
QKnober: A Knob-based Fairness-Efficiency Scheduler
for Cloud Computing with QoS Guarantees

Shanjiang Tang1�, Ce Yu1�, Chao Sun1, Jian Xiao1, Yinglong Li2

School of Computer Science & Technology, Tianjin University1

School of Computer Science & Technology, Zhejiang University of Technology2

{tashj,yuce,sch,xiaojian}@tju.edu.cn, liyinglong@ruc.edu.cn

Abstract. Fairness and efficiency are generally two important metrics for users
in modern cloud computing. Due to the heterogeneous resource demands of CPU
and memory for users’ tasks, it cannot achieve the strict 100% fairness and the
maximum efficiency at the same time. Quantitatively showing the fairness degra-
dation/loss becomes essentially important in the design of any fairness-efficiency
tradeoff scheduler. Existing fairness-efficiency schedulers (e.g., Tetris) can bal-
ance such a tradeoff elastically by relaxing fairness constraint for improved effi-
ciency using the knob. However, their approaches are insensitive to the fairness
degradation under different knobs, which makes several drawbacks. First, it can-
not quantitatively tell how much relaxed fairness can be guaranteed (i.e., QoS
of fairness guarantee) given a knob value. Second, it fails to meet several es-
sential properties such as sharing incentive. To address these issues, we propose a
new fairness-efficiency scheduler, QKnober, to balance the fairness and efficiency
elastically and flexibly using a tunable fairness knob. QKnober is a fairness-
sensitive scheduler that can maximize the system efficiency while guaranteeing
the θ-soft fairness by modeling the whole allocation as a combination of fairness-
purpose allocation and efficiency-purpose allocation. Moreover, QKnober satis-
fies fairness properties of sharing incentive, envy-freeness and pareto efficiency
given a proper knob. We have implemented QKnober in YARN and evaluated it
using real experiments. The results show that QKnober can achieve good perfor-
mance and fairness.

1 Introduction

In the current era of ‘big data’, it has become typical to take existing large-scale data
computing frameworks such as MapReduce [8] and Spark [26] for big data analytics in
a cloud system consisting of many machines [16]. At any time, there are many users
running their data-parallel applications on the cloud. Typically, users’ submitted jobs
often contain many tasks and their tasks tend to have heterogeneous resource require-
ments towards different resource types (e.g., CPU and memory). For example, tasks of
machine learning applications are CPU-intensive [10], whereas hash join and sort tasks
of database queries are memory-intensive [6].

Fairness and efficiency are generally two critical metrics for both users and resource
providers in cloud computing [12]. Being aware of heterogeneous resource demands
of users’ tasks, there is a need to consider multi-resource fairness that takes multiple
resource types into account. By leveraging the game-theoretic definition, a robust multi-
resource fair allocation is the one in which

– all users in the shared system should perform no worse than that under an exclu-
sively non-sharing partition of the system. (Sharing incentive)

– no user envies the allocations of any other users. (Envy freeness)
– no user can increase its resource allocation with harming at least one other user.

(Pareto efficiency)

Dominant Resource Fairness (DRF) is one of the most well-known multi-resource
fair allocation policies [9] with the above three game-theoretic properties. It introduces
the concept of dominant resource, referred to as the resource that is heavily used by
a user. The fairness is achieved by equalizing the share of each user’s dominant re-
source. Although there have since been a number of extensions [13,23], they draw little
attention to the influence on system efficiency. Recent studies have shown that there
is a tradeoff between fairness and efficiency in multi-resource allocation [10,11,22].
Guaranteeing the strict 100% fairness across users would produce inefficient resource
allocations. Conversely, seeking for high system efficiency is often at the cost of com-
promised fairness. DRF and its extensions tend to over constrain the system for high
fairness guarantee, resulting in resource allocations with low system efficiency.

Many existing fairness-efficiency schedulers seek to relax fairness (i.e., allowing
some degree of unfairness) for efficiency improvement by employing knob-based heuris-
tic algorithms [7,10,17,24]. Quantifying the fairness degradation/loss is essentially im-
portant for users in order to properly configure the knob value. Tetris [10] is the state-
of-the-art knob-based tradeoff scheduler that allows users to balance fairness and ef-
ficiency flexibly by tuning the fairness knob in cloud computing. However, due to its
insensitiveness of fairness degradation under different knobs, there are some shortcom-
ings (See Section 3): 1). it cannot quantitatively show users how much relaxed fairness
can be guaranteed given a fairness knob (i.e., QoS of fairness guarantee); 2). it fails to
satisfy several fairness properties such as sharing incentive.

In this paper, we develop a new fairness-efficiency scheduler, QKnober, to allow
users to balance fairness and efficiency flexibly with a knob factor ρ P r0, 1s. Unlike
the previous schedulers [7,10,24], QKnober is a fairness-sensitive scheduler that works
on the relaxed fairness (i.e., soft fairness in Section 4.1), which refers to the maximum
difference between the normalized shares of any two users. It is achieved by model-
ing the multi-resource allocation as a combination of fairness-purpose allocation and
efficiency-purpose allocation (Section 4.1). Given a knob ρ, QKnober first performs the
fairness-purpose allocation for the QoS of θ-soft fairness guarantee (See Theorem 1 in
Section 4.1) and then does the efficiency-purpose allocation for maximizing the system
efficiency. We show that with a proper knob configuration, QKnober can ensure that
each user in the shared system can get at least the amount of resources as that under
the exclusively non-sharing partition of the system. It also can guarantee that every user
prefers to its own allocation and no user envies the allocations of any other users. Fur-
thermore, QKnober keeps that the system is fully utilized by ensuring that no user can
get more resource allocation without decreasing the allocation of at least one user.

