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Abstract—Previous studies have indicated that gait
rhythm fluctuations are useful for characterizing certain
pathologies of neurodegenerative diseases such as Hunt-
ington’s disease (HD), amyotrophic lateral sclerosis (ALS),
and Parkinson’s disease (PD). However, no previous study
has investigated the properties of frequency range distri-
butions of gait rhythms. Therefore, in our study, empirical
mode decomposition was implemented for decomposing
the time series of gait rhythms into intrinsic mode functions
from the high-frequency component to the low-frequency
component sequentially. Then, Kendall’s coefficient of
concordance and the ratio for energy change for different
IMFs were calculated, which were denoted as W and RE ,
respectively. Results revealed that the frequency distribu-
tions of gait rhythms in patients with neurodegenerative
diseases are less homogeneous than healthy subjects, and
the gait rhythms of the patients contain much more high-
frequency components. In addition, parameters of W and
RE can significantly differentiate among the four groups
of subjects (HD, ALS, PD, and healthy subjects) (with the
minimum p-value of 0.0000493). Finally, five representative
classifiers were utilized in order to evaluate the possible
capabilities of W and RE to distinguish the patients with
neurodegenerative diseases from the healthy subjects.
This achieved maximum area under the curve values of
0.949, 0.900, and 0.934 for PD, HD, and ALS detection,
respectively. In sum, our study suggests that gait rhythm
features extracted in the frequency domain should be given
consideration seriously in the future neurodegenerative
disease characterization and intervention.

Index Terms—Amyotrophic lateral sclerosis, empirical
mode decomposition (EMD), gait rhythm fluctuation, Hunt-
ington’s disease, Kendall’s coefficient of concordance, neu-
rodegenerative disease, Parkinson’s disease, ratio for en-
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ergy change, stance, stride, swing, synthetic minority over-
sampling technique (SMOTE).

I. INTRODUCTION

WALKING involves the alternating action of the two
lower extremities and its pattern is described as a gait

cycle, which is defined as the interval of time between any of
the repetitive events of walking [1]. The gait cycle consists of
two periods: stance and swing [2], [3]. The stance phase begins
at the instant that one extremity contacts the ground and contin-
uous only as long as some portion of the foot is in contact with
the ground. On the contrary, the swing phase begins as soon as
the toe of one extremity leaves the ground and ceases just before
heel strike or contact of the same extremity [2], [3]. Winter has
proposed several tasks for walking, for example, maintenance
and support of head, arm, and trunk; maintaining the balance of
the body; and so on [1], [4], [5].

Several neurological disorders are characterized by the
progressive degeneration of different mechanisms involved in
motor responses and provoke gait’s abnormality. Observation
and evaluation of patients’ walking are crucial to the neurolog-
ical examination and diagnosis [6]. Parkinson’s disease (PD)
is a chronic neurodegenerative disorder characterized by static
tremor, rigidity, bradykinesia, abnormal gait, and posture. PD is
mainly caused by the degeneration of dopaminergic neurons and
apoptosis of the nigrostriatal area in the midbrain, leading to a
decline of dopamine levels in neostriatum and a decrease of exci-
tatory neurotransmission from the thalamus to the motor cortex.
PD is a chronic and slowly progressive disease. The symptoms
can be persistent and worsen progressively over years. PD is not
considered to be fatal, but people with PD do have a shorter life
expectancy [7]. Huntington’s disease (HD) is a chronic progres-
sive chorea caused by the inherited degeneration of basal gan-
glia and cerebral cortex. HD is caused by the mutation of
HTT gene, and code a protein called Huntington. This is
considered to play an important role in the neuron degeneration
of the brain. The HD patients have the symptoms of chorea
with involuntary jerking or twitching movements. While the
disease progresses, these abnormal movements may become
more evident. Patients with HD may find difficulty in walking,
speaking, and swallowing [8]. Amyotrophic lateral sclerosis
(ALS) is a chronic progressive neurodegenerative disorder
that damages the functions of the motor neurons in the central
nervous system composed of the spinal cord and the brain. It
will cause the disorder of the muscle movement and a series
of clinical symptoms, such as muscle weakness, atrophy,
fasciculation, and hyperreflexia [9]. The causes of such disease
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are assumed to be genetic, viral, and autoimmune diseases.
The respiratory muscular paralysis or pulmonary infection may
be the fatal outcome of ALS patients.

