
Long-Term Resource Fairness: Towards Economic
Fairness on Pay-as-you-use Computing Systems

Shanjiang Tang, Bu-Sung Lee, Bingsheng He, Haikun Liu
School of Computer Engineering, Nanyang Technological University

{stang5, ebslee, bshe}@ntu.edu.sg, haikunliu@gmail.com

ABSTRACT
Fair resource allocation is a key building block of any shared com-
puting system. However, MemoryLess Resource Fairness (MLRF),
widely used in many existing frameworks such as YARN, Mesos
and Dryad, is not suitable for pay-as-you-use computing. To ad-
dress this problem, this paper proposes Long-Term Resource Fair-
ness (LTRF), a novel fair resource allocation mechanism. We show
that LTRF satisfies several highly desirable properties. First, LTRF
incentivizes clients to share resources via group-buying by ensur-
ing that no client is better off in a computing system that she buys
and uses individually. Second, LTRF incentivizes clients to submit
non-trivial workloads and be willing to yield unneeded resources
to others. Third, LTRF has a resource-as-you-pay fairness prop-
erty, which ensures the amount of resources that each client should
get according to her monetary cost, despite that her resource de-
mand varies over time. Finally, LTRF is strategy-proof, since it can
make sure that a client cannot get more resources by lying about her
demand. We have implemented LTRF in YARN by developing LT-
YARN, a long-term YARN fair scheduler, and shown that it leads to
a better resource fairness than other state-of-the-art fair schedulers.

Categories and Subject Descriptors
D.4.1 [Process Management]: Scheduling; D.2.8 [Metrics]: Pro-
cess metrics, performance measures; k.6.2 [Installation Manage-
ment]: Pricing and resource allocation

Keywords
Cloud Computing, Long-Term Resource Fairness, MapReduce, YARN

1. INTRODUCTION
Current supercomputers and data centers (e.g., Amazon EC2)

typically consist of thousands of servers connected via a high-speed
network. At any time, there are tens of thousands of clients con-
currently running their high-performance computing applications
(e.g., MapReduce [8], MPI, Spark [32]) on the shared comput-
ing system (i.e., pay-as-you-use computing system). Clients pay

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICS’14, June 10–13 2014, Munich, Germany.
Copyright 2014 ACM 978-1-4503-2642-1/14/06 ...$15.00.
http://dx.doi.org/10.1145/2597652.2597672.

the money on the basis of their resource usage. To meet differ-
ent clients’ needs, providers generally offer several options of price
plans (e.g., on-demand and reservation). When a client has a short-
term computation requirement (e.g., several hours), she can choose
on-demand price plan that charges compute resources by each time
unit (e.g., hour) with fixed price. In contrast, if she has a long-term
computation request (e.g., 1 year), choosing reserved price plan
can enable her to have a significant discount from the on-demand
hourly charge and thereby save the money cost.

Instead of purchasing and utilizing resources individually, re-
cently, there are some researchers and companies (e.g., Tuangru,
SalesForce) strongly recommending group-buying and resource shar-
ing, since group-buying can offer resources at significantly reduced
prices on the condition that a minimum number of buyers would
make the purchase [13] and resource sharing can improve the re-
source utilization. Consider buying the reserved resources for ex-
ample. With reservation plan, clients need to pay a one-time fee
for a long time (e.g., 1 or 3 years). To achieve the full cost savings,
customers must commit to have a high utilization. In practice, it
is most likely that the resource demand of a customer varies over
time, indicating that it’s difficult to ensure the resources can be fully
utilized all the time.

With group-buying and resource sharing, the above problems can
be nicely addressed. First, group buying can get increased discount
of reserved resources from sellers, cheaper than buying individu-
ally. Second, different clients often have different resource demand
at different time. The resource utilization problem can be thereby
resolved with resource sharing between clients in a shared system.

Given group-buying resources, the fair resource allocation among
clients is a key issue. One of the most popular fair allocation policy
is (weighted) max-min fairness [11], which maximizes the mini-
mum resource allocation obtained by a user in a shared computing
system. It has been widely used in many popular high performance
computing frameworks such as Hadoop [4], YARN [2], Mesos [15],
Dryad [16] and Choosy [10]. Unfortunately, we observe that the
fair polices implemented in these systems are all memoryless, i.e.,
allocating resources fairly at instant time without considering his-
tory information. We refer those schedulers as MemoryLess Re-
source Fairness (MLRF). MLRF is not suitable for such pay-as-
you-use computing system due to the following reasons.

Trivial Workload Problem. In a pay-as-you-use computing
system, we should have a policy to incentivize group members
to submit non-trivial workloads that they really need (See Non-
Trivial-Workload Incentive property in Section 3). For MLRF, there
is an implicit assumption that all users are unselfish and honest to-
wards their requested resource demands, which is however often
not true in real world. It can cause trivial workload problem with
MLRF. Consider two users A and B sharing a system. Let DA and

DB be the true workload demand for A and B at time t0, respec-
tively. Assume that DA is less than its share1 while DB is larger
than its share. In that case, it is possible that A is selfish and will
try to possess all of her share by running some trivial tasks (e.g.,
running some duplicated tasks of the experimental workloads for
double checking) so that her extra unused share will not be pre-
empted by B, causing the inefficiency problem of running non-
trivial workloads and also breaking the sharing incentive property
(See the definition in Section 3).

Strategy-Proofness Problem. It is important for a shared sys-
tem to have a policy to ensure that no group member can get any
benefits by lying (See Strategy-proofness in Section 3). We argue
that MLRF cannot satisfy this property. Consider a system con-
sisting of three users A, B, and C. Assume A and C are honest
whereas B is not. It could happen at a time that both the true de-
mands of A and B are less than their own shares while C’s true
demand exceeds its share. In that case, A yields her unused re-
sources to others honestly. But B will provide false information
about her demand (e.g., far larger than her share) and compete with
C for unused resources from A. Lying benefits B, hence violating
strategy-proofness. Moreover, it will break the sharing incentive
property if all other users also lie.

Resource-as-you-pay Fairness Problem. For group-buying re-
sources, we should ensure that the total resource received by each
member is proportional to her monetary cost (See Resources-as-
you-pay Fairness in Section 3). Due to the varied resource demands
(e.g., workflows) for a user at different time, MLRF cannot achieve
this property. Consider two users A and B. At time t0, it could
happen that the demand DA is less than its share and hence its
extra unused resource will be possessed by B (i.e., lend to B) ac-
cording to the work conserving property of MLRF. Next at time t1,
assume that A’s demand DA becomes larger than its share. With
MLRF, user A can only use her current share (i.e., cannot get lent
resources at t0 back from B), if DB is larger than its share, due to
memoryless. If this scenario often occurs, it will be unfair for A to
get the amount of resources that she should have obtained from a
long-term view. (See a motivation example in Section 4).

In this paper, we propose Long-Term Resource Fairness (LTRF)
and show that it can solve the aforementioned problems. LTRF sat-
isfies five good properties including sharing incentive, non-trivial-
workload incentive, resource-as-you-pay fairness, strategy-proofness
and Pareto Efficiency. LTRF provides incentives for users to submit
non-trivial workloads and share resources via group-buying by en-
suring that no customer is better off in a computing system that she
purchases individually. Moreover, LTRF can guarantee the amount
of resources a user should receive in terms of the monetary cost
that she pays, in the case that her resource demand varies over
time. In addition, LTRF is strategy-proof, as it can make sure that
a customer cannot get more resources by lying about her resource
demand. Finally, LTRF can maximize the system utilization by en-
suring that it is impossible for a client to get more resources without
decreasing the resource of at least one client.

We have implemented LTRF in YARN [2] by developing a long-
term fair scheduler LTYARN. The experiments show that, 1). LTRF
can guarantee SLA via minimizing the sharing loss and bringing
much sharing benefit for each client, whereas MLRF cannot; 2).
the shared methods using LTRF can get better performance than
non-shared one, or at least as fast in the shared system as they do
in the non-shared partitioning case. The performance finding is
consistent with previous work such as Mesos [15].

1By default, we refer to the current share at the designated time (e.g., t0), rather than
the total share accumulated over time.