We have implemented QKnober in YARN [20]. We evaluated QKnober with testbed
workloads in a Amazon EC2 cluster consisting of 60 nodes. Our results show that
QKnober strikes a flexible balance between fairness and efficiency. There can be up
to 57% performance improvement as we decrease the knob factor from one to zero for

QKnober. Moreover, it outperforms its alternatives DRF and Tetris by 31.2% and 4.5%
on average, respectively. Finally, we show that the scheduling overhead of QKnober is
minor (0.42 ms).

2 Desirable Allocation Properties

From the economic point of view, a good fair allocation policy in cloud computing sys-
tem should provide the following essential game theoretic properties, including sharing
incentive, envy-freeness, and pareto efficiency [9].

Sharing Incentive (SI): Resource sharing is an essential and effective approach
to improve the system utilization and efficiency [15]. A good allocation policy should
satisfy sharing incentive (SI) such that each user in the system performs at least as good
as it would be under a statically equal split of the resources of the computing system.
Otherwise, users would be more likely to divide the computing system equally and
exclusively use their own partitions without sharing. Thus, to enable resource sharing
possible and sustainable, it is a must requirement to satisfy sharing incentive [18].

Formally, let Ui � xui,1, � � �, ui,my be the resource allocation vector for user i. Let
NipUiq denote the number of tasks scheduled for user i under the resource allocation
vector Ui. An allocation policy is sharing incentive if it satisfies the following condition
for each user i P r1, ns,

NipUiq ¥ NipUiq, p1q

where Ui � xui,1, � � �, ui,my represents the resource allocation vector for user i under
the exclusively non-sharing partition of the computing system.

Envy-freeness (EF): An allocation is envy-freeness (EF) if no user envies the al-
location of other users associated with a desire to receive that same allocation. That
is, every user prefers its own allocation to that of any other user. To provide EF, there
is a need to ensure that every user cannot have more tasks scheduled by switching its
allocation with any other user.

Given the resource allocation vector Ui for user i, an allocation policy satisfies EF
if

NipUiq ¥ NipUjq, p2q
for any two users i, j P r1, ns.

Pareto Efficiency (PE): PE is another critical property that should be satisfied by
a fair resource allocation policy [19]. It is essential for high resource utilization and
efficiency. An allocation policy is PE if it is not possible for a user to get more tasks
scheduled without decreasing the number of running tasks of at least one other user.

Let U � xU1, � � �,Uny be the resulting allocation for all users produced by a fair
allocation policy. The allocation U is PE if it does not exist any feasible allocation Ŭ
satisfying the following two conditions at the same time, i.e., 1). @i P r1, ns, NipUiq ¤
NipŬiq; 2). Dj P r1, ns, NjpUjq NjpŬjq.

3 Background and Motivation

In this section, we motivate our work by reviewing and analyzing the limitations of
existing schedulers.

Fairness vs. System Efficiency. In multi-resource allocation, the fairness and sys-
tem utilization/efficiency highly depend on the workload characteristic and allocation
ratio of the resource. If the users with memory-intensive workloads have small alloca-
tion ratio, it may result in low utilization for the memory resource due to insufficient
requests. Similar case does also hold for other resources (e.g., CPU). On the contrary,
maintaining high resource utilization for all resources often generate the allocations in
a manner that starves some users, resulting in unfairness problem for users in the al-
location. We next demonstrate these problems using examples of Dominant Resource
Fairness (DRF) [9], which is a popular multi-resource allocation policy with many at-
tractive merits (e.g., sharing incentive, envy-freeness and pareto-efficiency).

Example 1. Consider a computing system consisting of 200 CPUs and 1000 GB mem-
ory in total. It is shared by two users A and B equally with the task requirement of x1
CPU, 6 GB y for A and x1 CPU, 2 GB y for B, respectively.

91 CPUs
546 GB

218 GB
109 CPUs

CPU Memory

B: <1 CPU, 2GB>A : <1 CPU, 6GB>

0%

50%

100%

(200 CPUs total) (1000 GB total)

76%

150 CPUs
900 GB

100 GB
50 CPUs

CPU Memory
0%

50%

100%

(200 CPUs total) (1000 GB total)

(a) DRF allocation.

91 CPUs
546 GB

218 GB
109 CPUs

CPU Memory

B: <1 CPU, 2GB>A : <1 CPU, 6GB>

0%

50%

100%

(200 CPUs total) (1000 GB total)

76%

150 CPUs
900 GB

100 GB
50 CPUs

CPU Memory
0%

50%

100%

(200 CPUs total) (1000 GB total)

(b) Pure efficiency allocation.

Fig. 1: Allocation results with different policies for Example 1. The memory utilization is only
76% for DRF, whereas we can achieve 100% utilization for CPU and memory with pure effi-
ciency policy.

The dominant resource for user A is memory because each task of A consumes
1{200 of the total CPUs and 6{1000 of the total memory, while the dominant resource
for B is CPU. DRF achieves the fairness by equalizing the dominant resource shares
(i.e., 546{1000 � 109{200) for A and B, with the resulting allocation illustrated in
Figure 1 (a). The memory utilization is only p546�218q

1000 � 76%. This is because DRF
does not consider resource efficiency when making allocation decision. It only focuses
on achieving the fairness among users, but does not deal with the impact of such adjust-
ments on the system efficiency.