One of the accurate methods to derive gait rhythm fluctu-
ations such as the time series of stride time, swing time, and
stance time is based on the signals of vertical ground reaction
force (VGRF) recorded from ultrathin force-sensitive switches
placed inside each subject’s shoes [10]. Because these derived
gait rhythm fluctuations are nonlinear and nonstationary time
series, which have no specific sampling frequencies as well,
most of the previous studies implemented the variables calcu-
lated from the time domain to characterize the gait patterns of
the patients with neurodegenerative diseases. Hausdorff et al.
revealed that the “noisy” variations in the time series of stride
time display a hidden and unexpected fractal-like property [10].
Wu and Krishnan employed the swing-interval turns count and
the averaged stride interval as the parameters to differentiate
ALS patients from the healthy subjects [11]. Frenkel-Toledo et
al. found that the swing time variability may be used as a speed-
independent biomarker of rhythmicity and gait steadiness. They
also suggested that the increased gait variability in PD is not sim-
ply a consequence of bradykinesia [12]. Ren et al. implemented
phase synchronization and conditional entropy to analyze the
relationship between gait rhythms of both feet for the patients
with neurodegenerative diseases and suggested that it can be
applied to neurodegenerative disease characterization and ther-
apeutic intervention [13]. In addition, some previous studies
attempted to use time–frequency (TF) analysis to investigate
gait rhythms. Khandoker et al. used a wavelet-based scheme to
compute the relative risk of falls for subjects with locomotion
disorders [14]. Baratin et al. first implemented the procedure of
data resampling and then extracted features based on wavelet
analysis for the detection of neurological abnormalities [15].
Although TF analysis has the ability to reveal frequency infor-
mation of gait rhythms, no previous studies have investigated
their frequency range distributions in patients with different
neurodegenerative diseases (in our case, the gait rhythms of PD,
HD, ALS, and healthy subjects were used for analysis). Further-
more, so far, there is no biomarker for gait rhythms, which can
effectively differentiate among these four groups of people, as
mentioned above, through exploration of the frequency-domain
information of their gait rhythms. Finally, the commonly used
TF method, wavelet analysis, must select a set of basic signal
components as the priori assumptions and then calculates the
parameters for each of these signals such that their aggregate
will compose the original signal. Therefore, in our study, em-
pirical mode decomposition (EMD), a type of data-driven and
self-adaptive signal decomposition approach, was implemented
for the purpose of neurodegenerative disease characterization
based on the features represented in the frequency domain.

II. MATERIALS AND METHODS

A. Gait Rhythm Records

In our study, we utilized the gait rhythm dataset provided
by Hausdorff et al. in PhysioBank for analysis (http://www.
physionet.org/physiobank/database/gaitndd/). This is a large
and extensively used archive of physiological data for public
research founded by the Harvard-MIT division of health

sciences and technology [16]. This dataset contains 64 subjects
in total, which include 15 PD patients (age: 66.8 ± 10.9 (SD)
years, 10 men and 5 women), 13 ALS patients (age: 54.9 ±
13.4(SD) years, 10 men and 3 women), 20 HD patients (age:
47.7 ± 12.2 (SD) years, 6 men and 14 women), and 16 healthy
subjects (age: 39.3 ± 18.5 (SD) years, 2 men and 14 women),
respectively. In the experiment, each subject was required to
walk at his/her self-paced speed along a 77-m-long hallway for
5 min. In order to retrieve the VGRF signals, each subject’s
shoes had ultrathin force-sensitive switches placed inside. Sam-
pling frequency of VGRF signals was 300 Hz and the recorded
data were stored in a lightweight ankle-worn recorder. Next, the
measures of footfall contact times for each stride were derived
from these VGRF signals. It should be noted that the first 20 s
of gait rhythm data were removed before analysis for the sake
of minimizing start-up effects during recording. According to
the previous studies of Hausdorff et al., a median filter was
applied in order to remove data points that were three standard
deviations greater than or less than the mean value. These
outliers were largely due to the turns at the end of the hallway.