This paper is organized as follows. Section 2 reviews the re-
lated work. Section 3 gives several payment-oriented resource al-
location properties. Section 4 presents LTRF and gives a property
analysis, followed by the design and implementation of LTYARN in
Section 5. Section 6 evaluates the fairness and performance of LT-
YARN experimentally. Finally, we conclude and give future work
in Section 7.

2. RELATED WORK
We review the existing studies that are closely related to this

work from two aspects below:
Fairness Definitions, Policies and Algorithms. Fairness has

been studied extensively in HPC and grid computing environment [23,
18, 22, 34, 6]. Sabin et al. [23] consider fair in terms of start
time, if no later arriving job delays an earlier arriving job. Jain et
al. [18] measured the fairness based on the standard deviation of the
turnaround time. Ngubiri et al. [22] compare different fairness defi-
nitions on dispersion, start time and queueing time. Zhao et al. [34]
and Arabnejad et al. [6] consider fairness for multiple workflows.
They define fairness on the basis of slowdown that each workflow
would experience, where the slowdown refers to the difference in
the expected execution time between when scheduled together with
other workflows and when scheduled alone.

The above fairness definitions are mainly based on the "perfor-
mance" metrics. In this following, we argue that they are no longer
suitable due to the different concerns and meanings of fairness pre-
ferred in pay-as-you-use computing systems.

1). The pay-as-you-use computing system is a service-oriented
platform with resource guarantee. That is, from service providers’
perspective (e.g., Amazon, supercomputer operator), they only need
to guarantee the amount of resources allocated to each client over
a period of time. That is, the performance metrics for client’s ap-
plications are not the main concerns for providers. Our proposed
LTRF is based on this point in the shared pay-as-you-use comput-
ing system. It attempts to make sure that the total amount of re-
sources that each client obtains is larger than or at least the same
as that in an non-shared partitioning system, according to her pay-
ment.

2). The traditional fair policies and algorithms (e.g., round-robin,
proportional resource sharing [29], and weighted fair queueing [9])
on resource allocation in HPC and grid computing are memoryless,
i.e., instant fairness of a single dimension. In contrast, pay-as-you-
use computing system has a monetary cost issue with resources
paid by consumed time (e.g., one hour). Its fair policy should have
two dimensions, i.e., the size of resources multiplies the execution
time that a client consumed. Our LTRF is designed to be a two-
dimension fair policy with the historical information considered.

Max-Min Fairness. Max-min fairness is a popular fair pol-
icy widely used in many existing systems such as Hadoop [4],
YARN [2], Mesos [15], Choosy [10], Quincy [17]. Hadoop [4]
partitions resources into map/reduce slots and allocates them fairly
across pools and jobs. In contrast, YARN [2] divides resources into
containers (i.e., a set of various resources like memory and CPU
cores) and tries to guarantee fairness among queues. Mesos [15]
enables multiple diverse computing frameworks such as Hadoop
and Spark sharing a single system. Choosy [10] extends the max-
min fairness by considering placement constraints. Quincy [17]
is a fair scheduler for Dryad that achieves the fair scheduling of
multiple jobs by formulating it as a min-cost flow problem. More-
over, DRF [11] and its extensions [7, 19, 31, 25] generalize max-
min fairness from a single resource type to multiple resource types.
However, all of these are indeed memoryless, belonging to MLRF.
In this paper, we argue that there are three problems in pay-as-

you-use computing system regarding MLRF, i.e., trivial workload,
strategy-proofness and resource-as-you-pay. In contrast, our pro-
posed LTRF can address all those three problems.

3. PAYMENT-ORIENTED RESOURCE AL-
LOCATION PROPERTIES

This section presents a set of desirable properties that we believe
any payment-oriented resource allocation policy in a shared pay-as-
you-use system should meet. Base on these properties, we design
our fair allocation policy in the following sections. We have found
the following five important properties:

 Sharing Incentive: Each client should be better off sharing
the resources via group-buying with others, than exclusively
buying and using the resources individually. Consider a shared
pay-as-you-use computing system with n clients over t pe-
riod time. Then a client should not be able to get more than
t � 1

n
resources in a system partition consisting of 1

n
of all

resources.
 Non-Trivial-Workload Incentive: A client should get bene-

fits by submitting non-trivial workloads and yielding unused
resources to others when not needed. Otherwise, she may
be selfish and posses all unneeded resources under her share
by running some dirty or trivial tasks in a shared computing
environment.

 Resource-as-you-pay Fairness: The resource that a client gains
should be proportional to her payment. This property is im-
portant as it is a resource guarantee to clients.

 Strategy-Proofness: Clients should not be able to get bene-
fits by lying about their resource demands. This property is
compatible with sharing incentive and resource-as-you-pay
fairness, since no client can obtain more resources by lying.

 Pareto Efficiency: In a shared resource environment, it is im-
possible for a client to get more resources without decreasing
the resource of at least one client. This property can ensure
the system resource utilization to be maximized.

4. LONG-TERM RESOURCE FAIRNESS
In this section, we first give a motivation example to show that

MemoryLess Resource Fairness (MLRF) is not suitable for pay-as-
you-use computing system. Then we propose Long-Term Resource
Fairness (LTRF), a payment-oriented allocation policy to address
the limitations of MLRF and meet the desired properties described
in Section 3. Lastly, we introduce our formal fairness definition.

Motivation Example. Consider a shared computing system con-
sisting of 100 resources (e.g., 100GB RAM) and two users A and
B with equal share of 50GB each. As illustrated in Table 1, as-
sume that the new requested demands at time t1, t2, t3, t4 for client
A are 20, 40, 80, 60, and for client B are 100, 60, 50, 50, respec-
tively. With MLRF, we see in Table 1(a) that, at t1, the total demand
and allocation for A are both 20. It lends 30 unused resources to B
and thus 80 allocations for B. The scenario is similar at t2. Next at
t3 and t4, the total demand for A becomes 80 and 90, bigger than
its share of 50. However, it can only get 50 allocations based on
MLRF, being unfair for A, since the total allocations for A and B
become 160p� 20�40�50�50q and 240p� 80�60�50�50q
at time t4, respectively. Instead, if we adopt LTRF, as shown in
Table 1(b), the total allocations for A and B at t4 will finally be the
same (e.g., 200), being fair for A and B.

LTRF Scheduling Algorithm. Algorithm 1 shows pseudo-code
for LTRF scheduling. It considers the fairness of total allocated
resources consumed by each client, instead of currently allocated

resources. The core idea is based on the ’loan(lending) agree-
ment’ [20] with free interest. That is, a client will yield her unused
resources to others as a lend manner at a time. When she needs
at a later time, she should get the resources back from others that
she yielded before (i.e., return manner). In our previous two-client
example with LTRF in Table 1(b), client A first lends her unused
resources of 30 and 10 to client B at time t1 and t2, respectively.
However, at t3 and t4, she has a large demand and then collects all
40 extra resources back from B that she lent before, making fair
between A and B.

Due to the lending agreement of LTRF, in practice, when A
yields her unused resources at t1 and t2, B might not want to pos-
sess extra unused resources from A immediately. In that case, the
total allocations for A and B will be 160p� 20�40�50�50q and
200p� 50�50�50�50q at time t4, causing the inefficiency prob-
lem for the system utilization. To solve this problem, we propose a
discount-based approach. The idea is that, anybody possessing ex-
tra unused resources from others will have a discount (e.g., 50%)
on resource counting. It will incentivize B to preempt extra un-
used resources from A, since it is cheaper than its own share of
resources. For A, it also does not get resource lost, as it can get
the same discount on the resource counting for the preempted re-
sources from B back later.

Table 1(c) demonstrates this point. It shows the discounted re-
source allocation for each client over time by discounting the pos-
sessed extra unused resource. At time t1, A yields her 30 unused re-
sources to B and B’s discounted resources are 65p� 50�30�50%q
instead of 80p� 50� 30q. Similarly for A at t3, it preempts 30 re-
sources from B and its discounted resources are 65p� 50 � 30 �
50%q. Still, both of them are fair at time t4.

Client A Client B
Demand Allocation Preempt Demand Allocation PreemptNew Total Current Total New Total Current Total

t1 20 20 20 20 �30 100 100 80 80 �30
t2 40 40 40 60 �10 60 80 60 140 �10
t3 80 80 50 110 0 50 70 50 190 0
t4 60 90 50 160 0 50 70 50 240 0
(a) Allocation results based on MLRF. Total Demand refers to the sum of the new
demand and accumulated remaining demand in previous time.