In fact, both CPU and memory resources in Example 1 can be fully utilized if the
scheduler allocates x150 CPUs, 900 GBy to A and x50 CPUs, 100 GBy to B, as il-
lustrated in Figure 1 (b). However, the dominant resource shares of A and B are no
longer the same (i.e., 900

1000 ¡ 50
200), being unfair for B. It implies that there tends to be

a tradeoff between fairness and system efficiency in resource allocation.

Flaws of the State-of-the-Art Tradeoff Scheduler for Cloud Computing. To bal-
ance the tradeoff between fairness and efficiency elastically and flexibly, many fairness-
efficiency schedulers [10,17,22,24] take knob-based heuristics, which is promised as
an effective approach in multi-resource allocation [10]. Wang et al. [22,24] studied
the fairness-efficiency tradeoff in networking system by considering network packet
processing and data transfer flow across different machines. EMRF [17] is a fairness-
efficiency tradeoff scheduler for Coupled CPU-GPU architectures. In contrast, for cloud
computing, Tetris [10] is the state-of-the-art knob-based scheduler. Specifically, in each
resource allocation, it first sorts all tasks according to the DRF. Then, it searches the best
task for efficiency among the runnable tasks belonging to the first p1 � fq tasks in the
sorted list, where f P r0, 1s is a knob provided by users in advance. It computes the
alignment score, defined as the weighted dot product between the vector of machine’s
available resources and the task’s peak resource demand, to the machine for each task,
and the best task is picked with the largest alignment score. However, there are several
flaws for Tetris as follows:

166 CPUs
996 GB

4 GB4 GB

2 CPUs2 CPUs

CPU Memory

B: <1 CPU, 2GB>

A : <1 CPU, 6GB>

0%

50%

100%

(200 CPUs total) (1000 GB total)

84%

Fig. 2: The resulting allocation with Tetris for Example 1 when the knob f satisfies 0 ¤ f 0.5.
In this case, different value of knobs does not work for fairness improvement, indicating that
Tetris is insensitive to fairness under different knobs.

First, although Tetris allows users to relax fairness for efficiency improvement by
tuning the fairness knob, it is insensitive to fairness degradation for different knobs
during the allocation. Particularly, it cannot quantitatively show users how much re-
laxed fairness (i.e., soft fairness in Section 4.1) can be guaranteed (i.e., QoS of fairness
guarantee) given a knob configuration. To explain it, let’s revisit Example 1 by assum-
ing that at each allocation, there are 500 tasks for A and B, respectively. We can see
that the task (share: x 1

200 ,
6

1000y) of A is more beneficial to the system utilization than
that (share: x 1

200 ,
2

1000y) of B according to the resource type difference of their tasks
(A : | 1

200 � 6
1000 | �

1
1000 , B : | 1

200 � 2
1000 | �

3
1000). At each allocation, Tetris first

sorts all 1000 tasks of A and B according to DRF policy. Then, it tries to pick up a
task from the first p1 � fq tasks in the sorted list that is most beneficial to the system
utilization. When 0 ¤ f 0.5, the task range that Tetris can choose at the second
stage is 500 p1 � fq � 1000 ¤ 1000. In this case, Tetris always picks up preferred
tasks from A rather than B until it cannot fulfilled, resulting in allocation as shown in
Figure 2. It shows that the knob of Tetris does not work for fairness improvement when
0 ¤ f 0.5, i.e., Tetris is insensitive to fairness degradation under different knobs,

implying that it cannot tell users how much relaxed fairness can be guaranteed under a
knob setting. However, in practice, the QoS guarantee of different levels of fairness is
very important for users under different knobs configurations.

Second, Tetris violates the sharing incentive property (See definition in Section 2).
Let’s take Example 1 as a counterexample to demonstrate it. Provided that f � 0,
Tetris is purely for system efficiency optimization by picking the best task for efficiency
among all tasks every time, resulting in the allocation as illustrated in Figure 1 (b). We
can see that,B receives less resources (i.e., fewer tasks scheduled) in the sharing system
than that (i.e., x100 CPUs, 200 GBy) of exclusively using its partition of the system
without sharing, violating the sharing incentive property.

Motivated by these, we seek to explore a new fairness-efficiency allocation policy
that guarantees the soft fairness and satisfies all the desirable properties listed in Sec-
tion 2.

4 Allocation Model and Scheduling Policy

In this section, we model the multi-resource allocation in cloud computing based on
DRF, and propose a proposed fairness-efficiency scheduling policy called QKnober.

4.1 Multi-Resource Allocation Model

1) Basic Setting. We start by defining some terms used in our model. Suppose that
the computing system consists of m resource types (e.g., CPU, memory, disk) with the
capacity of R � xr1, � � �, rmy shared by n users, where ri denotes the total amount
of resource i. For each user i, let wi denote its share weight in the shared computing
system and Di � xdi,1, � � �, di,my be its resource demand vector, where di,j denotes
the amount of resource j required by a task of user i. We assume that each user has an
infinite number of tasks to be scheduled, and all its tasks are divisible and with the same
resource demand. We later discuss how these assumptions can be relaxed for practical
usage in Section 5.

Given the allocation matrix U � xU1, � � �,Uny for all users, it is a feasible allocation
if it satisfies that, ņ

i�1

ui,k ¤ rk, @k P r1,ms, p3q

The maximum number of tasks NipUiq (possible fractional) that user i can schedule
under the resource allocation vector Ui is,

NipUiq � min
1¤k¤m

tui,k{di,ku, p4q

2) Allocation Model. An efficient resource allocation should never let a user get
more resources than it actually needs in the computing system. We call such an alloca-
tion non-wasteful. Formally, an allocation Ui is non-wasteful if and only if it satisfies
the following condition:

Ui � NipUiq � Di, p5q

It is worthy mentioning that we can always convert an allocation to the non-wasteful al-
location by transferring the redundant/unused resources of each user to other potential
users without decreasing the number of tasks scheduled for that user. Without loss of
generality, in the following discussions, we limit our focus on the non-wasteful alloca-
tion.

