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ABSTRACT
In this paper, we propose a network-agnostic and convergence-
invariant light-weight parallelization framework, namely GLP4NN,
to accelerate the training of Deep Neural Networks (DNNs) by
taking advantage of emerging GPU features, especially concurrent
kernel execution. To determine the number of concurrent kernels
on the fly, we design an analytical model in the kernel analyzer
module and integrate a compact asynchronous resource tracker in
the resource tracker module for collecting runtime configurations of
kernels with low memory and time overheads. We further develop
a runtime scheduler module and a pool-based stream manager for
handling GPU work queues in GLP4NN to avoid consuming too
many CPU threads or processes while dispatching workloads to
GPU devices. In our experiments, we integrate GLP4NN into Caffe
to accelerate the batch-based training of four well-known networks
on NVIDIA GPUs. Experimental results show GLP4NN is able to
achieve a speedup of up to 4X over the original implementation as
well as keep the convergence property of networks.
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1 INTRODUCTION
In the past few years, we have witnessed successful adoptions of
deep neural networks (DNNs) in various domains, such as com-
puter vision [34, 44, 46], multi-modal data analysis [15], and nat-
ural language processing [8]. The two key factors behind these
remarkable achievements are the immense computing power and
the availability of massive training datasets. Both require plenty of
computational and memory resources. As a result, modern many-
core accelerators like GPUs have become popular in DNN training
systems.

Recently, some emerging hardware features have been intro-
duced to new-generation GPU microarchitectures as shown in
Table 1. First, concurrent kernel execution is supported and im-
proved since Kepler architecture, by using multiple CUDA streams,
Hyper-Q feature or multiple-process service (MPS). Second, more
computing resources, such as CUDA cores and registers, are in-
tegrated into a single GPU chip, and memory bandwidth is also
increasing. Hence, it allows users to dispatch more workloads onto
a single GPU device. These hardware features change the basic
assumption of the existing single kernel-based execution approach
and open new space for optimizing DNN training.

Most modern deep learning frameworks are designed with GPU
support by adopting a kernel-based execution approach, such as
Tensorflow [1], Theano [2], MXNet [4], Caffe [17], DIGITS [28]
and SINGA [41]. But DIGITS and all the above frameworks are
mainly designed to simplify the implementation of DNN applica-
tions. To further optimize DNN applications on GPUs, NVIDIA
has issued a set of tools and libraries, including cuDNN [5] and
cuBLAS [30], which concentrate on optimizing the performance of
kernels for fundamental operations. There are also recent works
on accelerating CNNs by reducing arithmetic complexity in con-
volution layers [22, 25, 40] and optimizing memory access [23].
However, all of the methods above only focus on optimizations
of individual GPU kernels in a network layer without considering
the new features (in particular, concurrent kernel executions) of
modern GPUs, which can result in low resource utilization. As we
will show in the paper later, being aware of new features can bring
in significant performance improvement for DNNs’ training.

Due to differences among GPUs and workloads, there are three
challenges in the training phase of DNNs. The first challenge is
about the collection of kernel execution configurations on-the-fly.
On account of the prosperity of neural network models and layers,
workloads may vary from layer to layer or network to network. The
difference in the sample size of different datasets aggravates it. Also,
these two issues make it hard to analyze the kernel configuration
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statically. Although there are several excellent profiling tools such
as NVIDIA Visual Profiler [27] and Vampir [39] that can be utilized
to collect kernel runtime information. But these tools can only be
used in an offline manner, and a sample execution is required, which
brings in burdens to developers and consumes a large amount of
memory and times. Besides, it is very difficult to distinguish kernels
belonging to different layers with offline tools.

The second challenge is on how many concurrent kernels on
different devices should be launched. There are two issues to be
addressed. The first is how to launch kernels in parallel. We can
exploit Hyper-Q and MPS features, but these features may occupy
too many CPU threads or processes when many kernels should be
launched concurrently. The second issue is the setting of the proper
number of concurrent kernels on GPUs equipped with various
amount of resources on the basis of their runtime information.
Moreover, the difference in GPU devices makes it impossible to
specify a predefined optimal number of concurrent kernels for all
GPU platforms (like those in Table 1).

Table 1: Overview of GPU architecture features.