Client A Client B
Demand Allocation Preempt Demand Allocation PreemptNew Total Current Total New Total Current Total

t1 20 20 20 20 �30 100 100 80 80 �30
t2 40 40 40 60 �10 60 80 60 140 �10
t3 80 80 80 140 �30 50 70 20 160 �30
t4 60 60 60 200 �10 50 100 40 200 �10

(b) Allocation results based on LTRF.

Client A Client B

Demand Counted
Allocation Preempt Demand Counted

Allocation Preempt
New Total Current Total New Total Current Total

t1 20 20 20 20 �30 100 100 65 65 �30
t2 40 40 40 60 �10 60 80 55 120 �10
t3 80 80 65 125 �30 50 70 20 140 �30
t4 60 60 55 180 �10 50 100 40 180 �10
(c) Counted allocation results under discount-based approach of LTRF. There is a
discount (e.g., 50%) for the extra unused resources, to incentivize clients to preempt
resources actively for system utilization maximization. In this example, although the
counted allocations for A and B are 180, their real allocations are both 200, which
is the same as Table 1(b).

Table 1: A comparison example of MemoryLess Resource Fairness
(MLRF) and Long-Term Resource Fairness (LTRF) in a shared computing
system consisting of 100 computing resources for two users A and B.

4.1 Property Analysis for LTRF

THEOREM 1. LTRF satisfies the sharing incentive property.

Algorithm 1 LTRF pseudo-code.

1: R: total resources available in the system.
2: :R � p :R1, ..., :Rnq: current allocated resources. :Ri denotes the current allo-

cated resources for client i.
3: U � pu1, ..., unq: total used resources, initially 0. ui denotes the total resource

consumed by client i.
4: W � pw1, ..., wnq: weighted share. wi denotes the weight for client i.

5: while there are pending tasks do
6: Choose client i with the smallest total weighted resources of ui{wi.
7: di Ð the next task resource demand for client i.
8: if :R � di ¤ R then
9: :Ri Ð :Ri � di. � Update current allocated resources./*Section 5.2.2*/
10: Update the total resource usage ui for client i. � /*Section 5.2.2*/
11: Allocate resource to client i. � /*Section 5.2.3*/
12: else � The system is fully utilized.
13: Wait until there is a released resource ri from client i.
14: :Ri Ð :Ri � ri. � Update current allocated resources/*Section 5.2.2*/

PROOF. Consider a shared pay-as-you-use computing system of
R resources group-bought by n clients with equal share (or mone-
tary cost) over t period time. When pursuing individually with the
same amount of money, 1). the amount of resources R1 a client
can receive is less than R

n
, as group-buying has discount over per-

sonal buying; 2). Under R1 resources, she can get at most t � R1

resources, smaller than t � R
n

. In contrast, with group-buying and
fair allocation with LTRF, a client can get at least t � R

n
resources.

Thus LTRF satisfies sharing incentive property.

THEOREM 2. (Non-Trivial-Workload Incentive) Any client who
submits non-trivial workloads to the shared pay-as-you-use com-
puting system could get benefits under LTRF.

PROOF. Recall that LTRF focuses on the fairness over total re-
sources with lending agreement. When a client’s resource demand
is less than its current share, she can lend unneeded resources out.
Later when she needs more resources in the future, she can get
extra amount of resources back from others that she lent before.
Reversely, if she submits lots of dirty (or trivial) workloads to the
system when her true demand is less than her share, she will loose
opportunity to get more extra sources, especially when she has lots
of important and urgent workloads to compute later. Hence, LTRF
meets non-trivial-workload incentive property.

THEOREM 3. LTRF achieves resource-as-you-pay fairness in a
group-buying shared computing system.

PROOF. Each client in a shared computing system has right to
enjoy at least the amount of resources that she pays. One key fac-
tor that affects resource-as-you-pay fairness is the varied client’s
demands at different time (i.e., unbalanced workload which can
be either less or larger than her current share). LTRF overcomes
the unbalanced workload problem by considering the fairness at
the level of total allocated resources and following lending agree-
ment. It adjusts the current allocation of resources to each client
dynamically according to her historical total allocated resources
and current demand, ensuring that the total resources a client re-
ceived are fair with each other. Thus, LTRF is resource-as-you-pay
fairness.

THEOREM 4. LTRF satisfies strategy-proofness property.

PROOF. Theorem 2 has demonstrated that LTRF satisfies non-
trivial-workload incentive property that can make a client be truly
willing to yield out her unused resources when she does not need.
On the other hand, it is possible that an overloaded client lies about
her true demands to let her get more allocated resources in preemp-
tion with others at a time. Due to lending agreement requirement

under LTRF, the consequence of lying is a pre-overconsumption of
her resources and she needs to pay back at a later time to others.
Thus, lying cannot benefit her at all.

THEOREM 5. LTRF satisfies pareto efficiency property.

PROOF. Recall in our LTRF algorithm, we propose a discount-
based approach to incentivize users to preempt extra unused re-
sources from others. It indicates that the utilization of system is
fully maximized whenever there are pending tasks. Therefore, it is
impossible for a client to get more resources without decreasing the
resources of others.

Finally, Table 2 summarizes the properties that are satisfied by
MLRF and LTRF, respectively. MLRF is not suitable for pay-
as-you-use computing system due to its lack of support for three
important desired properties, whereas LTRF can achieve all those
properties.

Property Allocation Policy
MLRF LTRF

Sharing Incentive ? ?
Non-Trivial Workload Incentive ?
Resource-as-you-pay Fairness ?

Strategy-Proofness ?
Pareto Efficiency ? ?

Table 2: List of properties for MLRF and LTRF.

4.2 Fairness Definition
Due to the varied resource demands and resource preemption in

the shared environment, the total resources a client obtained are un-
dermined. Generally, every client wants to get more resources or at
least the same amount of resources in a shared computing system
than exclusively using the system. We call it fair for a client (i.e.,
sharing benefit) when that can be achieved. In contrast, it is also
possible for the total resources a client received are less than that
without sharing, which we call unfair (i.e., sharing loss). To en-
sure resource-as-you-pay fairness and the maximization of sharing
incentive property in the shared system, it is important to minimize
sharing loss firstly and then maximize sharing benefit.

Without mention, we refer to the total resources as accumulated
resources below. Let giptq be the currently allocated resources for
the ith client at time t. Let fiptq denote the accumulated resources
for the ith client at time t. Thus,

fiptq �
» t

0

giptq dt. p1q

Let diptq and Siptq denote the current demand and current resource
share for the ith client at time t, respectively. Given the total re-
source capacity R of the system and the shared weight wi for the
ith client, there is

Siptq � R � wi{
ņ

k�1

wk. p2q

The fairness degree ρiptq for the ith client at time t is defined as
follows:

ρiptq �
³t
0
giptq dt³t

0
min tdiptq, Siptqu

. p3q

ρiptq ¥ 1 implies the absolute resource fairness for the ith client
at time t. In contrast, ρiptq 1 indicates unfair. For a client i in a
non-shared partition of the system, it always holds ρiptq � 1, since
it has giptq � min tdiptq, Siptqu at any time t. To measure how
much better or worse for sharing with a fair policy than without
sharing (i.e., ρiptq � 1), we propose two concepts sharing benefit

degree and sharing loss degree. Let Ψptq be sharing benefit degree,
as a sum of all pρiptq � 1q subject to ρiptq ¥ 1, i.e.,

Ψptq �
ņ

i�1

max tρiptq � 1, 0u. p4q

and let Ωptq denote sharing loss degree, as a sum of all pρiptq� 1q
subject to ρiptq 1, i.e.,

Ωptq �
ņ

i�1

min tρiptq � 1, 0u. p5q

We can use this two metrics to compare the quality for different
fair policies. Thereby, it always holds that Ψptq ¥ 0 ¥ Ωptq.
Moreover, in a non-shared partition of the computing system, it
always holds Ψptq � Ωptq � 0, indicating that there are neither
sharing benefit nor sharing loss. In contrast, in a shared pay-as-
you-use computing system, either of them could be nonzero. For
a good fair policy, it should be able to maximize Ωptq first (e.g.,
Ωptq Ñ 0) and next try to maximize Ψptq.