Scheduling tasks to the computing system is analogous to the multi-dimensional
knapsack problem [5] by viewing the computing system as a knapsack and each task as
a knapsack item. The weight of an item (or task) from user i is Di. In this work, since we
are interested in the efficiency of resource allocation, the value of an item (or task) is
the sum of the amount of different typed resources it required (normalized to the system
capacity), i.e.,

°m
k�1 di,k{rk. Let εipUiq be the efficiency (i.e, knapsack cost value) of

a feasible resource allocation Ui contributed by user i in the system. According to the
knapsack problem, we have

εipUiq � NipUiq �
m̧

k�1

di,k{rk, p6q

for a single user i. Then the efficiency εpUq of a feasible allocation U for all users in the
system can be calculated as

εpUq �
ņ

i�1

εipUiq �
ņ

i�1

tNipUiq �
m̧

k�1

di,k{rku. p7q

Let si denote the share of dominant resource for user i in the computing system. Ac-
cording to Formula (5), we have

si � max
1¤k¤m

ui,k{rk � NipUiq � max
1¤k¤m

di,k{rk. p8q

Formula (8) indicates that there is a proportional relationship between a user’s dominant
resource share and the number of tasks scheduled. The Dominant Resource Fairness
(DRF) achieves the fairness by guaranteeing that the (weighted) shares of dominant
resource across users are the same, i.e.,

s1
w1

�
s2
w2

� � � � �
sn
wn

. p9q

Let smaxi and NipUmaxi q represent the maximum share of dominant resource and the
corresponding number of tasks scheduled for user i under the DRF allocation. The
DRF allocation can be viewed as progressive filling when all tasks are divisible [9].
The allocation terminates when at least one typed resource is fulfilled. In that case, we
are unable to increase each user’s dominant resource. That is, the dominant resource
share and the corresponding number of tasks scheduled are maximized for each user
under DRF. It thus holds,

max
1¤k¤m

t
ņ

i�1

ui,k

rk
u � max

1¤k¤m
t

ņ

i�1

NipUiq � di,k
rk

u � 1. p10q

By computing NipUiq with Formula (8) (9) (10), we can derive NipUmaxi q as follows:

NipUmaxi q � wi{p max
1¤k¤m

t
di,k
rk

u � max
1¤k¤m

t
1

rk
�
ņ

j�1

wj � dj,k

max1¤k1¤mt
d
j,k

1

r
k
1
u
uq.

According to Formula (8), we can get smaxi as

smax
i � wi{ max

1¤k¤m
t

1

rk
�

ņ

j�1

wj � dj,k

max1¤k
1
¤mt

d
j,k

1

r
k
1
u
u. p11q

4.2 QKnober

Recall that the model in Section 4.1 is a strict 100% fairness allocation model. By
altering the model slightly, we can develop a knob-based fairness-efficiency scheduler,
QKnober, to allows users to balance fairness and system efficiency flexibly using a
fairness knob.

The basic idea is as follows. Instead of strictly seeking for 100% fairness as DRF
does, we can compromise fairness for increased allocation efficiency by tolerating some
degree of fairness loss. Particularly, we classify the fairness into two types: hard fair-
ness and soft fairness. The hard fairness refers to that the allocation shares of all users
should be the same (i.e., Formula (9) should be guaranteed). In contrast, the soft fair-
ness tolerates some degree (measured by θ) of unfairness across users. Formally, we
define θ-soft fairness by changing Formula (9) as follows:

|
si
wi

�
sj
wj

| ¤ θ,@i, j P r1, ns. p12q

Typically, DRF focuses on the hard fairness across users, limiting the allocation effi-
ciency improvement. In contrast, QKnober, as a fairness-efficiency tradeoff scheduling
policy, is interested in the soft fairness, which can leave some room for efficiency im-
provement. In the following, we describe our design of QKnober policy.

1) QKnober Design. The fairness-efficiency tradeoff allocation can be considered
as an integration of two stages allocations: fairness-purpose allocation (i.e., purely for
fairness optimization) and efficiency-purpose allocation (i.e., purely for efficiency op-
timization). For QKnober, it first does the fairness-purpose allocation with DRF to
achieve the soft fairness guarantee. Next it turns to the efficiency-purpose allocation
for efficiency maximization. Particularly, it offers users a knob ρ P r0, 1s to control
and balance the two stages allocations flexibly. Let s̄i and s

1

i be the dominant resource
shares of the resulting allocation for user i in the stage of fairness-purpose allocation
and efficiency-purpose allocation, respectively. By combining the allocations of two
stages, we get the final dominant resource share si for each user i as follows:

si � s̄i � s
1

i. p13q

Fairness-purpose Allocation. In the stage of fairness-purpose allocation, instead of
guaranteeing the hard (dominant resource) fairness of smaxi for each user i, QKnober
seeks to guarantee the soft fairness of smaxi � ρ (i.e., s̄i � smaxi � ρ). According to
Formula (13), we have

si � smax
i � ρ� s

1

i. p14q

It leaves R
1

� xr
1

1, � � �, r
1

my idle resources for efficiency-purpose allocation, where r
1

i �

ri �
°n
j�1

smaxj �ρ�dj,i
max1¤k¤m dj,k{rk

according to Formula (8). The small value of ρ favors the
efficiency optimization. In contrast, the large value of ρ can make the fairness-purpose
allocation dominant, benefiting more for fairness optimization. Typically, QKnober re-
duces to DRF when ρ � 1.