Architecture CUDA
Streams

Dynamic
Parallelism

Max Concurrent
Kernels HBM Tensor

Cores
Tesla × × 1 × ×

Fermi
√

× 16 × ×

Kepler
√ √

32 × ×

Maxwell
√ √

16 × ×

Pascal
√ √

128
√

×

Volta
√ √

128
√ √

The third challenge is the guarantee of the convergence property
of neural networks. Since a parameter tuning process is always
conducted to ensure appropriate convergence property before train-
ing a neural network, it is important to retain the effect of this
pre-tuning phase and keep the convergence of a network model
invariant between the original and optimized implementation.

To address all the above challenges, we propose a light-weight
parallelization framework, called GLP4NN. In this framework, we
utilize a compact resource tracker based on NVIDIA CUPTI li-
brary [31] to gather necessary kernel configurations at runtime
within a low overhead. Then all information collected will be passed
to the analytical model to figure out the proper number of concur-
rent kernels that can reside on a GPU under the resource constraint.
In addition, instead of using multi-thread technology, we imple-
ment a pool-style stream manager to handle concurrent kernel
launching.

In summary, this paper makes the following contributions:
• We propose a light-weight parallel framework to accelerate
the training of DNN models, which can be integrated into
modern deep learning frameworks.
• We make a compact resource tracker to collect kernels’ run-
time configuration and propose a naive analytical model to
maximize the GPU resource utilization.
• We design a stream pool which can be utilized to dispatch
concurrent kernels onto GPUs without consuming extra
system thread or process resources.
• We prove that GLP4NN conforms to convergence-invariant
and network-agnostic.

• We implement the proposed framework based on Caffe and
evaluate its performance.

The remainder of this paper is organized as follows. First, the
background and motivation of this paper are presented in Section
2. Details of the light-weight parallelization framework and the
proposed analytical model are described and analyzed in Section 3.
Section 4 shows the experiment results. We will introduce related
works in Section 5, and conclude this paper in Section 6.

2 BACKGROUND
In this section, we first describe the training algorithm of neural
networks and then show the motivation of this paper.

2.1 Neural Network Training

Algorithm 1 Forward Propagation Algorithm.
Input:
The number of input bottom blobs.
Dimensions of a bottom blob (N, D1, D1, ·, Ds ).

Output: Top blob for the network layer.
for all bottom blobs do

for n ← 1 to N do
for d1 ← 1 to D1 do
· · ·

for di ← 1 to Di do
top[f(n, d1, · · · , di )]=BLAS(weight(d1, · · · , di ),

bias(d1, · · · , di ), bottom[g(n, d1, · · · , di )]).
end for

end for
end for

end for

Algorithm 2 Backward propagation Algorithm
Input:

Gradient w.r.t. top blob (N, D1, D1, ·, Ds ).
Output:

Gradient w.r.t. to the bottom blob.
for all top blobs do

for n ← 1 to N do
for d1 ← 1 to D1 do
· · ·

for di ← 1 to Di do
bottom_gradient[f(n, d1, · · · , di )]=

BLAS(top_gradient[h(n, d1, · · · , di ) , weight(d1,
· · · , di ));

end for
end for

end for
end for

The batch training algorithm is widely adopted in neural net-
works. This algorithm continuously seeks the minimum value of
a network loss function epoch by epoch. One epoch consists of
processing all samples in the training dataset. During each epoch,
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Figure 1: Overview of CaffeNet network.

samples are often processed in a batch manner. The computation
process of a sample batch can be divided into two passes, namely
forward and backward. For the forward pass, samples traverse the
network and calculate an average loss value. While in the backward
pass, a gradient value is computed and derivatives are propagated
across the network for parameter update by applying the chain rule.
Both forward and backward phases are handled layer by layer, and
an inter-layer synchronization operation is often required. A brief
introduction to the forward and backward pass of a network layer
in Caffe can be found in Algorithm 1 and 2, where bottom and top
are the inputs and outputs of a layer’s forward pass, N is the batch
size,weiдht and bias are layer parameters, and BLAS represents a
linear algebra operation.