5. LTYARN: A LONG-TERM YARN FAIR
SCHEDULER

YARN is an emerging resource management and job processing
system, and has been viewed as a distributed operating system. As a
case study, we implement LTRF on YARN. We propose a long-term
YARN fair scheduler called LTYARN, by generalizing the default
instant max-min fairness.

5.1 Long-Term Max-Min Fairness
We present our long-term max-min fairness model for LTYARN.

5.1.1 Challenges and Approaches
Our long-term max-min fairness policy is based on the accumu-

lated resources. When estimating the accumulated resources for
a task, we need to know the capacity and demand of its requested
resources and the execution time that it takes. However, there are
several challenges for online applications (i.e., refers to applica-
tions that arrive over time) on that as follows,

1. the execution time of tasks for each application are often dif-
ferent and unknown in advance.

2. the arriving time for each application can be arbitrary and
unknown in advance.

3. the computing resources (e.g., CPU powers) can be hetero-
geneous in a heterogeneous cluster, and the resource demand
(e.g., memory size) for each task can be different.

To deal with the above mentioned challenging issues, we provide
several methods below,

Time Quantum-based Approach. It is an approximation ap-
proach to deal with the first challenging problem. It gives a con-
cept of assumed execution time, initialized with a time quantum,
to represent the prior unknown real execution time. The assumed
execution time is adjusted dynamically to make it close to the real
execution time.

The details of our approach are that, we first initialize the as-
sumed execution time to be zero for any pending task. When a task
starts running, we give a time quantum threshold for its assumed
execution time. For each running task, when its running time ex-
ceeds the assumed execution time, the assumed execution time is
updated to the running time. In contrast, for any finished task, its
assumed execution time is updated to its running time, no matter it
is larger or smaller than the time threshold.

Wall Clock-based Approach. It concerns with the second chal-
lenging problem of ’online’ arriving. Different applications may

arrive at different time. It would be no longer suitable to use the
accumulated consumed resources as a measure to control the fair
share. The explanation is that, from the system’s (e.g., global-
level) perspective, in order to improve its resource utilization, it
often follows the idiom that ’the early bird gets the worm’ (we call
it Early Bird Privilege next) to incentivize users to submit their ap-
plications as early as possible. To achieve that, one solution is to
give a penalty for the late arriving application, by only starting to
consider (or memorize) the fair share of resources from its arriving
time. Moreover, our fairness model is on the basis of max-min fair-
ness algorithm [21]. Technically, to implement it, there is a need to
top-up a resource cost, named as Pseudo Accumulated Resources
(PAR), such that the fair scheduler will not favor the late arriving
application. Thus, in contrast to offline application whose accu-
mulated resources can be directly set to its accumulated consumed
resources as expressed by Formula (1) implicitly, the accumulated
resources for each online application should include both its PAR
and accumulated consumed resources. That is, for the online appli-
cation, the definition in Formula (1) should be modified as,

fiptq �
» t

0

giptq dt� ϕiptq. p6q

where ϕiptq denotes the PAR watched at time t by the application i.
Moreover, by taking into account the discount-based approach for
extra unused resources proposed by Algorithm 1 of LTRF in Sec-
tion 4, we have the currently discounted allocated resource g

1

iptq as
follows:

g
1

iptq � mintgiptq, Siptqu �maxtgiptq � Siptq, 0u � η. p7q

where ηp0 ¤ η ¤ 1q denotes the discount rate. Hence, the defini-
tion of Formula (6) should be further modified as,

fiptq �
» t

0

g
1

iptq dt� ϕiptq. p8q

We call this method Wall Clock-based Approach, where the Wall
Clock refers to a time period before the arriving of an application,
as illustrated in Figure 1 (a).

Weighted Resource based Approach. It targets at the third
challenge. We assign a weight to each heterogeneous resource in
terms of its computing capacity. For example, the CPU resource
can be weighted based on its clock frequency. Thereby, for the ith

application,
giptq �

¸
jPτiptq

θi,j � δi,j � αi,jptq. p9q

where τiptq denotes the set of tasks from the ith application that
are allocated with resources at the time t. θi,j and δi,j denote the
resource demand (e.g., the size of vcore or memory) and weight for
the jth task of the ith application, respectively. αi,jptq represents
the assumed execution time for the jth task of the ith application
at time t. It is our future work to extend the definition to other
hardware resources like GPUs [14].

5.1.2 Long-Term Max-Min Fairness Model
This subsection proposes long-term max-min fairness model for

LTYARN. YARN is a hierarchical tree structure of multi-level fair-
ness: applications at the bottom and queues at the higher level. We
apply the same mechanism for different levels. The following de-
sign considers the bottom-level (i.e., application-level).

Let Λ � tΛ1,Λ2,Λ3, ...u denote the set of submitted applica-
tions, and rΛ be the set of its active applications (the ’active’ means
there are pending or running tasks available). Let ai be the arriving
time for the application Λi. According to the Early Bird Privilege
and max-min fairness policy, the PAR ϕiptq for the active applica-
tion Λi should be,

t

0

t
0

t
1

t
2

t
6

Active Period
 Wall Clock

Non-active Period

t
3

t
4 t5

t
7

1
L

2
L

3
L

4
L

5
L

(a) Fully Long-Term Max-Min Fairness Model (F-LTMM)

Round 1

t

Round 2

0

t
0

t
1

t
2

t
6

Active Period
 Wall Clock

Non-active Period

t
3

t
4 t5

t
7

1
L

2
L

3
L

4
L

5
L

(b) Semi-Long-Term Max-Min Fairness Model (S-LTMM)

Figure 1: The long-term max-min fairness models for LTYARN. For an application, Active Period refers to the time interval when it has pending/running tasks
available. Otherwise, it belongs to Non-active Period. Wall Clock refers to a time period before the arriving of an application with respect to the starting time
of the current round.

ϕiptq �

$'''''&
'''''%

max
ΛkP

rΛ
tfkptq|ak aiu �

max
ΛkP

rΛ

 ³t
0
g
1

kptq dt� ϕkptq|ak ai

(
,

�
ai ¡ min

ΛkP
rΛ
taku

�
.

0, others.
p10q

Let np
i ptq denote the number of pending (i.e., runnable) tasks for

the application Λi at time t. Let ωi be the shared weight for the ith

application. Based on the weighted max-min fairness strategy and
Formula (6), (9), (10), the application Λi to be chosen at time t for
fair resource allocation should satisfy the following condition,

fiptq
ωi

� min
ΛkP

rΛ

 fkptq
ωk

|np
i ptq ¡ 0

(
. p11q

We name this fairness model Fully Long-Term Max-Min Fair-
ness Model (F-LTMM), as illustrated in Figure 1(a), considering
that it is recording the consumed resources all the way since YARN
system starts working.

In practice, we may not want the system to be fully long-term.
Instead, the definition can be applied to a period of time (e.g., 24
hours). It motives us further to propose a time window-based long-
term fairness model below.

Semi-Long-Term Max-Min Fairness Model (S-LTMM). The
key idea is that, instead of fully memorizing resources all the time
since the system starts working, we can divide system working time
into a set of time windows (by default, we call the time window as
round). Within the round (i.e., Intra-Round Phase), we adopt the
fully long-term fairness model. When the system moves to the next
round (i.e., Inter-Round Phase), it ignores all jobs’ history infor-
mation from the previous round and starts memorizing from the
beginning. It is a hybrid of fully long-term fairness model at intra-
round phase and memoryless fairness model at inter-round phase.