In our study, we employed five types of time series of gait
rhythm fluctuations for analysis: stride time (the time period
from initial contact of one foot to the subsequent contact of
the same foot), swing time (amount of time one foot is in the
air during one stride time), stance time (amount of time one
foot is on the ground during one stride time), percentage swing
time (100 × swing time/stride time), and percentage stance
time (100× stance time/stride time). It is worth noting that these
five types of gait rhythms do not have the sampling frequency
since they were derived from the VGRF signals. In addition, only
the patients at the advanced stages of diseases were selected for
disease group comparisons in line with previous studies (PD:
Hoehn and Yahr score �3, nine subjects in total; HD: total
functional capacity score �5, nine subjects in total; ALS: the
number of months since diagnosis �9, nine subjects in total)
[17], [18]. The reasons for this are as follows: first, because
three groups of patients have varying degrees of impairment, it is
easy to obtain an unreliable conclusion if we compare one entire
patient group with the other. Second previous studies found that
there is no strong correlation relationship between the ages of
the patients and the severities of the diseases. Third, at advanced
stages of neurodegenerative disease, gait patterns of the patients
are more seriously disrupted by this than by physiological aging.

B. Empirical Mode Decomposition

EMD, a type of TF analysis approach, is a procedure for de-
composing a complicated set of data into a finite and often-small
number of intrinsic mode functions (IMFs), which are defined
as functions having the same number of extrema and zero cross-
ings, with its envelopes being symmetric with regard to zero
[19]. The EMD method is data-driven, locally adaptive, multi-
scale, and robust. It is, therefore, very suitable for processing
nonstationary, nonlinear, and time-varying data [20]. The EMD
method behaves like bandpass filtering. Hence, EMD could rep-
resent the information of gait rhythms in the frequency domain
to some extent [21]. The procedures of extracting an IMF are as
follows:

1) Identify the local maxima and minima.
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2) Interpolate between the maxima by a cubic spline curve,
which obtains the upper envelopes, denoted as Eu (t).

3) Interpolate between the minima by a cubic spline curve,
which obtains the lower envelopes, denoted as El(t).

4) Calculate the mean value of the upper and lower en-
velopes from steps 2 and 3:

m11(t) =
1
2

(Eu (t) + El(t)) . (1)

5) Achieve the candidate h11 for the first IMF component:

h11(t) = x(t) − m11(t). (2)

6) In the most cases, the first candidate h11 does not satisfy
the IMF conditions, and iterate steps 1–5:

h1k (t) = h1(k−1)(t) − m1k (t) (3)

until the threshold for standard deviation SD for the two
consecutive siftings is satisfied:

SD =
T∑

t=0

∣∣h1(k−1)(t) − h1k (t)
∣∣2

h2
1(k−1)(t)

. (4)

7) After k iterations, the first IMF is obtained:

c1 = h1k . (5)

8) The first residue can be taken from the difference of the
signal x(t) and c1 :

r1 = x(t) − c1 . (6)

9) Iterate steps 1–6 on the residual rn in order to obtain all
the IMFs :

r1 − c2 = r2 (7)

rn−1 − cn = rn (8)

until the cn or rn is smaller than the predefined threshold, or
the residual signal is either a constant, a monotonic slope, or a
function with only one extrema. The original signal x(t) can be
expressed as

x(t) =
n∑

i=1

ci + rn . (9)

Through the EMD method, the instantaneous amplitude of
each IMF component can be expressed by means of a Hilbert
transform. The equation for the Hilbert transform is given
below:

y(t) =
1
π

P

∫ ∞

−∞

c(τ)
t − τ

dτ (10)

where P is the Cauchy principal value. The analytic signal z(t)
can be expressed as follows:

z(t) = c(t) + iy(t). (11)

The instantaneous amplitude a(t) can be expressed as

a(t) =
√

c2(t) + y2(t). (12)

Because the last IMF may represent the overall signal trend
rather than a true IMF, in our study, only the first five IMFs
were implemented (all the time series of gait rhythms were
decomposed into six IMFs in total).

C. Kendall′s Coefficient of Concordance

Kendall’s coefficient of concordance, known as Kendall’s W,
is a coefficient used to measure the association between two
pairs of ranked data. It is a descriptive statistical approach,
which represents the degree of relationship between two or more
variables [22]. Especially, Kendall’s W allows a researcher to
evaluate the degree of agreement between m sets of ranks for
n subjects or objects according to a particular characteristic
[23]. The range of Kendall’s W is from 0 (no agreement) to
1 (complete agreement). For example, each of a number of
“judges” (m) ranks a given set of n objects, i. e., from the best to
the worst. (The “judges” can be different variables, characters
or any other physical entities, in reality.) If the test statistical
value of W is 1, it means that all the “judges” have unanimous
agreement in their rankings. On the contrary, if the test statistical
value of W is 0, it indicates that there is no overall trend of
agreement among the different “judges,” and their responses
are extremely diverse. It should be noted that Kendall’s W does
not make any assumptions about the probability distribution
properties of the population. In the biomedical signal processing
area, for fMRI studies, Kendall’s W is one of the significant
approaches to measure the regional homogeneity of the time
series of neighboring voxels of interests in order to differentiate
normal and abnormal brain functions [24]. In addition, Kendall’s
W is also widely used in time-domain measures of inter-channel
electroencephalogram correlations [25]. Suppose the number of
a “judge” is j and the object i is given by him the rank ri,j . Then,
the total rank given to object i is