2.2 Motivation
To show the impact of concurrent kernel execution on DNN ap-
plications, we conduct several experiments in training CaffeNet
(Fig. 1), which is a variant of AlexNet [21], with concurrent ker-
nel execution on different GPU platforms. In general, two layers
dominate the forward execution during the training of a CNN, i.e.,
the convolutional and pooling layers [37]. Thus we only present
results on convolutional layers in CaffeNet on Tesla P100 GPU as
an example when exploiting batch-level parallelism, and pertinent
layer parameters can be found in Table 5 in Section 4. As shown in
Fig. 3, concurrent kernel execution can help accelerate the training
of convolutional layers.

Our work is motivated by the following observations.
Observation 1: The training of a DNN model can be accelerated by

utilizing concurrent kernel execution strategy effectively. We have
demonstrated a speedup in most convolution layers considered
in this paper. Fig. 2 shows the speedup of convolution layers in
the CaffeNet model, and Fig. 3 shows that it can help accelerate
the computation of those layers by taking advantage of kernel
execution overlapping with multiple CUDA streams. As shown in
Algorithm 1 and 2, the computation of the backpropagation process
is similar to that of the forward process. Hence, only the forward
process of a layer is considered in experiments.

Observation 2: The optimal number of CUDA streams varies from
GPU to GPU. Fig. 4 shows the optimal number of CUDA streams
according to the runtime of the forward pass in each layer. Although
programmers can utilize as many CUDA streams as possible, this
method may consume a lot of hardware resources, which may
result in performance decrease on some GPUs. In addition, since
workloads may differ from layer to layer, it is hard for users to set
the number of streams for various GPUs. Hence it is necessary to
determine the proper number of CUDA streams by considering
both the device characteristics and kernel execution configurations.
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Figure 2: Speedups of CaffeNet’s convolution layers on P100.

Figure 3: Timeline of kernels in the conv1 layer(MNIST)
with multiple CUDA streams.
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Figure 4: Best observed number of concurrent streams for
CaffeNet’s layers.

3 FRAMEWORK DESIGN AND ANALYSIS
We first present the overall architecture design of GLP4NN, which
is followed by an introduction to the proposed kernel analytical
model. At the end of this section, we show the cost analysis of the
proposed framework and model.
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3.1 Architecture Design of GLP4NN
Fig. 5 shows all basic system components of GLP4NN, which are
resource tracker, kernel analyzer, stream manager and runtime sched-
uler, respectively. GLP4NN supports multiple GPUs on the same
machine. Each GPU device is assigned with a private kernel ana-
lyzer and runtime scheduler, and all GPUs in the same machine
share a public resource tracker and stream manager. Fig. 6 shows
the workflow among the basic components. We will describe more
details about them in the remainder of this section.

Figure 5: Overview of the GLP4NN framework.

Resource Tracker. This module is responsible for collecting and
maintaining kernel execution information at runtime. To avoid
gathering trivial kernel runtime information and reduce the profil-
ing and memory overheads, a self-defined compact profiler based
on NVIDIA CUPTI library, called kernel profiler, is integrated into
the proposed framework instead of utilizing existing profiling tools,
such as NVIDIA Visual Profiler [27] and Vampir [39]. Then the
kernel information collected will be passed to and parsed by the
kernel parser, which is essential to the proposed model. This module
can be customized to support other analytical models.

Kernel Analyzer. The kernel analyzer is exploited to analyze the
execution configurations of kernels to get the proper number of
concurrent kernels with the analytical model proposed. Within
this module, concurrency analyzer is responsible for kernel analysis
and concurrency maintainer is used to manage analysis results rela-
tive to a specific GPU. The analytical model to be utilized can be
customized by developers. This module is invoked by the runtime
scheduler when the kernel profiling is finished, and its output is
utilized to initialize the stream pool for launching kernels.

Stream Manager. To support concurrent kernel execution with-
out consuming too many system thread or process resources on
the host side, a stream manager is designed within the GLP4NN
framework. According to CUDA programming guide, a stream is a
sequence of commands that are executed in order, and on the other
hand, different streams may issue their commands concurrently. A
default stream is used to maintain the default stream allocated to a
CPU thread, and it is often utilized to synchronize all other streams

constructed by the same thread or collect kernels’ execution infor-
mation. Hence, a concurrent stream pool is designed to maintain all
concurrent streams on the current device and the default CUDA
stream is utilized to perform synchronization operation based on
the scheduling algorithm.