Theorem 1. QKnober is a θ-soft fairness policy where

θ � max
1¤i¤n

t
max1¤k¤n di,k{rk

wi � max1¤k¤mt
di,k

rk�
°n
j�1

smax
j

�ρ�dj,k

max
1¤k

1
¤m

d
j,k

1
{r
k
1

u
u.

The proof of Theorem 1 can be found in Appendix A of Technique Report [14].
Efficiency-purpose Allocation. Theorem 1 shows that the fairness-purpose alloca-

tion of QKnober can guarantee θ-soft fairness across users. In the second stage, we
perform the efficiency-purpose allocation with the remaining idle resource vector R

1

so
that its overall efficiency is maximized.

Formally, our work is to search a feasible allocation U
1

such that Formula (7) is max-
imized. Particularly, for any two users i and j with the same normalized task demands
(i.e., Di

|Di| �
Dj
|Dj |), exchanging resources between them has no impact on efficiency

but could affect fairness. In order for better fairness, we still keep Formula (9) hold-
ing for any two users satisfying Di

|Di| �
Dj
|Dj | by adding Formula (19). We can model the

efficiency-purpose allocation as a linear programming optimization problem as follows:

Maximize εpU
1

q �
ņ

i�1

tNipU
1

iq �
m̧

k�1

di,k{rku. p15q
subject to:

s
1

i{wi � s
1

j{wj . pDi{|Di| � Dj{|Dj |,@i, j P r1, nsq. p16q
and ņ

i�1

tdi,k �NipU
1

iqu ¤ rk �
ņ

j�1

smax
j � ρ � dj,k

max1¤k
1
¤m dj,k1 {r

k
1

. p17q

for @k P r1,ms. By resolving the linear program, the optimal (maximum) value of
εpU

1

q can be obtained. Finally, the total system efficiency εpUq can be computed by
combining the allocation efficiencies in the two allocation phases.

To summarize, we have shown that QKnober is a knob-based fairness-efficiency
scheduling policy that can maximize the system efficiency while guaranteeing the θ-soft
fairness with the provided knob ρ. Particularly, different configurations of the fairness
knob ρ can result in different soft fairness guarantees for QKnober (i..e, QKnober is
sensitive to the fairness degradation under different knobs).

2) Properties Analysis of QKnober. We give an analysis of the three essential prop-
erties defined in Section 2 for QKnober.

Theorem 2. (Sharing Incentive): The QKnober allocation policy is sharing incentive
when

ρ ¥ p max
1¤k¤m

t
1

rk
�
ņ

j�1

wj � dj,k

max1¤k1¤mt
d
j,k

1

r
k
1
u
uq{

ņ

j�1

wj .

The proof of Theorem 2 can be found in Appendix B of Technique Report [14].
By properly configuring the knob ρ according to Theorem 2, QKnober can guaran-

tee that each user can schedule at least as the number of tasks as that under exclusively
using its own partition of the system resources with no sharing. Next, we show that
QKnober is envy-freeness, namely, no user envies the allocation results of any other
users under its allocation.

Theorem 3. (Envy Freeness): Every user under the QKnober allocation prefers its
own allocation to others.

The proof of Theorem 3 can be found in Appendix C of Technique Report [14].
We next show that QKnober produces an efficient allocation under which no user

can increase its allocation without decreasing that of other users.

Theorem 4. (Pareto Efficiency): The QKnober allocation policy is pareto efficient.

The proof of Theorem 4 is given in Appendix D of Technique Report [14].

5 Implementation of QKnober

In our former discussions of QKnober policy, there are several key assumptions that
may not be the case in a real-world computing system. For practical application of
QKnober, we need to relax these assumptions by considering complicated and chal-
lenging factors for real applications and computing system. In the following, we high-
light these challenges and then give our solutions to address them in YARN. Detailed
implementation of QKnober can be found in Appendix E of Technique Report [14].

C1: Online Users with a Finite Number of Tasks. In the previous discussions,
it has assumed that there are an infinite number of tasks for each user at any time.
However, in practice, the tasks of users are arriving over time, implying that the number
of tasks per user is generally finite at a time.

Iterative QKnober Approach. We can address this problem through a small modifi-
cation on QKnober as follows. First, we classify all users into two kinds: active users
(i.e., with pending tasks) and inactive users (i.e., with no pending tasks). The system
maintains the list of active users, where an inactive user becomes active whenever there
arrives a pending task of it. The system performs QKnober allocation iteratively. In each
allocation round, the system uses progressive filling approach to allocates resources to
active users based on QKnober until one of them has all its pending tasks scheduled.
After that, the active user becomes inactive and will not be considered in the following
allocation. The system then starts a new allocation round and repeats the above allo-
cation procedure until there is no active user or no sufficient idle resources that can be
allocated.

C2: Heterogeneous and Indivisible Tasks. In QKnober allocation model, we have
assumed that tasks are divisible and all the tasks of a user are homogeneous in their
resource demands. However, in the real world, it may not be the case. First, the tasks
demands of a user are most likely to be diverse (e.g., different demands between map
and reduce tasks of a user’s MapReduce job). Second, fractional tasks are often not
supported and accepted by existing systems (e.g., MapReduce, Spark).