Figure 1(b) illustrates the model. Let L denote the time length of
a computation round, and ts be the start time of the current compu-
tation round. Then we can compute ts with the following formula,

t
s �

"
ts � X

t�ts

L

\ � L, pt ¡ 0q.
0, pt � 0q. p12q

Moreover, all of the F-LTMM-related elements, including Wall
Clock, PAR and accumulated consumed resources for each applica-
tion, should be updated and counted from ts instead. Then Formula
(6) should be updated to be,

fiptq �
» t

ts
g
1

iptq dt� ϕiptq. p13q

Unlike F-LTMM whose Wall Clock is just equal to the appli-
cation’s arriving time, the Wall Clock in S-LTMM is round-based,
referring to a non-active period of an application since ts, e.g., Λ2

in Figure 1(b). We define Round Arriving Time ăi for Λi to be the
starting time point at which the application becomes active since
ts, e.g., t5 for Λ2 at Round 2 in Figure 1(b). It can be computed
based on the following formula,

ăi �

$'&
'%

ai, pts ¤ aiq.
ts, pDj P τiptq, tsi,j ¤ ts tci,jq.
min

jPτiptq
ttsi,j |tsi,j ¡ tsu, others.

p14q

Let tsi,j , tci,j denote the start time and finished time for the jth

task of the application Λi, respectively. Particularly, for the fin-
ished tasks of each application in S-LTMM, only the jth task satis-
fying tci,j ¡ ts will count. According to the time quantum-based
approach, we then have,

αi,jptq �

#
tci,j �maxtts, tsi,ju, pts tci,j ¤ tq.
max

Q, t�maxtts, tsi,ju

(
, pt tci,j ¤ ts � Lq. p15q

0, others.

where Q denotes the time quantum. And accordingly, Formula (10)
should be updated to

ϕiptq �
$&
%

max
ΛkP

rΛ

 ³t
ts

g
1

kptq dt� ϕkptq|ăk ăi

(
,

�
ăi ¡ min

ΛkP
rΛ
tăku

�
.

0, others.
p16q

Finally, by combining Formula (12), (15), (9), (16), (13), similar
to F-LTMM, we can obtain S-LTMM by allocating resources to the
application Λi subject to Formula (9) stringently at time t.

5.2 Design and Implementation of LTYARN
In YARN, the resources are organized into multiple queues with

hierarchical tree structure. Each queue can represent an organiza-
tion and the resources are shared among them. Figure 3 shows an
example of three-level structure. There is a root node called Root
Queue. It distributes the resources of the whole system to the in-
termediate nodes called Parent Queues. Each parent queue further
re-distributes resources into its sub-queues (parent queues or leaf
queues) recursively until to the bottom nodes called Leaf Queues.
Finally, users’ submitted applications within the same leaf queue
share the resources.

Figure 2 gives an overview on the design and implementation of
LTYARN. It consists of three key components: Quantum Updater
(QU), Resource Controller (RC), and Resource Allocator (RA). QU
is responsible for updating the time quantum for each queue dy-
namically. RC manages the allocated resources for each applica-
tion/queue and computes the accumulated resources periodically.
RA performs the resource allocation based on the accumulated re-
sources of each application/queue. In the following, we present
some implementation details about each component.

Pending Tasks

&&

Idle Resources

Resource

Allocator (RA)

Resource

Controller (RC)

Quantum

Updater (QU)

Resource

Resource

(Q

(task, resource) (t
Trigger

Register

Provide resource info

Update quantum

Allocate resource

Figure 2: Overview of LTYARN.

5.2.1 Quantum Updater (QU)
For LTYARN, the suitable value of the time quantum Q is very

important for fairness convergency, which refers to the conver-
gency of unfair applications for their long-term resources at a time
point and after that they fairly share the resources with each other.
To achieve fast convergency, we need to make Q be close to the
real execution time of tasks. Ideally, we need to adapt Q to differ-
ent applications/tasks and also varied types of applications in dif-
ferent queues for YARN in practice, ensuring that each queue owns
a suitable Q for its own applications so that they do not interfere
with each other.

We propose an adaptive task quantum policy. It is a multi-level
self-tunning approach by extending the hierarchical structure of
YARN’s resource organization, as shown in Figure 3. The up-to-
bottom data flow is a quantum value assignment process. It works
when a new element (e.g., queue or application) is added. In con-
trast, the bottom-to-up data flows are a self-tunning procedure, re-
freshing periodically by a small fixed time interval (e.g, 1 second).

Initially, the system administrator provides a threshold value for
root-level quantum Q0. When a new application is submitted to
the system, it will perform the initialization process from the top
to down. First, it will check whether its parent queue is new one
or not (Arrow (1) in Figure 3). If yes, it will assign the root-queue
quantum to its parent-queue quantum, e.g., Q1,1 Ð Q0. Next, it
checks its sub-queues (e.g., leaf-queue) (Arrow (2) in Figure 3).
If it is a new one, it will assign its parent-queue quantum to its
sub-queue quantum, e.g., Q2,1 Ð Q1,1. Lastly, it initializes its
application quantum with its leaf-queue quantum, e.g., Q3,1 Ð
Q2,1 (Arrow (3) in Figure 3).

QU checks the system periodically for new completed tasks.
When there is a task finished, the self-adjustment process performs
from the bottom to up. First, it will update the time quantum for
applications with the average task completion time (Arrow (4) in
Figure 3). Next, it updates its leaf-queue quantum with its average
application quantum (Arrow (5) in Figure 3). Similarly, it updates
its parent-queue quantum using the average value of its leaf-queue
quantum (Arrow (6) in Figure 3). Finally, the root-queue quantum
is updated with the average value of parent-queue quantum (Arrow
(7) in Figure 3).

5.2.2 Resource Controller (RC)
Resource Controller (RC) is the main component of LTYARN.

Its principle responsibility is to manage and update the accumu-
lated resources for each queue, needed by RA, on the basis of the
model S-LTMM. It tracks the allocated resource (e.g., container in
YARN) and the execution time for each task. Based on this in-
formation, it performs the resource updating periodically (e.g., 1
second). In the updating procedure, it first updates the starting time
of the current round based on Formula (12) and the round arriving
time for each application based on Formula (14). Next, based on
time quantum-based approach, it estimates the assumed execution
time for each running/completed task with the updated quantum

0
Q

1,1
Q

1,2
Q

2,1
Q

2,2
Q

2,3
Q

2,4
Q

3,1
Q

3,2
Q

3,3
Q 3,4

Q 3,5
Q

3,6
Q

3,7
Q

3,8
Q

2,1
Q
2,12,1 2,2

Q
2,22,2
Q
2,2 2,3

Q
2,32,3
Q
2,3 2,4

Q
2,42,4
Q
2,4

1,11,1 1,2
Q
1,21,2

(1) (1)

(2) (2) (2) (2)

(3) (3) (3) (3) (3) (3) (3) (3)

(5) (5) (5) (5) (5) (5) (5) (5)

(6) (6) (6) (6)

(7) (7)

Parent Queues

Leaf Queues

Applications 3,1
Q
3,1 3,2

Q
3,2 3,3

Q
3,3 3,4

Q
3,4 3,5

Q
3,5 3,6

Q
3,6 3,7

Q
3,7 3,8

Q
3,8

(4) (4) (4) (4) (4) (4) (4) (4)

Application
Initialization

process
Self-adjustment

process
Queue

Root Queue

Figure 3: The adaptive task quantum policy for YARN. The up-to-bottom
data flow is a task time quantum initialization process for new applications.
The bottom-to-up data flow is a quantum self-adjustment process for exist-
ing applications/queues.

value from QU, according to Formula (15). The currently allocated
resource for each task can then be estimated with Formula (7). Af-
ter that, it estimates the Pseduo Accumulated Resources (PAR) for
each application based on Formula (16). Finally, it updates the ac-
cumulated resource for each application/queue based on Formula
(13).

5.2.3 Resource Allocator (RA)
Resource Allocator (RA) is responsible for resource allocation

at each queue of different levels, as shown in Figure 3. It is trig-
gered whenever there are pending tasks or idle resources. RA can
now support FIFO, memoryless max-min fairness and long-term
max-min fairness for each queue. Users can choose either of them
accordingly. For long-term max-min fairness, it performs fair re-
source allocation for each application/queue with the provided re-
source information from RC, based on Formula (11). We provide
two important configuration arguments for each queue, e.g., time
quantum Q and round length L in the default configuration file,
to meet different requirements for different queues. Moreover, we
also support minimum (maximum) resource share for queues under
long-term max-min fairness.

In practice, it is better for its root queue to use the long-term
max-min fairness, viewing each of its sub-queues as a client or an
organization to it. We need to guarantee the resource-as-you-pay
fairness for them. For each parent-queue representing an organi-
zation, we should also adopt the long-term max-min fairness if its
subqueues (i.e., members of the organization) require resource-as-
you-pay fairness. In contrast, when a queue belongs to a client,
there might be no need to ensure resource-as-you-pay fairness for
its sub-queues. In that case, we can choose either memoryless max-
min fairness, long-term max-min fairness or FIFO.