Runtime Scheduler. The runtime scheduler module is in charge
of invoking the asynchronous resource tracker and obtaining the
concurrency configuration from the kernel analyzer to initialize the
corresponding stream pool in the stream manager module. Specifi-
cally, this module is also responsible for dispatching kernels to GPU
streams. In this paper, we take a round-robin scheduling policy for
simplicity.

Fig. 6 presents GLP4NN’s workflow. Take as an example the for-
ward pass of the conv1 layer in CaffeNet on K40C. There are three
kernels needed to be computed, i.e., im2col, sgemm and gemmk.
At the beginning, the runtime scheduler checks whether configu-
rations of these kernels have been collected. If not, it will invoke
the resource tracker to gather the profiling information of these
kernels, e.g. im2col is initialized with a [18,1,1] grid and 33 registers
per thread. Then the information gathered is parsed by the kernel
parser and further analyzed by the kernel analyzer. In this example,
the output of the kernel analyzer is 3, which is utilized to initialize
the concurrent stream pool. The runtime scheduler will take the
result into account to dispatch kernels in the following iterations.

Figure 6: Workflow and all submodules of GLP4NN.

3.2 Analytical Model
Previous performance models on the GPU [35] mainly focus on the
analysis of a single kernel. Authors in [32, 47] provide a multiple
kernel analysis model to estimate the runtime and IPC of concurrent
kernel execution. But there is no guide on how to figure out the
proper number of concurrent kernels during the computation of
a given network layer for the device utilization improvement. It
is difficult for DNN developers to determine an proper number of
kernels to be adopted, especially in consideration of a large number
of network parameters needed to be tuned and the device diversity.
In this paper, we mainly concentrate on designing an analytical
model to obtain a proper number of concurrent kernels that can be
launched.
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Table 2: Notations.

Notation Definition Sources
#SM Number of SMs

Platform
Property

C Concurrency degree

smmax
Amount of available shared
memory per SM

βmax
Amount of resident blocks per
SM

τmax
Amount of resident threads per
SM

#βKi Number of blocks for Ki

Profiling
Input

βKi Amount of blocks per SM for Ki

smKi
Amount of shared memory per
block for Ki

τKi Amount of threads per block for Ki
TKi Execution time of kernel Ki

Tlaunch Kernel startup time

#Ki Total number of kernel Ki launched
Model
Output

memt t
Memory allocated for kernels’
timestamps

OthersmemK
Memory allocated for kernel
execution configurations

memcupti Memory required by CUPTI library
Tp Profiling time
Ta Kernel analysis time
Ts Kernel scheduling time

The basic assumption of this model is that thread blocks are
assigned evenly among all SMs on a typical GPU, and thread blocks
from different kernels (e.g. βKi and βKj , where i , j) can be placed
on the same SM if there are enough resources. For convenience, we
summarize notations in Table 2. These notations can be categorized
into four groups: device property, profiling input, model output and
others. Device property notations are platform specific and can be
easily obtained with the built-in device property or its specification.
Parameters from the profiling input are provided by the integrated
compact profiler or other third-party tools and libraries, such as
NVIDIA Visual Profiler [27] and Vampir [39], and those frommodel
output are calculated as the output of the proposedmodel. Notations
belonging to others are only used in the framework analysis. In the
remainder of this section, we focus on the model for NVIDIA GPU,
which is more widely used in deep learning applications.

According to the CUDA programming model, each GPU ker-
nel consists of a number of thread blocks, and the thread block
is the basic unit to be scheduled onto a SM for computation. K =
{K1,K2, . . . ,KN } represents the set of kernels that should be ex-
ecuted. The objective of the proposed model is to maximize the
occupancy ratio (ORSM ) of GPUs, which is defined as the ratio of
active warps on a SM (ωactive

SM ) to the maximum number of active
warps supported by a SM (ωSM ):

ORSM =
ωactive
SM
ωSM

(1)

The number of active warps allowable per SM in Eq. 1 is calcu-
lated through dividing the total number of active threads per SM
(τtotal ) by the warp size (θ ), which is 32 in current GPUs.

ωactive
SM =

τtotal
θ

(2)

Therefore, the objective is to maximize the number of active
threads per SM , which is the sum of products of active allowable
blocks per SM and the number of threads per block for kernel Ki .