In QKnober, whether to perform fairness-purpose allocation or to do efficient-purpose
allocation is determined by the maximum dominant resource share smaxi and knob fac-
tor ρ (See Section 4.1). When the demands of all the tasks of a user are homogeneous,
the maximum dominant resource share is fixed and can be estimated by Formula (11)
for each user. However, in the heterogeneous case, it varies dynamically with the run-
ning and new arriving tasks. Moreover, estimating the maximum dominant resource
share in such case is NP-hard.

Fitness-based Approximation Approach. We propose a heuristic approach based on
the First-Fit algorithm [4] as follows. The algorithm first estimates the current average
resource demand of tasks based on its running and pending tasks for each user. Then,
it computes the maximum dominant resource share for each user by using its current
average resource demand of tasks with Formula (11). However, in practice, there could
be a large number of pending tasks at runtime. It indicates that picking all pending
tasks might not reflect the current average resource demand of a user. To address it, we
instead only consider a certain number of tasks that just fill the remaining idle space
of the cloud system. We achieve and update it for current average resource demand
by using the First-Fit algorithm dynamically. That is, we count the pending tasks in

the queue order until the cloud system can be filled. Then the current average resource
demand can be estimated based on the running tasks and those counted pending tasks.

C3: Heterogeneous and Distributed Computing System. The QKnober alloca-
tion model assumes the computing system as a single super-server, which however may
not always be the case. A real-world computing system (e.g., Google production cluster,
Amazon EC2) generally consists of many heterogeneous servers with different resource
capacities connected via a high-speed network. In this case, scheduling tasks efficiently
to the computing system is analogous to the NP-hard multi-dimensional knapsack prob-
lem [5] mentioned above.

Affinity-based Task Scheduling Approach. We develop a heuristic approach for
efficiency-purpose allocation by defining affinity of a task relative to the system. That
is, when there are some idle resources on a server, we first filter out the set of pend-
ing tasks that can be accommodated by that server. We then compute the affinity score
for each of these tasks, as the dot product between the task’s resource demand and the
vector of that server’s idle resources. The one with the highest affinity score among all
these pending tasks is chosen for scheduling.

6 Experimental Evaluation

6.1 Experimental Setup

Hadoop Cluster. We have implemented QKnober in the version of YARN-2.4.0. We
deploy the YARN framework in an Amazon EC2 cluster consisting of 60 Amazon EC2
t2.medium instances each with 2 virtual cores and 4 GB memory. We configure 1 in-
stance as master, and the remaining 59 instances as slaves, each of which is configured
with 2 virtual cores, 4 GB¡.

Workloads. We run four data-parallel workloads: 1) Facebook Workload: It is based
on the distribution of jobs sizes and inter-arrival time at Facebook provided by Zaharia
et. al. [25]. The workload consists of 100 jobs. It is a mix of large number of small-
sized jobs (1 � 15 tasks) and small number of large-sized jobs (e.g., 800 tasks1); 2)
Purdue Workload: Seven benchmarks (e.g., WordCount, TeraSort, Grep, InvertedIn-
dex, HistogramMovices, Sequence-Count, Self-join) are randomly chosen from Purdue
MapReduce Benchmarks Suite [3], with 100G wikipedia data [2] as input data; 3) Spark
Workload: It is a combination of six algorithms (e.g., PageRank, GaussianMixture, Bi-
naryClassification, Kmeans and Alternating Least Squares (ALS)) using provided ex-
ample benchmarks; 4) TPC-H Workload: To emulate continuous analytic query, such
as analysis of users’ behavior logs, we ran TPC-H benchmark queries on Hive [1]. 120
GB data are generated with provided data tools.

6.2 Testbed Experimental Results

This section first evaluates the fairness and efficiency of QKnober under different knob
values. Then, we compare the performance of QKnober with its alternatives DRF and
Tetris. Finally, the overhead evaluation of our QKnober system can be found in Ap-
pendix F of Technique Report [14].

1 We reduce the size of the largest jobs in [25] to have the workload fit our cluster size.

Fairness vs. Efficiency We show in Section 4.2 that QKnober is an elastic knob-based
tradeoff allocation policy that allows users to balance the fairness and efficiency flexi-
bly. In this section, we evaluate the impact of different knob values on the fairness and
efficiency with the mix of four workloads experimentally. Suppose that there are four
users A,B,C,D with the weighted shares of 1 : 2 : 3 : 4, each running Facebook, Pur-
due, Spark and TPC-H workloads on the YARN cluster, respectively. With QKnober
policy, we can then maximize the system efficiency while guaranteeing the soft fair-
ness. We define a term called soft fairness degree to quantify the soft fairness based
on Formula (12). The smaller soft fairness degree indicates the better fairness, and vice
versa.

0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5

0.9

1

1.1

1.2

1.3

1.4

1.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

So
ft

 F
ai

rn
es

s
D

e
gr

ee

Sp
ee

d
u

p

Knob

Makespan Soft Fairnesss

Fig. 3: The system efficiency and soft fairness for QKnober under different knobs, where the
speedup is computed over the case of knob ρ � 1.

Figure 3 presents the experimental results for QKnober policy under different knob
configurations. We compute speedup based on the case when the knob is 1.0. The larger
value indicates the better performance. It can be observed that there is a strong tradeoff
between fairness and efficiency. When the knob is small, it benefits the system efficiency
but harms the fairness. In contrast, when we increase the knob value, the fairness can
become better at the cost of system efficiency. It means that users can make their own
tradeoff preference over the fairness and efficiency by tuning the knob value.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Sp
e

ed
u

p

Knob

Static Partitioning DRF Tetris Qknober

(a) Speedup (over Static Partitioning).

