1) via linear regression using

least squares estimation. Table 1 shows the Multiple R (a value close

to 1.0 indicates strong linear correlation) and the Significance F

(a value smaller than 0.01 indicates the hypothesis test for linear

correlation can be accepted) obtained. As can be seen, the Multiple

R is over 0.99 and the Significant F is smaller than 0.01 for all the

games, which confirms the linear relationship between IPCs and

response delay.
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Figure 4: Prediction accuracy of machine learning model

Table 1: Linear regression results

Dota2 Nexuiz Alienarena Supertux2 Valley

Multiple R 0.994 0.993 0.991 0.996 0.991

Significance F 2E-10 5E-5 1.2E-16 2E-14 1.4E-9

Prediction accuracy of machine learning model. We next

show the prediction accuracy of the machine learning model. Given

a process group and the amount of resources allocated to the group,

the model predicts the W-IPC of the group. Note that the W-IPC

may vary over time even for a fixed resource allocation because it

is also affected by the game workload. Here we predict an average

W-IPC under various game workloads. The training samples are

generated as follows. For a specific game, we randomly generated

1000 partitioning plans. For each generated partitioning plan, we

run the game on the GA server with the plan for a period of 10

minutes and measure the average IPC over the running period

for each process. We compute the W-IPC and generate a training

sample for each process group.

Among the samples generated, we use 70% of them (randomly

selected) to train the model and the remaining 30% for testing. We

applied DTR (Decision Tree Regression), GBRT (Gradient Boosted

Regression Trees ), RF (Random Forest) and SVR (Support Vector

Regression) machine learning algorithms to build themachine learn-

ing model. Figure 4 presents the mean prediction error produced

by different machine learning algorithms for the tested games. The

prediction error is defined as (�WIPC -WIPC)/WIPC , whereWIPC

is the actually measured value and �WIPC is the predicted value of

WIPC . As can be seen, the highest prediction accuracy is over 96%

for all games, indicating that the model is able to predict the W-IPC

with high precision.

Overall efficiency of the performancemodel. Finally, we show

the overall efficiency of the performance model (the machine learn-

ing model plus the linear regression) for response delay estimation.

We randomly generate 100 partitioning plans for each game, and

run the game under each partitioning plan for a period of 5 minutes.

We measure the response delay in every 20 seconds and compute

the average response delay in the testing period, which we regard

as the real response delay for the partitioning plan. Meanwhile, we

use the machine learning model to predict the W-IPCs of process

groups for the partitioning plan, based on which we estimate a

response delay according to (1). Denote by d the real response delay

and dp the predicted response delay for an arbitrary partitioning

plan.We define |d−dp |/d as the prediction error for the partitioning

plan. We observe that the average prediction error is around 11% for

all the games (the details are not shown due to space limitation). As

will be shown later, using the groups produced under the guide of

the performance model, Themis achieves significant response delay

reduction compared to other partitioning policies, which indirectly

confirms the efficiency of the performance model.

Based on the performancemodel, we run Algorithm 1 to compute

the process groups for each game. Table 2 summarizes the grouping

results. It can be seen that the groups generated for each game may

be different, because the workloads of games are different.

4.3 Online Partitioning

Based on the grouping results, we build the Q-Learning model for

each game. In the implementation, we quantize the values of W-

IPC into 10 levels. For both CPU cores and LLC, at most 2 units

of the resource can be reassigned in a single step. The models are

trained using the approach discussed in Section 3.3.3. Each model is

trained for 20 episodes and each episode runs for 30000 time steps

(5 seconds for each time step). To test the model, we run each game

for another 30 minutes after training. During the testing period,

we measure the real time IPCs of processes every 10 seconds, and

compute the joint action according to Algorithm 2 based on the

Q-Tables. We perform the actions and also update the Q-Tables

based on the rewards (i.e., W-IPCs) observed.

Benefits over fully-sharing and complete-isolation. We first

show the benefits of Themis over the fully-sharing and complete-

isolation policies. For fair comparison, we record the player’s opera-

tions during the test of Themis. Then, we run each game in a replay

mode (i.e., reissue the recorded operations) with fully-sharing pol-

icy and complete-isolation policy (the complete-isolation plan that

incurs the minimum average response delay among all possible

complete-isolation plans, obtained by brute-force search) respec-

tively. Figure 5 presents the response delays with different policies

during the testing period. Figure 6 summarizes the delay reduction

ratios of Themis compared to the other two policies. The delay

reduction ratio over fully-sharing (or complete-isolation) is defined

as (d − dt )/d , where d and dt denote the response delays with

fully-sharing (or complete-isolation) and Themis respectively.