τtotal =
N∑
i=1

(τKi × βKi ) (3)

There are several factors which may limit the number of kernels
that can be launched concurrently, including threads, registers,
shared memory and the concurrency degree. According to CUDA
documents, additional variables in a thread can be spilled to its
local memory when there is no sufficient register space. Normally,
the size of thread-specific local memory, which is 512KB per thread
on some GPU devices, is much larger than the number of registers
allocated. Hence, we treat registers as a kind of soft constraint,
while others are hard constraints. In our analytical model, we only
focus on hard constraints.

Shared memory per SM . There is a fixed amount of shared mem-
ory available on an SM , which can also be configured via CUDA
APIs. The size of shared memory per thread block is defined as
the sum of its static shared memory and dynamic shared memory
allocated. As a result, the total size of shared memory allocated for
all blocks resident on a SM should not exceed smmax .

0 ≤
∑
Ki ∈K

(smKi × βKi ) ≤ smmax (4)

Threads per SM . The maximum number of active threads sup-
ported by an SM is determined by the hardware. The total number
of threads that can be launched should conform to the following
equation.

0 ≤
∑
Ki ∈K

(τKi × βKi ) ≤ τmax (5)

Concurrency degree. Let C denote the maximum number of con-
current kernels that can executed in the GPU, which is generally
different across different types of GPUs. The final number of kernels
that can be launched in parallel should be no more than C .

1 ≤
∑
Ki ∈K

#Ki ≤ C (6)

By assuming that only a single host thread is responsible for
dispatching kernels, TKi /Tlaunch can be used as a rough estimate
of the maximum number of kernel Ki that can be launched con-
currently. Considering resource constraints, the number of kernel
Ki that can be executed in parallel should conform to the equation
below.

#Ki ≤ min{⌈
TKi

Tlaunch
⌉,
τmax × #SM
τKi × #βKi

,

smmax × #SM
smKi × #βKi

}

(7)



ICPP 2018, August 13–16, 2018, Eugene, OR, USA H. Fu, S. Tang, B. He, C. Yu, J. Sun

Besides, Eq. 8 can be utilized to estimate the number of blocks
to be placed onto a single stream multiprocessor for kernel Ki .

βKi = ⌊#βKi /#SM⌋ (8)
As described above, the computation of τtotal is a kind of mixed

integer linear programming problem, which can be solved easily
with many modern well-optimized libraries. The final number of
streams to be initialized is calculated by Eq. 9.

Cout =
N∑
i=1

#Ki (9)

3.3 Framework Analysis
In this part, we first prove that GLP4NN conforms to the network-
agnostic and convergence-invariant properties. Then, we demon-
strate that the proposed framework is lightweight.

3.3.1 Model Analysis. There are a number of studies on the
model analysis of deep learning frameworks [16, 24, 37], both in
distributed and centralized systems. In this paper, we consider the
network-agnostic and convergence-invariant property proposed in
[37].

Network-agnostic. Network-agnostic means that an optimization
strategy does not rely on any particular data layout nor any special-
ized and highly optimized libraries for neural layers. GLP4NN is a
light-weight framework, which aims at accelerating the training
or inference of neural networks by exploiting features of new-
generation GPUs, especially the concurrent kernel execution. It
mainly works on the kernel level by launching kernels concurrently
while preserving kernel dependencies. As described in Section 2.1,
the batch training algorithm is widely utilized in various networks,
including CNNs and RNNs, and samples from the same batch can
be independently processed in parallel, which is called batch-level
parallelism. In this paper, we apply the proposed framework to the
training of convolutional layers by exploiting the batch-level paral-
lelism, which corresponds to the loop in line 2 of Algorithms 1 and
2. It can be easily extended to other network layers adopting the
batch training method. Hence, it conforms to the network-agnostic
property.

Convergence-invariant. Convergence-invariant refers to that an
optimization strategy or approach does not change any parame-
ters in a neural network. For DNN developers, this is an impor-
tant advantage. Before the training of a DNN model, a parameter
pre-tuning process is often conducted to ensure an appropriate
convergence. It is required to keep the effect of this process. Since
GLP4NN framework can be utilized at the batch level as mentioned
above, it neither changes the computation inside a kernel nor breaks
kernel dependencies. Thus, no network parameters will be changed
and the convergence rate will keep invariant between the original
and GLP4NN-based implementation. It implies that the training
of a neural network with GLP4NN can converge to a stable state,
i.e. a local optimal state as the execution without GLP4NN. An
experiment result can be found in Section 4.2.3.