Ri =
m∑

j=1

ri,j . (13)

And S is defined as

S =
n∑

i=1

(
Ri − Ri

)2
=

n∑

i=1

R2
i −

1
n

(
n∑

i=1

Ri

)2

. (14)

And the definition of Kendall’s W is given by

W =
S

1
12 m2 (n3 − n)

. (15)

The value of W is from 0 to 1 and all the values of ri,j should
be ordinal before calculating the Kendall’s W. In our study, the
first five IMFs were implemented for analysis. Hence, n is given
by 5 and m is equal to the length of gait rhythms. In addition,
it should be noted that in our study, the smaller the value of W,
the less difference in the instantaneous amplitudes of the IMFs
are observed.

D. Ratio for Energy Change

EMD behaves spontaneously as a filter bank and decomposes
the time series into IMFs from the “high-frequency” to
“low-frequency” components sequentially [26]. Hence, it has
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been shown that analyzing the inherent relations between IMFs
contributes to exploring a variety of biomedical problems
such as epileptic spike detection [27], [28]. In our study, the
instantaneous amplitudes of the first five IMFs were computed
in order to derive the ratio for energy change of different IMFs,
which could manifest the hidden relationship between various
“frequency bands” of gait rhythm to some extent. We regard
the first and the second IMFs as the relatively “high-frequency”
components, whereas the fourth and the fifth IMFs as the
relatively “low-frequency” components of gait rhythms. The
ratio for energy change is defined as follows:

Eh =
N∑

t=1

a2
1(t) +

N∑

t=1

a2
2(t) (16)

El =
N∑

t=1

a2
4(t) +

N∑

t=1

a2
5(t) (17)

RE =
Eh − El

El
(18)

where a1 , a2 , a4 , and a5 denote the instantaneous amplitudes
of the first, second, fourth, and fifth IMFs, respectively. N is
the length of the gait rhythm. Eh denotes the whole energies
of the first and the second IMFs. El denotes the whole energies
of the fourth and the fifth IMFs. Because gait is composed of
the movements of both feet, the average RE (of both feet) was
calculated as a newly developed parameter for further analysis.

E. Pattern Classification

In our study, a machine learning technique was implemented
in order to evaluate the abilities of W and RE to distinguish the
patients with HD, ALS, and PD from the healthy subjects. Be-
cause this dataset contains numbers of patients with HD, ALS,
or PD, which are not equal to that of healthy subjects, the un-
equal prior probabilities of the two class datasets might lead the
classifiers to be more sensitive in detecting the majority rather
than the minority class. Oversampling and undersampling in
data analysis are the two frequently used approaches to adjust
the class distribution of unbalanced datasets. The oversampling
method has the advantage of not only being beneficial for cor-
recting for a bias in the original dataset but also preventing loss
of information. Therefore, in most classification problems re-
lated to skew class distributions, the oversampling method is
selected as the best way. In our study, the synthetic minority
oversampling technique (SMOTE), a mature approach to ad-
dress unbalanced dataset problems, is implemented, which will
not exaggerate the receiver operating characteristic curve of the
features or cause overfitting problems [29]–[31].

We discussed above how to handle class imbalance problems
by applying SMOTE. Next, we used five representative classi-
fiers to test the proposed algorithm comprehensively: Naı̈ve
Bayes (NB), support vector machine (SVM), random forest
(RF), multilayer perceptron (MLP), and simple logistic regres-
sion (SLR), which are all implemented using the Waikato En-
vironment for Knowledge Analysis software [32]. The RF is
a learning ensemble algorithm, which consists of a bagging of
decision trees with a randomized selection of features at each
split. Decision tree is one of most popular methods used for data