We have several observations from the results. First, complete-

isolation performs worst among the three policies for all the games.

This is consistent with our previous analysis that complete-isolation

is not effective due to coarse partitioning granularity. The response

delays of Dota2 and Valley with complete-isolation are much higher

than those of other games. We attribute this to Dota2 and Valley

being more resource intensive compared to other games, whose

performance tends to be more influenced by improper resource

allocation. Second, Themis incurs the minimum response delay

among the three policies. It results in an average reduction ratio

from 17% to 36% compared to fully-sharing policy, and an average

reduction ratio from 33% to 68% compared to complete-isolation,

which confirms the effectiveness of Themis. Third, the benefit of

Themis for Supertux2 is less significant compared to other games.

We attribute this to Supertux2 being a relative light-weight 2D

game which does not require too much resource, so the impact of

resource contention is insignificant.
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(b) Nexuiz
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(c) Alienarena
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(d) Supertux2
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Figure 5: Response delays of games under different partitioning policies (straight solid lines represent the mean)
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Figure 6: Response delay reduction ra-

tios
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Figure 7: Benefits of Themis over static

partitioning
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Figure 8: Impact of resource capacity

Table 2: Process groups produced for each game

Games Process Groups

Dota2 {dota2, rtsp}, {video}, {server, comzip, xorg, audio}

Nexuiz {nexuiz}, {server}, {video, rtsp, xorg, audio, comzip}

Alienarena {alienarena, video, rtsp, audio}, {server, xorg}, {comzip}

Supertux2 {supertux2}, {rtsp, xorg}, {video, server, audio, comzip}

Valley {valley, server, rtsp, audio}, {video}, {xorg, comzip}

Benefits over static partitioning. We also compare Themis

with static partitioning strategy. The static partitioning plan is com-

puted as follows: we partition the resources (CPU cores and LLC)

among the process groups (shown in Table 2) such that the response

delay is minimized, where the response delay of a specific parti-

tion is estimated using the performance model (machine learning

plus linear regression). Figure 7 shows the ratios of response delay

reduction of Themis compared to the static partitioning plan. As

can be seen, Themis reduces the response delay by 11% to 26% for

the games. This reduced effectiveness in the results is due to static

partitioning not adapting to dynamic game workload, while Themis

is able to adjust the resource partition as game workload changes.

Impact of resource capacity. Finally, we evaluate how Themis

performs for different resource capacities of the server. We use

cgroups to control the total amount of resources that the processes

can use. We test four different resource capacity settings ranging

from small to large, and rerun the preceding experiments under

each setting. Figure 8 presents the benefits of Themis over fully-

sharing for Alienarena and Supertux2 under different settings (other

games have similar results). As can be seen, Themis achieves the

maximum benefit when the resource capacity is (6, 8) for both

the two games. This is because for large resource capacity (e.g.,

(8, 10)), the influence of resource contention is less significant, and

thus the effect of resource partitioning is not so big. For small

resource capacity (e.g., (2, 4)), each unit of resource would be shared

by multiple processes, so resource partitioning is more like fully-

sharing. In the extreme case where we have only one CPU core and

1 MB LLC, resource partitioning will be equivalent to fully-sharing.

5 CONCLUSIONS

In this work, we have presented Themis, a novel methodology that

enables efficient and adaptive resource partitioning for response

delay reduction in cloud gaming. Themis divides the processes into

groups and partition resources among groups. To find the optimal

grouping plan, Themis leverages machine learning technology to

predict the response delay of any given partitioning plan. To deal

with dynamic workload changes, Themis leverages reinforcement

learning technology to implement adaptive online partitioning. We

validate Themis in a real cloud gaming environment using real

games. The experimental results show that Themis reduces the

response delay by up to 36% compared to fully-sharing, which

significantly outperforms the alternative partitioning policies.

There are several interesting directions for future work. First,

Themis needs to build a separate Q-Learning model for each game.

We wish to build a general model which can be applied to any

games. Second, this paper assumes that each cloud server only

runs one game, which may result in resource waste. We would like

to consider the scenario where multiple games are colocated on

one cloud server. Third, we validate Themis on only one type of

cloud gaming system. We would like to evaluate Themis on more

platforms.
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