3.3.2 Cost Analysis. In this section, we analyze that our ap-
proach has very low space and time overheads through a cost
model.

Space analysis. To collect and analyze the kernel execution infor-
mation, additional memory spaces are needed to be allocated. The
total memory spacememtotal allocated by this framework can be
defined in Eq. 10.memt t andmemK can be computed as in Eq. 11.
All these three kinds of memory are allocated in the host memory,
which will not influence the DNN’s training on GPUs, and are safe
to be released after kernel analysis finished.

memtotal =memt t +memK +memcupti (10)




memt t =

N∑
i=1

(memt ti ∗ #Ki )

memK =

N∑
i=1

(memKi ∗ #Ki )

(11)

Time analysis. The one-time overhead of GLP4NN can be divided
into three parts: Tp is the profiling time needed by the resource
tracker, and Ta is the execution time of the kernel analysis pro-
cedure. Ts is the time cost of the scheduling algorithm. As in the
naive implementation of the proposed framework in this paper, a
static scheduling algorithm is adopted andTs can be safely ignored.
Furthermore,Ta is done on the host side and can overlap with GPU
workload by further careful optimization.

Ttotal = Tp +Ta +Ts (12)

4 EXPERIMENTS
To evaluate the efficiency and effectiveness of the proposed light-
weight parallelization framework, we provide an implementation
of GLP4NN with the integration into the Caffe framework [17],
GLP4NN-Caffe1. Caffe is one of the most popular DNN frameworks
nowadays. Our experiments have been conducted on NVIDIA GPUs
with four well-known neural networks. Especially, we use GNU
Linear Programming Kit to solve the MIP problem arisen from the
proposed analytical model.

Table 3: Hardware profile.

Machine configuration
GPU K40C P100 Titan XP

Generation Kepler Pascal Pascal
Core Count 15 × 192 56 × 64 30 × 128

Clock
Rate (GHz) 0.745 1.189 1.455

Memory
Size (GB) 12 12 12

Memory
Bandwidth (GB/s) 288 549 547.7

Memory Type GDDR5 HBM2.0 GDDR5X
L1 Cache/ Shared
Memory per SM 48KB 64KB 48KB

CPU Xeon E5-2620 Xeon E5-2640 Xeon E5-2650
CPU Cores 6 2 × 10 12

CPU Clock (GHz) 2.4 2.4 2.2

1https://github.com/Hao-Tju/GLP4NN_Caffe.

https://github.com/Hao-Tju/GLP4NN_Caffe
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con
v1

con
v2

con
v3

Layer

0

1

2

3

4

5

S
p
e
e
d
u
p

K40C

TitanXP

P100

(c) CIFAR10 network.
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Figure 7: Speedup of GLP4NN-Caffe over naive-Caffe per training iteration on GPUs.

4.1 Experiment Setup
Hardware. We evaluate the proposed framework on NVIDIA GPUs,
including Tesla K40C, Telsa P100 and Titan XP. Details about these
devices can be found in Table 3. The first GPU is built on the
Kepler microarchitecture, while the others are built on the Pascal
microarchitecture. We use the GCC compiler suite version g++ 4.8.5
on P100 and Titan XP, and g++ 5.4.0 on K40C. The glpk version
utilized in the experiments are glpk-4.63 on P100 and Titan XP,
and glpk-4.57 on K40C. For the GPU programming, we utilize the
CUDA toolkit 8.0 in all experiments. In this study, we make use of
a single GPU into consideration in this paper, but this framework
can also be applied to a multi-GPU platform or even distributed
environments by optimizing workloads on a single GPU.

Workloads. We evaluate the proposed framework with four fa-
mous networks, CIFAR10 [20], Siamese [17], CaffeNet [17] and
GoogLeNet [36], on MNIST [11], CIFAR-10 [20] and ImageNet
2012 [34] datasets. Since the convolution layer is one of the most
time-consuming layers in CNNs, we only apply GLP4NN to opti-
mize the computation of convolution layers in this paper. Layers’
configurations can be found in Table 5, where N is the batch size,
Ci is the depth or number of input feature maps, H andW are the
height and width of a feature map, Fh and Fw represent the height
and width of the convolution filter kernel, Co is the number of out-
put feature maps or filters, S specifies the stride which controls how
the filter convolves around the input volume, and P is the number
of pixels to add to each side of the input. There are 22 layers in
GoogLeNet with total 59 convolutional units, and we select 6 units
from them for convenience. All these networks are available within
the Caffe framework [17]. Detailed description of the datasets is
shown in Table 4.