exploration. One type of decision tree is called classification and
regression tree, which divides feature space into sets of disjoint
rectangular regions by means of greedy and recursive partition-
ing [33]. RF has many advantages. For example, it can produce
a highly accurate classifier. It is also effective for missing data
estimation and large database running. The NB classifier is a
generative model that determines the class of a given data ob-
ject by the maximum a posteriori estimation [34]. The NB
can be trained very efficiently in a supervised learning setting.
However, the parameter estimation requires a large number of
labeled data. SVM is a maximum margin-based algorithm for
efficiently training learning machines in kernel-induced feature
spaces, and at the same time, it generalizes well to unseen data
and is insensitive to the class imbalance problem [35]. MLP is a
type of feed-forward artificial neural network model, aiming at
learning linear functions that project data objects from the fea-
ture space to the target space. Each layer of MLP has a number
of perceptrons and different layers are fully connected. MLP is
often trained by the back propagation algorithm, which tunes
parameters of MLP by minimizing the least-mean-squares error
[36] between the output and the target. SLR is a classifier built
on linear logistical models that learns the best function that fits
the data. By training regression functions for different classes,
an unknown data object can be classifier to the class to which
the data object has the shortest distance in the feature space.

Principal component analysis (PCA) is a feature dimension
reduction technique that aims to project a data object to a new
feature space with fewer dimensions while minimizing the re-
construction error. The projection function is identified by the
eigenvalue decomposition method. The eigenvectors with top
eigenvalues will be selected as the projection function. Princi-
pal components (PCs) are a new set of variables, which are linear
combinations of the observed ones. Because of the decreasing
variance property, much of the variance tends to be concen-
trated in the first few PCs. In order to take proper number of
PCs for dimension reduction, the cumulative percentage of total
variation for the selection of PCs needs to be calculated. Each
eigenvalue can represent the variance of each PC. Hence, if λi

represents the ith eigenvalue for the ith PC, then the cumulative
percentage of total variation for the first r PCs is calculated as
follows:

∑r
k=1 λk∑N
k=1 λk

=
1
N

r∑

k=1

λk (19)

where N denotes the total number of eigenvalues. Generally,
we choose the first r PCs, whose cumulative percentage of total
variation is just above 95%. In addition, to avoid overfitting
problem, the tenfold cross-validation method was employed for
assessing the generalization ability for an independent dataset.
In the experiment, the area under the curve (AUC) is used to
measure the performance for classification and regression tasks.
The greater potential of classification always has a larger AUC
value [37].

III. RESULTS

Fig. 1 shows the first five IMFs of the time series of stride
time for one healthy subject. It is obvious that these five IMFs
were displayed from the relatively high- to low-frequency com-
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Fig. 1. EMD of a healthy subject record. The first five IMFs obtained
by EMD are from the top to the bottom.

Fig. 2. Instantaneous amplitudes of the first five IMFs.

ponents sequentially. Fig. 2 shows the instantaneous amplitudes
of the IMFs displayed in Fig. 1. Table I shows the means and
the standard deviations of the values of W and RE for the five
types of gait rhythms for all the HD, ALS, and PD patients, and
healthy subjects in the dataset. From Table I, it is obvious that
for the parameter of W, the healthy subjects have almost the
minimum means and standard deviations, which implies that
the frequency range distributions of gait rhythms of the healthy
subjects are relatively homogeneous. In our study, the smaller
the value of W, the less difference in instantaneous amplitudes
of the IMFs was observed. In addition, from Table I, it is also
apparent that, compared with the healthy subjects, the patients
with neurodegenerative diseases have larger values of RE ,
which indicates that the gait rhythms of the patients contain
much more high-frequency components. In our study, the
Kruskal–Wallis test was first implemented to test for statistical
differences among the four different groups and the results were
shown in Table I as well. It is apparent that all the p values of the
derived parameters are less than 0.05. In addition, the Wilcoxon

ranked sum tests of W and RE were employed and the results
were shown in Table II (ALS versus healthy subjects, HD versus
healthy subjects, PD versus healthy subjects, advanced ALS
versus advanced HD, advanced PD versus advanced HD, and
advanced ALS versus advanced PD). No assumptions are made
about the underlying distributions of the data being compared
for these nonparametric tests. In Tables I and II, if the p value
is less than or equal to 0.05, we reject the null hypothesis.

In our study, because of the limited number of subjects, if
all the extracted features were implemented for classification
directly (which contain five values of W and RE , respectively),
it might lead to the problem of overfitting. Hence, PCA was
utilized. For the classification of PD and healthy subjects, the
first four PCs were selected. For the classification of ALS and
healthy subjects, the first five PCs were selected. For the clas-
sification of HD and healthy subjects, the first four PCs were
selected. Table III shows the values of AUC for the classifica-
tions of PD and healthy subjects, ALS and healthy subjects, and
HD and healthy subjects, respectively.