6. EVALUATION
We ran our experiments in a cluster consisting of 10 compute

nodes, each with two Intel X5675 CPUs (6 CPU cores per CPU
with 3.07 GHz), 24GB DDR3 memory and 56GB hard disks. The
latest version of YARN-2.2.0 is chosen in our experiment, used
with a two-level hierarchy. The first level denotes the root queue (
containing 1 master node, and 9 slave nodes). For each slave node,
we configure its total memory resources with 24GB. The second
level denotes the applications (i.e., workloads).

6.1 Macro-benchmarks
We ran a macro-benchmark consisting of four different work-

loads. Thus, four different queues are configured in YARN/LTYARN,

Bin Job Type # Maps # Reduces # Jobs

1 rankings selection 1 NA 38
2 grep search 2 NA 18
3 uservisits aggregation 10 2 14
4 rankings selection 50 NA 10
5 uservisits aggregation 100 10 6
6 rankings selection 200 NA 6
7 grep search 400 NA 4
8 rankings-uservisits join 400 30 2
9 grep search 800 60 2

Table 3: Job types and sizes for each bin in our synthetic Facebook work-
loads.

namely, Facebook, Purdue, Spark, HIVE/TPC-H, corresponding to
the following workloads, respectively. 1). A MapReduce instance
with a mix of small and large jobs based on the workload at Face-
book. 2). A MapReduce instance running a set of large-sized batch
jobs generated with Purdue MapReduce Benchmarks Suite [1]. 3).
Hive [24] running a series of TPC-H queries. 4). Spark [32] run-
ning a series of machine learning applications.

Synthetic Facebook Workload. We synthesize our Facebook
workload based on the distribution of jobs sizes and inter-arrival
time at Facebook in Oct. 2009 provided by Zaharia et. al. [33].
The workload consists of 100 jobs. We categorize them into 9 bins
of job types and sizes, as listed in Table 3. It is a mix of large
number of small-sized jobs (1 � 15 tasks) and small number of
large-sized jobs (e.g., 800 tasks2). The job submission time is de-
rived from one of SWIM’s Facebook workload traces (e.g., FB-
2009_samples_24_times_1hr_1.tsv) [12]. The jobs are from Hive
benchmark [5], containing four types of applications, i.e., rank-
ings selection, grep search (selection), uservisits aggregation and
rankings-uservisits join.

Purdue Workload. We select five benchmarks (e.g., Word-
Count, TeraSort, Grep, InvertedIndex, HistogramMovices) randomly
from Purdue MapReduce Benchmarks Suite [1]. We use 40G wikipedia
data [26] for WordCount, InvertedIndex and Grep, 40G generated
data for TeraSort and HistogramMovices with their provided tools.
To emulate a series of regular job submissions in a data warehouse,
we submit these five jobs sequentially at a fixed interval of 3 mins
to the system.

Hive / TPC-H. To emulate continuous analytic query, such as
analysis of users’ behavior logs, we ran TPC-H benchmark queries
on Hive [3]. 40GB data are generated with provided data tools.
Four representative queries Q1, Q9, Q12, and Q17 are chosen, each
of which we create five instances. We launch one query after the
previous one finished in a round robin fashion.

Spark. Latest version of Spark has supported its job to run on the
YARN system. We consider two CPU-intensive machine learning
algorithms, namely, kmeans and alternating least squares (ALS)
with provided example benchmarks. We ran 10 instances of each
algorithm, which are launched by a script that waits 2 minutes after
each job completed to submit the next.

6.2 LTRF Resource Allocation Flow
To understand the dynamic history-based resource allocation mech-

anism of LTRF under LTYARN, we sample the resource demands,
currently allocated resources and accumulated resources for four
workloads over a short period of 0 � 260 seconds, as illustrated in
Figure 4. Figure 4(a) and 4(b) show the normalized results of the
current resource demand and currently allocated resources for each
workload with respect to its current share. Figure 4(c) presents the

2We reduce the size of the largest jobs in [33] to have the workload fit our cluster
size.

normalized accumulated resources for four workloads with respect
to the system capacity.

Figure 4(a) shows that workloads have different resource de-
mands over time. At the beginning, Purdue, Spark and Hive /
TPC-H have an overloaded demand period (e.g., Purdue: 24�131,
Spark: 28 � 118, HIVE / TPC-H: 28 � 146). Figure 4(b) shows
the allocation details for each workload over time. During the com-
mon overloaded period of 28 � 118, the curves for Purdue, Spark
and Hive / TPC-H are fluctuated, indicating that LTRF is dynami-
cally adjusting the amount of resource allocation to each workload,
instead of simply assigning each workload the same amount of re-
sources like MLRF. Through dynamic adjusting, the accumulated
resources for the three workloads are balanced (i.e., the curves are
close to each other) during the period 80 � 118, as shown in Fig-
ure 4(c). However, for Facebook workload, its overloaded period
occurs from 204�260. During this period, the Purdue workload is
also overloaded, as shown in Figure 4(a). To achieve the accumu-
lated resource fairness, LTRF allocated a large amount of resource
to it (e.g., 3.85{4.0 � 96.25% at point 222) shown in Figure 4(b),
to make it catch up with others. As in the accumulated resource
results in Figure 4(c) that, during 204 � 260, there is a signifi-
cant increment for Facebook workload, whereas other workloads
increase slightly.

6.3 Macrobenchmark Fairness Results

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

0

9
9

2
1

3

3
3

5

4
7

1

6
2

1

7
9

0

9
8

6

1
2

1
1

1
4

6
1

1
7

2
4

2
0

1
2

2
3

2
8

2
6

6
5

3
0

1
4

3
3

7
7

3
7

5
2

4
1

3
4

4
5

1
7

4
9

1
7

5
3

3
0

S
h

a
ri

n
g

b

e
n

e
fi

t

Time (s)

Sharing benefit degree Sharing loss degree

(a) Sharing benefit/loss degree with MLRF
based on Formula (4) and (5).

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

2.75

3

0

9
9

2
1

3

3
3

5

4
7

1

6
2

1

7
9

0

9
8

6

1
2

1
1

1
4

6
1

1
7

2
4

2
0

1
2

2
3

2
8

2
6

6
5

3
0

1
4

3
3

7
7

3
7

5
2

4
1

3
4

4
5

1
7

4
9

1
7

5
3

3
0

F
a

ir
n

e
ss

 d
e

g
re

e

Time (s)

Facebook Purdue Spark Hive / TPC-H

(b) Detailed fairness degree for four queues
with MLRF based on Formula (3).

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

0

1
1

1

2
2

6

3
5

5

4
9

3

6
4

0

8
0

1

9
7

8

1
1

6
7

1
3

6
7

1
5

7
9

1
7

9
8

2
0

3
7

2
2

8
8

2
5

6
4

2
8

8
4

3
2

7
9

3
7

4
0

4
2

1
0

4
7

0
4

5
2

1
5

S
h

a
ri

n
g

b

e
n

e
fi

t

Time (s)

sharing benefit degree sharing loss degree

(c) Sharing benefit/loss degree with LTRF
based on Formula (4) and (5).

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

0

1
1

1

2
2

6

3
5

5

4
9

3

6
4

0

8
0

1

9
7

8

1
1

6
7

1
3

6
7

1
5

7
9

1
7

9
8

2
0

3
7

2
2

8
8

2
5

6
4

2
8

8
4

3
2

7
9

3
7

4
0

4
2

1
0

4
7

0
4

5
2

1
5

F
a

ir
n

e
ss

 d
e

g
re

e

Time (s)

Facebook Purdue Spark Hive / TPC-H

(d) Detailed fairness degree for four queues
with LTRF based on Formula (3).

Figure 5: Comparison of fairness results over time for each of workloads
under MLRF and LTRF in YARN. All results are relative to the static par-
tition scenario (i.e., non-shared case) whose fairness degree is always one
and sharing benefit/loss is zero. (a) and (c) show the overall benefit/loss
relative to the non-sharing scenario. (b) and (d) present the detailed fairness
degree for each queue: 1). A queue gets sharing benefit when its fairness
degree is larger than one; 2). Otherwise, it arises sharing loss problem when
a queue’s fairness degree is below one.