4.2 Evaluation on The Proposed Framework
4.2.1 Overall Comparison. Fig. 7 shows speedups of GLP4NN-

Caffe over the original Caffe for the four networks, and the number
of streams calculated by the proposed analytical model for each
convolution layer is presented in Fig. 8. As shown in Fig. 7, the
proposed framework can achieve a better performance than original
Caffe in most convolution layers.

The speedup of GLP4NN-Caffe for Siamese network on K40C
is better than that on TitanXP and P100. By analyzing execution
timelines, we find that kernels within these networks’ layers are

Table 4: Test datasets.

Datasets Training Images Test Images Pixels Classes
MNIST [11] 60,000 10,000 28 × 28 10
Cifar10 [20] 50,000 10,000 32 × 32 10
ImageNet [34] 1.2 million 150,000 256 × 256 1000

finished in a much shorter time on TitanXP and P100 than on
K40C, which results in a low probability of overlapping execution
according to Eq. 7.

Table 5: Layers of DNNs used in this paper.

Layer N Ci H/W Co Fw /Fh S P Net
conv1 100 3 32 32 5 1 2

CIFAR10conv2 100 32 16 32 5 1 2
conv3 100 32 8 64 5 1 2
conv1 64 1 28 20 5 1 0

Siameseconv2 64 20 12 50 5 1 0
conv1_p 64 1 28 20 5 1 0
conv2_p 64 20 12 50 5 1 0
conv1 256 3 227 96 11 4 0

CaffeNet
conv2 256 96 27 256 5 1 2
conv3 256 256 13 384 3 1 1
conv4 256 384 13 384 3 1 1
conv5 256 384 13 256 3 1 1
conv_1 32 160 7 320 3 1 1

GoogLeNet

conv_2 32 832 7 32 1 1 0
conv_3 32 832 7 384 1 1 0
conv_4 32 192 7 384 3 1 1
conv_5 32 832 7 192 1 1 0
conv_6 32 832 7 48 1 1 0

Yet in some cases, such as conv1 layer in CIFAR10 network and
conv1 and conv1_p layer in Siamese network, the performance
of GLP4NN-Caffe is worse than the original implementation. To
understand the reason of performance degradation in these layers,
Fig. 9 shows the elapsed time of CIFAR10 network on TitanXP
and that of Siamese network on Tesla P100, where C and S in the
legend are short for CIFAR10 and Siamese, respectively. From this
figure, we can find that both conv1 in CIFAR10 and conv1/conv1_p
in Siamese can be finished within about 2ms, which may be too
short for launch much concurrent kernels. The prior kernel has
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(b) CaffeNet network.
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(c) CIFAR10 network.
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Figure 8: Number of streams configuration for different networks.
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Figure 9: Comparison between GLP4NN-Caffe and Caffe for
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Figure 10: Memory consumption of GLP4NN on GPUs.

finished before the next kernel can execute. However, the overall
performance of these two networks has still been improved.

In conclusion, the GLP4NN framework can be helpful for ac-
celerating the training of DNN models automatically on different
generations of GPUs. The performance obtained by exploiting this
framework may vary based on devices and workloads.

4.2.2 Evaluation on GLP4NN’s overhead. Space analysis. Fig. 10
shows the memory size occupied by the proposed GLP4NN frame-
work. memt t and memK is irrelevant to GPU devices, and they
only depend on the number of kernels being recorded and analyzed.
memcupti is decided by the CUPTI runtime system, which is much
larger than the other two parts in our experiments.

Time analysis. As described in Section 3.3.2, There are two kinds
of time cost in the naive implementation of the GLP4NN, as shown
in Table 6. Tp , which is proportion to the number of kernels col-
lected, relies on the CUPTI library, whereasTa is related the GLPK li-
braries and host CPU. The last column shows the ratio ofTtotal and
the total training time, which is always less than 0.1%. Therefore,
one-time overhead of GLP4NN is much smaller than the training
time of a network, and can be safely ignored.