IV. DISCUSSION

Gait is a rhythmic and semiperiodic behavior, which has been
demonstrated in a number of previous studies [7], [10]–[12]. In
addition, all of these studies have shown that the fractal struc-
tures of the gait rhythms of PD, HD, and ALS are significantly
different from those of healthy subjects [7]. Hence, in our study,
we assume that their properties extracted in the frequency do-
main should also be altered due to the disease disturbance.

In our study, we proposed a new approach to investigate the
frequency range distributions of gait rhythms for PD, HD, and
ALS patients, compared to healthy subjects, to provide new
potential biomarkers for neurodegenerative disease characteri-
zation. Gait rhythm fluctuations comprise nonlinear, multiscale,
and nonstationary signals in essence, so it is very appropriate to
use EMD to analyze them.

Although EMD is a self-adaptive and data-driven method, its
frequency-domain properties can be compared with the spec-
trum analysis to some extent. If we assume that the sampling
frequency of one signal is 1 Hz (normalized frequency), the
mean frequency of the fifth IMF is around 0.025 Hz. Hence,
the fifth IMF can represent the low-frequency components of
the signal. Although the EMD might decompose the signal into
more numbers of IMFs if changing their predefined conver-
gence threshold into smaller values, the later IMFs might not
truly reflect the frequency components of the signal. There-
fore, it is important to choose the suitable number of IMFs for
research. Until now, there are no standard criteria for IMF selec-
tion and this is one of the deficiencies for EMD. In our study, we
implemented the commonly used convergence threshold for
EMD analysis, which is relatively reliable and robust.

Kendall’s W was implemented to measure the homogeneity
of the instantaneous amplitudes of IMFs for the four groups
of subjects. In Table I, it is obvious that compared with the
PD, HD, and ALS patients, the healthy subjects have almost
the minimum mean values, which implies that the instantons
amplitudes of IMFs of the healthy subjects have inconspicuous
difference in the observations of the whole time series. In other
words, all the frequency ranges of the gait rhythms of the healthy
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TABLE I
MEANS, STANDARD DEVIATIONS, AND P VALUES OF KRUSKAL–WALLIS TESTS OF THE PARAMETERS W AND RE FOR HD, PD, ALS, AND HEALTHY SUBJECTS

HD PD ALS Healthy Subjects P Value

Stride Time (s) W 5.465e-04 ± 8.835e-04 1.693e-04 ± 4.614e-04 9.662e-04 ± 0.003 9.155e-06 ± 4.085e-06 0.000
RE 5.489 ± 4.597 3.891 ± 4.033 3.096 ± 3.677 0.910 ± 0.905 0.000

Swing Time (s) W 2.191e-04 ± 3.492e-04 2.695e-05 ± 2.395e-05 3.116e-05 ± 2.414e-05 4.236e-06 ± 2.433e-06 0.000
RE 6.982 ± 3.088 5.041 ± 3.430 4.840 ± 1.879 3.147 ± 1.453 0.001

% Swing Time W 0.740 ± 1.018 0.124 ± 0.008 0.111 ± 0.103 0.024 ± 0.016 0.000
RE 7.485 ± 3.690 4.735 ± 2.441 3.955 ± 2.224 3.974 ± 1.324 0.002

Stance Time (s) W 4.245e-04 ± 6.709e-04 8.558e-05 ± 2.361e-04 0.002 ± 0.006 5.571e-06 ± 3.074e-06 0.000
RE 4.776 ± 3.781 2.341 ± 2.726 5.423 ± 9.013 0.756 ± 0.689 0.001

% Stance Time W 0.740 ± 1.018 0.124 ± 0.008 0.111 ± 0.103 0.024 ± 0.016 0.000
RE 7.485 ± 3.690 4.735 ± 2.441 3.955 ± 2.224 3.974 ± 1.324 0.002

TABLE II
P VALUES OF WILCOXON RANKED SUM TESTS OF THE PARAMETERS W AND RE FOR ALS AND HEALTHY SUBJECTS, HD AND HEALTHY SUBJECTS, PD AND

HEALTHY SUBJECTS, HD AND PD, HD AND ALS, AND ALS AND PD

ALS versus Healthy Subjects PD versus Healthy Subjects HD versus Healthy Subjects HD versus PD HD versus ALS ALS versus PD