0%

10%

20%

30%

40%

50%

60%

70%

CPU Memory

A
ve

ra
ge

 U
ti

liz
at

io
n

Resource Type

Static Partitioning DRF Tetris Qknober

(b) Average resource utilization.

Fig. 4: The comparison results of performance and resource utilization for Static Partitioning
(i.e., non-sharing case), DRF, Tetris and QKnober under different knob configurations, where the
speedup is computed over that of Static Partitioning.

Performance Evaluation Figure 4 (a) gives the performance results for Static Par-
titioning, DRF, Tetris and QKnober under different knob configurations, where the
speedup is computed over that of Static Partitioning. Particularly, we implement the
static partitioning policy by dividing the whole cluster resources (e.g., CPU and mem-
ory) into four isolated portions for four workloads according to their weights mentioned
in Section 6.2, and let them run exclusively without sharing. We have the following ob-
servations:

First, resource sharing (e.g., DRF, Tetris and QKnober) performs better than non-
sharing (e.g., Static Partitioning). For fairness-only policy DRF, there is about 10%
performance improvement over Static Partitioning. In contrast, for fairness-efficiency
policies like Tetris and QKnober, the improvement can be up to 57% as we decrease
the knob factor ρ from 1.0 to 0.0. The performance gain is mainly due to the resource
preemption of unused resources from overloaded users in the sharing case, making the
resource utilization higher than the non-sharing case. As illustrated in Figure 4 (b), the
resource utilizations for sharing policies (e.g., DRF, Tetris, QKnober) are higher than
that of static partitioning. For example, the average cpu utilizations for DRF, Tetris and
QKnober are 55%, 57% and 59%, respectively, higher than the static partitioning of
46%.

Second, QKnober outperforms other baseline allocation policies DRF and Tetris
in all knob configurations. Particularly, the reason why QKnober is better than DRF
even when the knob is 1.0 is due to its efficient affinity-based task placement in reduc-
ing the fragmentation of machines in multi-resource allocation, whereas DRF policy
does not have such a concern and simply views all machines as a single super ma-
chine. Moreover, both Tetris and QKnober are knob-based fairness-efficiency allocation
policies. The reason why QKnober performs better than Tetris is due to their different
approaches in the efficiency-purpose allocation. Tetris takes heuristic bin packing ap-
proach, whereas QKnober adopts the optimal linear programming method. It makes
QKnober achieve a higher resource utilization than Tetris as shown in Figure 4 (b).

7 Related Work

There is a general tradeoff between fairness and efficiency in multi-resource alloca-
tion, which has been studied by a lot of research works. Joe-Wong et al. [11] proposed
a unifying mathematical framework to capture the tradeoff between fairness and ef-
ficiency, which are specified by two parameters for a given multi-resource allocation
problem. Their work is just a theoretically analytic study and cannot be practically used
to real systems such as Hadoop directly. In contrast, our proposed knob-based policy
QKnober is practical. We have implemented it in Hadoop that allows users to balance
the fairness-efficiency tradeoff flexibly by tuning the knob in the range of r0, 1s. Wang
et al. [22,24] and Danna et al. [7] studied the fairness-efficiency tradeoff for packet pro-
cessing consuming both CPU and link bandwidth by proposing a GPS-like fluid model.
Tang et al. [17] considered Coupled CPU-GPU architecture by proposing a fairness-
efficiency scheduler called EMRF through extending DRF. Wang et al. [21] proposed a
bottleneck-aware allocation policy to balance fairness and efficiency for users in multi-
tiered storage consisting of SSD and HDD. In contrast, we consider the job scheduling

in cloud computing. Tetris [10] is the most closely related work to our work. It is a
fairness-efficiency scheduler for cloud computing that balances the performance and
fairness by leveraging alignment heuristics to efficiently pack tasks with heterogeneous
resource demands to servers. However, it cannot provide us a soft fairness guarantee
given a knob setting due to its unawareness of fairness degradation (Section 3) during its
fairness-efficiency scheduling. Moreover, it doesn’t satisfy sharing incentive property.
In comparison, our proposed knob-based policy QKnober is fairness-sensitive, which
maximizes the efficiency while guaranteeing the θ-soft fairness under a knob configu-
ration (See Theorem 1). Additionally, it satisfies sharing incentive, envy freeness and
pareto efficiency properties with a proper knob configuration.

8 Conclusion

This work studies the tradeoff between fairness and efficiency for users in a shared com-
puting system. Quantifying the fairness degradation/loss is essential for users to better
understand the tradeoff. We show that the knob-based approach is a promising solu-
tion to achieving the flexible and elastic tradeoff balance for users. However, existing
knob-based fairness-efficiency schedulers are not aware of fairness degradation during
its fairness-efficiency allocation, which either fail to guarantee the QoS of δ-fairness
or violate desired properties in Section 2. To address it, we develop a new knob-based
fairness-efficiency policy called QKnober. It is a fairness sensitive scheduler that allows
users to balance the fairness and efficiency with a knob while guaranteeing δ-soft fair-
ness. Typically, we provably show that it meets several desirable properties including
sharing incentive, envy freeness and pareto efficiency with a proper knob setting. Fi-
nally, we implement QKnober in YARN and our real experiments show that it achieves
promised initial results.

Acknowledgement

This work is sponsored by the National Natural Science Foundation of China (61602336,
61772544,U1731125) and Tianjin Natural Science Foundation (18JCZDJC30800).