4.2.3 Convergence Evaluation. To show that GLP4NN conforms
to the convergence-invariant property, an example experiment is
conducted and the corresponding result is shown in Fig. 11. It can
be seen that GLP4NN-Caffe has a similar convergence rate with
original Caffe and can achieve a roughly equal local optimal status.
The difference between GLP4NN-Caffe and Caffe is caused by the
shuffle process while fetching training batch samples.

5 RELATEDWORK
In recent years, many frameworks [1, 2, 4, 7, 10, 14, 17, 28, 41] have
been released to promote the developement of DNN applications
by supporting various accelerators, especially GPUs. The main
objective of those frameworks is to provide an easy-to-use and
scalable tool for users to design and train DNNmodels with massive
training datasets.

Numerous studies have been done on accelerating the training
of DNNs in a distributed environment. Two common parallelism
adopted in various frameworks are data parallelism and model
parallelism. In data parallelism, training datasets are divided and
processed on multiple accelerators or machines. While in model
parallelism, a DNN model is partitioned and trained [13, 18, 19, 45].
To maintain shared data among devices, the parameter server archi-
tecture [16, 24] is adopted in many frameworks, which can support
various synchronization patterns such as BSP [3], stale synchro-
nous parallel (SSP) [6, 9, 12] and value-bounded asynchronous
parallel [42].

To speed up the training of DNN applications on GPUs, many
works have been done in recent years. NVIDIA has published a set
of GPU-powered libraries, including cuDNN [5], cuBLAS [30], etc.
These libraries can be directly used by developers easily but may
get a performance degradation with small-scale data. Moreover,
NVIDIA also presented NCCL [29] to reduce the communication
cost between multiple GPUs without considering the computing
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efficiency of applications. Authors in [43] proposed multiple op-
timizations for gradient computation on GPUs. Apart from these
works, [22, 25, 40] concentrate on reducing arithmetic complex-
ity in convolution layers, while [23, 26, 33] aim at optimizing the
memory access and management of neural layers. Nevertheless,
these strategies require programmers to update existing codes and
only works for a single kernel. GLP4NN is designed to improve the
efficiency of concurrent kernel executions in order to improve the
efficiency of DNN training.

Some emerging hardware features have been introduced to new-
generation GPUs, including concurrent kernel execution as well as
more processing elements and active blocks per SM, which bring
new spaces for application optimization on GPUs. In [37], authors
proposed a coarse-grain parallelization strategy, and authors in [48]
developed node-level parallelization for DNNs based on a condi-
tional independent graph (CIG). All the above two parallelization
strategy are based on OpenMP technology and may occupy too
many CPU threads, which will eliminate the potential of CPU-GPU
cooperations, especially in cloud environment [38]. Moreover, these
strategies still require programmers to determine the number of
threads to be executed, and introduces extra hyper-parameters for
programmers to tune.

6 CONCLUSION AND FUTUREWORK
In this paper, we proposed GLP4NN, a light-weight parallelization
framework for deep neural networks on GPUs, consisting of four
independent modules. We implemented a resource tracker module
to track and analyze kernels’ configurations at runtime. Then the
collected information is processed by the kernel analyzer module
to obtain the proper number of kernels to be launched in parallel
with the proposed analytical model in Section 3.2. Moreover, we
designed a streammanager module to support concurrent kernel ex-
ecution and CUDA stream management. Finally, we also integrated
a runtime scheduler into GLP4NN to launch kernels concurrently
and interact with other modules. Experiment results show that
GLP4NN-Caffe can achieve a speedup of up to 4X over the Caffe.

In the future, several works could be done to further improve
the performance of the GLP4NN framework. First, we will continue
to improve the performance of the analytical model to get better
concurrent kernel execution configurations by considering and
supporting complex kernel dependencies, such as the dataflow-like
dependency model in Tensorflow. Second, since there are always
many kernels needed to be launched concurrently, kernel reorder-
ing and kernel fusion technologies may be helpful to gain better
training performance of neural networks models, especially for
small kernels. Third, we will try to provide a distributed implemen-
tation of the proposed framework to support modern distributed
DNN frameworks.
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