In Section 4.2, we have shown that a good sharing policy should
be able to first minimize the sharing loss, and then maximize the
sharing benefit as much as possible (i.e., Sharing incentive). We
make a comparison between MLRF and LTRF for four workloads
over time in Figure 5. All results are relative to the static partition
case (without sharing) with fairness degree of one and sharing ben-
efit/loss degrees of zero. Figures 5(a) and 5(c) present the sharing
benefit/loss degrees based on Formulas (4) and (5), respectively, for
MLRF and LTRF. Figures 5(b) and 5(d) show the detailed fairness

0

10

20

30

40

50

60

70

80
0

1
2

2
3

3
5

4
7

5
9

7
1

8
2

9
4

1
0

6

1
1

8

1
3

0

1
4

3

1
5

5

1
6

7

1
7

9

1
9

2

2
0

4

2
1

7

2
2

9

2
4

2

2
5

6

N
o

rm
a

li
ze

d
 R

e
so

u
rc

e
 D

e
m

a
n

d

Time (s)

Facebook Purdue Spark Hive / TPC-H

(a) Normalized current resource demand for each queue,
with respect to its current share.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0

1
2

2
3

3
5

4
7

5
9

7
1

8
2

9
4

1
0

6

1
1

8

1
3

0

1
4

3

1
5

5

1
6

7

1
7

9

1
9

2

2
0

4

2
1

7

2
2

9

2
4

2

2
5

6N
o

rm
a

li
ze

d
 C

u
rr

e
n

t
A

ll
o

ca
te

d
 R

e
so

u
rc

e

Time (s)

Facebook Purdue Spark Hive / TPC-H

(b) Normalized currently allocated resources for each queue,
with respect to its current share.

0

10

20

30

40

50

60

70

80

0

1
2

2
3

3
5

4
7

5
9

7
1

8
2

9
4

1
0

6

1
1

8

1
3

0

1
4

3

1
5

5

1
6

7

1
7

9

1
9

2

2
0

4

2
1

7

2
2

9

2
4

2

2
5

6

N
o

rm
a

li
ze

d
 A

cc
u

m
u

la
te

d
 R

e
so

u
rc

e

Time (s)

Facebook Purdue Spark Hive / TPC-H

(c) Normalized accumulated resources for each queue, with
respect to the system capacity.

Figure 4: Overview of detailed fairness resource allocation flow for LTRF.

degree for each queue (workload) over time. We have the following
observations:

First, the sharing policies of both MLRF and LTRF can bring
sharing benefits for queues (workloads). For example, both Face-
book and Purdue workloads, illustrated in Figure 5(b) and 5(d) ob-
tain benefits under the shared scenario. This is due to the sharing
incentive property, i.e., each queue has an opportunity to consume
more resources than her share at a time, better off running at most
all of her shared partition in a non-shared partition system.

Second, LTRF has a much better result than MLRF. Specifically,
Figure 5(a) indicates that the sharing loss problem for MLRF is
constantly available until all the workloads complete (e.g., � �0.5
on average), contributed primarily by Spark and TPC-H workloads
given by Figure 5(b). In contrast, there is no more sharing loss
problem after 650 seconds for LTRF, i.e., all workloads get sharing
benefits after that. The major reason is that MLRF does not con-
sider historical resource allocation. Due to the varied demands for
each workload over time, it easily occurs two extreme cases: 1).
some workloads get much more resources over time (e.g., Face-
book and Purdue workloads in Figure 5(b)); 2). some workloads
obtain much less resources that without sharing over time (e.g.,
Spark and TPC-H workloads in Figure 5(b)). In contrast, LTRF
is a history-based fairness resource allocation policy. It can dy-
namically adjust the allocation of resources to each queue in terms
of their historical consumption and lending agreement so that each
queue can obtain a much closer amount of total resources over time.

Finally, regarding the sharing loss problem at the early stage
(e.g., 0 � 650 seconds) of LTRF in Figure 5(c), it is mainly due
to the unavoidable waiting allocation problem at the starting stage,
i.e., a first coming and running workload possess all resources and
leads late arriving workloads need to wait for a while until some
tasks complete and release resources. The problem exists in both
MLRF and LTRF. Still, LTRF can smooth this problem until it dis-
appears over time via lending agreement, while MLRF cannot.

6.4 Macrobenchmark Performance Results
Figure 6 presents the performance results (i.e., speedup) for four

workloads under Static Partitioning, MLRF and LTRF, respectively.
All results are normalized with respect to Static Partitioning (i.e.,
non-shared executions). We see that, 1). the shared cases (i.e.,
MLRF and LTRF) can possibly achieve better performance than or
at least the same as the non-shared case. For example, for Facebook
and Purdue workloads, both MLRF and LTRF have much better
performance results (e.g., 14% � 19% improvement for MLRF,
and 10% � 23% for LTRF) than exclusively using a static parti-
tioning system. The finding is consistent with previous works such
as Mesos [15]. The performance gain is mainly due to the resource
preemption of unneeded resources from other queues in a shared

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Facebook Purdue Spark Hive / TPC-H

S
p

e
e

d
u

p

Workload

Static Partitioning MLRF LTRF

Figure 6: The normalized performance results (e.g., speedup)for Static
Partitioning, MLRF and LTRF, with respect to Static Partitioning.

system. The statement can also be validated in Figure 5(b) and 5(d)
in Section 6.3. The fairness degrees for both Facebook and Pur-
due workloads are above one (i.e., get sharing benefit) during the
most of time. 2). There is no conclusive result regarding which one
is absolutely better than the other between MLRF and LTRF. For
example, MLRF is better than LTRF for Facebook by about 7%
and Spark by about 2%. However, LTRF outperforms MLRF for
Purdue workload by about 8% and TPC-H by about 10%.

6.5 Adaptive Task Quantum Policy Evaluation
To demonstrate the importance and effectiveness of adaptive task

quantum policy for YARN, we study the effects of accumulated
resource results over time under the fixed time quantum and the
adaptive task quantum mechanism proposed in Section 5.2.1.

We consider a scenario where the configured task quantum (e.g.,
600s) is much larger than the real task execution time of work-
loads. Figure 7 shows the compared accumulated results for LTRF
over time within one hour, which are normalized with respect to the
system capacity. We have the following observations:

First, Figure 7(a) illustrates that the accumulated resource un-
der the fixed task time quantum policy fluctuates significantly over
time, making it unable to be an indicator for resource-as-you-pay
fairness. This is due to the computation method for assumed exe-
cution time in the time quantum-based approach: 1). the assumed
execution time for the completed task is equal to its real execution
time; 2). for the running task, we compute its assumed execution
time using the maximum value of the configured time quantum and
its real execution time. Take Facebook workload as an example. Its
average task execution time is about 11s. At time 1439s, there are
107 running tasks, whose assumed execution time is 600, and its
normalized accumulated resource is 1019. However, at time 1450s
(i.e., after 11s), there are 31 running tasks, indicating that at least
76 tasks completed during this period and a significant drop occurs
for its normalized accumulated resource (e.g., 630).

0
100
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400

0

1
0

8

2
1

8

3
3

3

4
5

3

5
7

9

7
0

5

8
3

8

9
7

5

1
1

1
4

1
2

5
9

1
4

1
0

1
5

7
8

1
7

5
7

1
9

5
6

2
1

8
0

2
4

1
3

2
6

5
1

2
8

9
0

3
1

3
5

3
3

8
2

N
o

rm
a

li
ze

d
 A

cc
u

m
u

la
te

d
 R

e
so

u
rc

e

Time (s)

Facebook Purdue Spark Hive / TPC-H

(a) Normalized accumulated resources under the fixed task
time quantum of 600s, with respect to the system capacity.

0

100

200

300

400

500

600

700

800

900

1000

1100

0

8
6

1
7

5

2
6

8

3
7

0

4
8

0

5
9

6

7
2

1

8
6

1

1
0

0
5

1
1

6
0

1
3

2
5

1
5

0
2

1
6

8
6

1
8

7
2

2
0

6
5

2
2

6
7

2
4

9
5

2
7

4
3

3
0

1
2

3
3

0
1

N
o

rm
a

li
ze

d
 A

cc
u

m
u

la
te

d
 R

e
so

u
rc

e

Time (s)

Facebook Purdue Spark Hive / TPC-H

(b) Normalized accumulated resources with adaptive task
quantum mechanism, with respect to the system capacity.