References

1. Apache tpc-h benchmark on hive. In https://issues.apache.org/jira/browse/HIVE-600.
2. Puma datasets. In http://web.ics.purdue.edu/f̃ahmad/datasets.htm.
3. Faraz Ahmad, Seyong Lee, Mithuna Thottethodi, and T. N. Vijaykumar. Puma: Purdue

mapreduce benchmarks suite. In ECE Technical Reports, 2012.
4. R. P. Brent. Efficient implementation of the first-fit strategy for dynamic storage allocation.

ACM Trans. Program. Lang. Syst., 11(3):388–403, July 1989.
5. Paul C Chu and John E Beasley. A genetic algorithm for the multidimensional knapsack

problem. Journal of heuristics, 4(1):63–86, 1998.
6. Benoı̂t Dageville and Mohamed Zait. Sql memory management in oracle9i. In VLDB ’02,

pages 962–973. VLDB Endowment, 2002.
7. E. Danna, S. Mandal, and A. Singh. A practical algorithm for balancing the max-min fairness

and throughput objectives in traffic engineering. In INFOCOM’12, pages 846–854, 2012.

8. Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on large clus-
ters. Commun. ACM, 51(1):107–113, January 2008.

9. Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Konwinski, Scott Shenker, and Ion
Stoica. Dominant resource fairness: Fair allocation of multiple resource types. In NSDI’11,
pages 323–336, Berkeley, CA, USA, 2011. USENIX Association.

10. Robert Grandl, Ganesh Ananthanarayanan, Srikanth Kandula, Sriram Rao, and Aditya
Akella. Multi-resource packing for cluster schedulers. In SIGCOMM’14, pages 455–466.
ACM, 2014.

11. Carlee Joe-Wong, Soumya Sen, Tian Lan, and Mung Chiang. Multiresource allocation:
Fairness-efficiency tradeoffs in a unifying framework. IEEE/ACM Trans. Netw., 21(6):1785–
1798, December 2013.

12. Z. Niu, S. Tang, and B. He. An adaptive efficiency-fairness meta-scheduler for data-intensive
computing. IEEE Transactions on Services Computing, pages 1–1, 2017.

13. David C. Parkes, Ariel D. Procaccia, and Nisarg Shah. Beyond dominant resource fair-
ness: Extensions, limitations, and indivisibilities. ACM Trans. Econ. Comput., 3(1):3:1–3:22,
March 2015.

14. Tang Shanjiang, Yu Ce, Sun Chao, Xiao Jian, and Yinglong Li. Qknober: A knob-based
fairness-efficiency scheduler for cloud computing with qos guarantees. technical report. In
http://cs.tju.edu.cn/faculty/tangshanjiang/tr/QKnoberTR.pdf, 2018.

15. S. Tang, B. S. Lee, and B. He. Fair resource allocation for data-intensive computing in the
cloud. IEEE Transactions on Services Computing, 11(1):20–33, Jan 2018.

16. S. Tang, Z. Niu, B. He, B. S. Lee, and C. Yu. Long-term multi-resource fairness for pay-
as-you use computing systems. IEEE Transactions on Parallel and Distributed Systems,
29(5):1147–1160, May 2018.

17. Shanjiang Tang, BingSheng He, Shuhao Zhang, and Zhaojie Niu. Elastic multi-resource
fairness: Balancing fairness and efficiency in coupled cpu-gpu architectures. In SC ’16,
pages 75:1–75:12, Piscataway, NJ, USA, 2016. IEEE Press.

18. Shanjiang Tang, Bu-sung Lee, Bingsheng He, and Haikun Liu. Long-term resource fairness:
Towards economic fairness on pay-as-you-use computing systems. In ICS ’14, pages 251–
260, New York, NY, USA, 2014. ACM.

19. Hal R Varian. Equity, envy, and efficiency. Journal of economic theory, 9(1):63–91, 1974.
20. Vinod Kumar Vavilapalli, Arun C. Murthy, Chris Douglas, and Agarwal. Apache hadoop

yarn: Yet another resource negotiator. In SOCC ’13, pages 5:1–5:16, New York, NY, USA,
2013. ACM.

21. Hui Wang and Peter Varman. Balancing fairness and efficiency in tiered storage systems
with bottleneck-aware allocation. In FAST’14, pages 229–242, Berkeley, CA, USA, 2014.
USENIX Association.

22. Wei Wang, Chen Feng, Baochun Li, and Ben Liang. On the fairness-efficiency tradeoff for
packet processing with multiple resources. In CoNEXT ’14, pages 235–248, New York, NY,
USA, 2014. ACM.

23. Wei Wang, Baochun Li, and Ben Liang. Dominant resource fairness in cloud computing
systems with heterogeneous servers. In INFOCOM, 2014 Proceedings IEEE, pages 583–
591, April 2014.

24. Wei Wang, Shiyao Ma, Bo Li, and Baochun Li. Coflex: Navigating the fairness-efficiency
tradeoff for coflow scheduling. In INFOCOM’17.

25. Matei Zaharia, Dhruba Borthakur, Joydeep Sen Sarma, Khaled Elmeleegy, Scott Shenker,
and Ion Stoica. Delay scheduling: A simple technique for achieving locality and fairness in
cluster scheduling. In EuroSys’10, pages 265–278, New York, NY, USA, 2010. ACM.

26. Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion Stoica.
Spark: cluster computing with working sets. In Hot Cloud’10, volume 10, page 10, 2010.

	QKnober: A Knob-based Fairness-Efficiency Scheduler for Cloud Computing with QoS Guarantees