Stride Time (s) W 0.000 0.000 0.000 0.003 0.031 0.489
RE 0.020 0.007 0.000 0.161 0.050 0.310

Swing Time (s) W 0.000 0.000 0.000 0.006 0.004 0.730
RE 0.008 0.101 0.000 0.113 0.077 0.730

% Swing Time W 0.001 0.000 0.000 0.000 0.000 0.387
RE 0.948 0.545 0.001 0.006 0.004 0.730

Stance Time (s) W 0.000 0.000 0.000 0.050 0.161 0.931
RE 0.020 0.012 0.000 0.014 0.011 0.730

% Stance Time W 0.000 0.000 0.000 0.000 0.000 0.387
RE 0.948 0.545 0.001 0.006 0.004 0.730

TABLE III
VALUE OF AUC FOR THE CLASSIFICATIONS OF HD AND HEALTHY SUBJECTS,
PD AND HEALTHY SUBJECTS, AND ALS AND HEALTHY SUBJECTS BASED ON

THE DERIVED PARAMETERS OF W AND RE 1

HD versus Healthy PD versus Healthy ALS versus Healthy
Subjects Subjects Subjects

RF 0.885 0.865 0.900
SL 0.843 0.949 0.859
MLP 0.878 0.910 0.934
NB 0.898 0.875 0.891
SVM 0.900 0.906 0.906
Average 0.881 0.901 0.898

subjects have the highest degree of uniformity and monotonic
distributions among the four groups.

In order to further investigate the dominant frequency range,
which alters the homogeneity of the frequency distributions of
the gait rhythms of the patients with neurodegenerative diseases,
the ratio for energy change, denoted as RE , was implemented.
The results revealed that the high-frequency components of the
gait rhythms of the PD, HD, and ALS patients are much stronger
than the healthy subjects. This might be due to the fact that
the neuromuscular system is disturbed by the neurodegenera-
tive diseases, leading to the gait variability change. Previous
studies have shown that in healthy subjects, the stride-to-stride
fluctuations are relatively small and the variations of many pa-
rameters (such as the stride time) are on the border of just a
few percent. However, for the patients with neurodegenerative
diseases, the fractal dynamics of gait are significantly changed,

which adds the so-called noisy variations to the gait rhythms
[12]. In addition, analyzing the energy change between vari-
ous frequency bands of the physiological time series is very
meaningful. For example, in heart rate variability signal, both
sympathetic and parasympathetic systems embody their activi-
ties in the frequency range from 0.05 to 0.15 Hz, whereas the
activities of sympathetic system are only reflected in the fre-
quency range from 0.15 to 0.4 Hz. In our study, we found that
the increase of the high-frequency component of gait rhythms
might suggest abnormality in the neuromuscular system, which
is consistent with the viewpoint of previous studies that for some
measures of gait dynamics, less variability is better (i.e., fractal
index, standard deviation) [10].

It is evident that in Tables I and II, the increases in W and RE

are common and nonspecific changes, which can be observed in
walking by neurodegenerative disease patients. These two newly
derived parameters both represent the frequency information of
gait rhythms to some extent. For HD, the most common symp-
tom is chorea, that is, dance-like or jerky movement of the arms
and legs. Previous studies also showed that HD patients exhibit
significantly more gait variability than PD and ALS patients. In
our study, we discovered that the HD patients generally have
the largest value of W (the larger the value of W, the weaker the
homogeneity of the frequency distributions of the gait rhythms)
and RE (the larger the value of RE , the more high-frequency
components the gait rhythms have), which are easily explained
by the physical features of HD as mentioned above. PD is a type
of neurodegenerative disease producing akinesia (an absence
of spontaneous movement) whereas HD is one that produces
hyperkinesia (rapid involuntary movements). Hence, the values
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of W and RE for PD are generally smaller than HD. It should
be noted that the pathologies of PD and HD are both related to
the disorder of the basal ganglia and their gait patterns are very
similar as well. However, in Table II, it is obvious that these two
types of neurodegenerative diseases can be easily differentiated
by the parameters of W and RE , which suggests that the ex-
tracted features of gait rhythms in the frequency domain is also
very useful for the diagnosis of neurodegenerative disease.