0

50

100

150

200

250

300

350

400

450

500

550

600

0

8
2

1
6

6

2
5

4

3
5

0

4
5

3

5
6

2

6
7

8

8
0

6

9
4

2

1
0

8
5

1
2

3
6

1
4

0
0

1
5

7
1

1
7

4
6

1
9

2
8

2
1

1
2

2
3

0
9

2
5

3
0

2
7

6
7

3
0

2
5

3
3

0
1

T
a

sk
 Q

u
a

n
tu

m
 (

s)

Time (s)

Facebook Purdue Spark Hive / TPC-H

(c) Adaptive task quantum, initially 600s.

Figure 7: The adaptive task quantum results for LTRF in one hour.

In contrast, with adaptive task quantum policy, as shown in Fig-
ure 7(b), the curves of accumulated resource become much smoother,
making it good as an indicator for resource-as-you-pay fairness.
Figure 7(c) shows the adaptive task quantum results over time for
four workloads. We see that each workload has varied task quan-
tum and our policy can adjust them dynamically for all the work-
loads, validating the effectiveness of our adaptive approach.

7. CONCLUSION AND FUTURE WORK
Pay-as-you-use computing systems have been become emerging

in data centers and supercomputers. Resource fairness is an im-
portant consideration for such shared environments. However, this
paper finds that, the classical memoryless resource fairness policies,
widely used in many existing popular frameworks and schedulers,
including Hadoop, YARN, Mesos, Choosy, Quincy, DHFS [27],
MROrder [28], are not suitable in pay-as-you-use computing sys-
tem due to three serious problems, i.e., trivial workload problem,
strategy-proofness problem and resource-as-you-pay problem. To
address these problems, we propose LTRF and demonstrate that it
is suitable for pay-as-you-use computing system. Besides, we also
propose five payment-oriented properties as metrics to measure the
quality for any fair policy in a pay-as-you-use computing system.
We developed LTYARN, a long-term max-min fair scheduler for the
latest version of YARN and our experiments demonstrate the effec-
tiveness of our approaches. As future work, we plan to extend our
fairness definition to different price schemes [30] and multiple re-
source types (such as DRF [11]).

The implementation of LTYARN can be found in http://sourceforge
.net/projects/ltyarn/.

8. ACKNOWLEDGMENT
We thank the anonymous reviewers for their constructive com-

ments. Bingsheng He was partly supported by a startup Grant of
Nanyang Technological University, Singapore.

9. REFERENCES
[1] F. Ahmad, S. Y. Lee, M. Thottethodi, T. N. Vijaykumar. PUMA: Purdue

MapReduce Benchmarks Suite. ECE Technical Reports, 2012.
[2] Apache. YARN. https://hadoop.apache.org/docs/current2/index.html
[3] Apache. TPC-H Benchmark on Hive.

https://issues.apache.org/jira/browse/HIVE-600.
[4] Apache. Hadoop. http://hadoop.apache.org.
[5] Apache. Hive performance benchmarks.

https://issues.apache.org/jira/browse/HIVE-396.
[6] H. Arabnejad, J. Barbosa. Fairness Resource Sharing for Dynamic Workflow

Scheduling on Heterogeneous Systems, ISPA, pp. 633-639, 2012.
[7] A. Bhattacharya, D. Culler, E. Friedman, A. Ghodsi, S. Shenker, I. Stoica.

Hierarchical Scheduling for Diverse Datacenter Workloads. SOCC’14, 2014.
[8] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on Large

Clusters. OSDI’04, 2004.

[9] A. Demers, S. Keshav, S. Shenker. Analysis and Simulation of a Fair Queuing
Algorithm. In SIGCOMM’89, pp. 1-12, 1989.

[10] A. Ghodsi, M. Zaharia, S. Shenker and I. Stoica. Choosy: Max-Min Fair
Sharing for Datacenter Jobs with Constraints, EuroSys 2013, April 2013.

[11] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Schenker,I. Stoica.
Dominant Resource Fairness: Fair Allocation of Multiple Resource Types. In
NSDI’11, pp. 24-37, 2011.

[12] GitHub. Facebook workload traces.
https://github.com/SWIMProjectUCB/SWIM/wiki/Workloads-repository.

[13] Group Buying. http://en.wikipedia.org/wiki/Group_buying.
[14] B.S. He, W.B. Fang, Q. Luo, N.K. Govindaraju, T.Y. Wang. Mars: A

MapReduce Framework on Graphics Processors, In PACT’08, pp.260-269,
2008.

[15] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A.D. Joseph, R. Katz, S.
Shenker and I. Stoica, Mesos: A Platform for Fine-Grained Resource Sharing
in the Data Center, NSDI 2011, March 2011.

[16] M. Isard, M. Budiu, Y. Yu, A. Birell, D. Fetterly. Dryad: Distributed
Data-Parallel Programs from Sequential Building Blocks. Eurosys’07,
pp.59-72, 2007.

[17] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, A. Goldberg.
Quincy: Fair Scheduling for Distributed Computing Clusters, In SOSP’09, pp
261-276, 2009.

[18] R. Jain, D. M. Chiu, and W. Hawe. A quantitative measure of fairness and
discrimination for resource allocation in shared computer system. Technical
Report EC-TR-301, 1984.

[19] I. Kash, A. D. Procaccia, N. Shah. No agent left behind: dynamic fair division
of multiple resources. In AAMAS’13, PP. 351-358, 2013.

[20] Loan agreement. http://en.wikipedia.org/wiki/Loan_agreement.
[21] Max-Min Fairness (Wikipedia).

http://en.wikipedia.org/wiki/Max-min_fairness.
[22] J. Ngubiri, M. V. Vliet. A Metric of Fairness for Parallel Job Schedulers.

Journal of Concurrency and Computation: Practice & Experience. Vol 21, PP.
1525-1546, 2009.

[23] G. Sabin, G. Kochhar, P. Sadayappan. Job Fairness in Non-Preemptive Job
Scheduling. ICPP, pp. 186-194, 2004.

[24] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, N. Zhang, S. Antony, H.
Liu. Hive- A Petabyte Scale Data Warehouse Using Hadoop. ICDE, pp.
996-1005, 2010.

[25] D. C. Parkes, A. D. Procaccia, N. Shah. Beyond Dominant Resource Fairness:
Extensions, Limitations, and Indivisibilities. In ACM Conference on
Electronic Commerce, pp. 808-825, 2012.

[26] PUMA Datasets. http://web.ics.purdue.edu/f̃ahmad/benchmarks/datasets .htm.
[27] S.J. Tang, B.S. Lee, B.S. He. Dynamic slot allocation technique for

MapReduce clusters, In CLUSTER’13, pp. 1-8, 2013.
[28] S.J. Tang, B.S. Lee, B.S. He. MROrder: Flexible Job Ordering Optimization

for Online MapReduce Workloads, In Euro-Par’13, pp. 291-304, 2013.
[29] C.A. Waldspurger, W. E. Weihl. Lottery Scheduling: Flexible

Proportional-Share Resource Management. In OSDI’94, 1994.
[30] H. Wang, Q. Jing, R. Chen, B. He, Z. Qian, L. Zhou. Distributed systems meet

economics: pricing in the cloud, In HotCloud’10, pp.1-6, 2010.
[31] W. Wang, B. C. Li, B. Liang. Dominant Resource Fairness in Cloud

Computing Systems with Heterogeneous Servers. INFOCOM’14, 2014.
[32] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, I. Stoica. Spark:

Cluster Computing with Working Sets. HotCloud’10, pp. 10-16. 2010.
[33] M. Zaharia, D. Borthakur, J. Sarma, K. Elmeleegy,S. Schenker,I. Stoica, Delay

scheduling: A simple technique for achieving locality and fairness in cluster
scheduling. In Proceedings of EuroSys, pp. 265-278, 2010.

[34] H. N. Zhao, R. Sakellariou. Scheduling multiple DAGs onto heterogeneous
systems. IPDPS, pp. 159-172, 2006.