Considering almost of the previous studies kept the same
comparison strategies as Hausdorff et al., in our work, we take
the same approach (only the patients with advanced ALS, ad-
vanced HD and advanced PD were implemented for disease
group comparisons). In order to further investigate whether our
developed parameters are robust or not, we further analyzed all
the patients without any selection. The results are very similar
with the ones shown in Table II. For the comparison of HD and
PD, there are eight out of ten variables, whose p values are less
than 0.05. For the comparison of HD and ALS, there are six out
of ten variables, whose p values are less than 0.05.

In this dataset, it also contains a separate file which includes
the clinical information for each subject such as a measure of
disease duration or severity. For the PD patients, the Hohn and
Yahr score is provided (a higher score indicates more advanced
disease). For the HD patients, the total functional capacity score
is provided (a lower score indicates more advanced functional
impairment). For the ALS patients, the time in months since the
diagnosis of the disease is given. In order to further investigate
whether our developed parameters are useful in the characteri-
zation of pathological alteration related to the disease, we also
calculated the correlation coefficients of the values of W and RE

with the severities of PD, HD, and ALS, respectively. The maxi-
mum absolute values of correlation coefficients for PD, HD, and
ALS are 0.631, 0.781, and 0.595, respectively, which indicate
the possibility of using W and RE for computer-aided diagnosis.
Compared with the absolute values of correlation coefficients
derived from HD, the calculated ones for PD and ALS are not
high enough, which might be due to the following reasons. First,
the Hohn and Yahr scale only uses five stages to evaluate the
symptoms of PD progress, which may not reflect the severity of
PD patients completely (more and more clinicians have already
implemented the Unified Parkinson’s Disease Rating Scale (UP-
DRS) to evaluate the disease severity of the PD patients. The
UPDRS can assess the limitation of PD daily activities in more
details). Second, for ALS patients, only the number of months
since the diagnosis of the disease is provided, which might not
truly reflect the severity of ALS disease because the start of ALS
may be so subtle that the symptoms are overlooked, or every pa-
tient does not have the same speed of progression of the disease.
In our study, these two newly developed parameters can reflect
the physiological information in the frequency domain, which
have totally different biological meanings from the other previ-
ously derived parameters. Hence, in the future, it is possible to
combine all these developed parameters together (such as stride
time, fractal index etc.) and employ a regression technique to
accurately evaluate neurodegenerative disease progression.

In our study, there are some limitations needed to be clari-
fied and explained. As mentioned in the previous literature, in
this dataset, the ages of the groups were not matched very well.
However, many previous studies neglected this mismatch and

investigated the gait rhythms of patients with neurodegenerative
diseases based on this dataset due to the following three reasons
[7], [14], [38]. First, it has been widely accepted that the impact
of a neurodegenerative disease on the alterations of gait pat-
terns is more pronounced than those due to physiological aging.
Hausdorff et al. once showed that a young man with neurode-
generative disease possesses obviously abnormal gait patterns
if compared with a much older healthy subject [7]. Second, this
is the only public data archive which contains the records of
gait rhythms measured from most kinds of neurodegenerative
diseases. Most of the other archives only have datasets of PD
patients. Third, the worldwide prevalences of ALS and HD are
very low (ALS: one to three cases per 100 000 individuals; HD:
five to ten cases per 100 000 individuals). Hence, it is very dif-
ficult to collect such a valuable dataset [39]–[41]. It is worth
noting that in the dataset, the age of HD patients was not signifi-
cantly different from healthy subjects and their corresponding p
values shown in Table II are all less than 0.05, with the smallest
one of 0.0000493. In order to eliminate the possible influence
of age on the group comparisons, six healthy subjects and four
PD patients were removed, resulting in no significant age differ-
ence between ALS and healthy subjects (p > 0.05), and PD and
healthy subjects (p > 0.05). The results show that for these two
group comparisons, there are six out of ten (ALS versus healthy
subjects) and five out of ten (PD versus healthy subjects) param-
eters, whose p values are less than 0.05. This could demonstrate
the effectiveness and validity of our developed approach to some
extent.

V. CONCLUSION

In summary, we have presented a new insight on gait rhythm
fluctuation analysis in humans, which is based on investigating
their frequency range distributions. In addition, the parameters
(W and RE ) were developed in order to characterize the clinical
symptoms of the patients with HD, ALS, and PD, which could
potentially facilitate diagnosis of these neurodegenerative dis-
eases. Overall, the results using this novel approach are strong
and have high predictive sensitivity. Therefore, our research sug-
gests that the gait rhythm features extracted from the frequency
domain should be given serious consideration in future study.
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