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ABSTRACT

Cloud gaming has been very popular recently, but providing sat-

isfactory gaming experiences to players at a modest cost is still

challenging. Colocating several games onto one server could im-

prove server utilization. To enable efficient colocations while pro-

viding Quality of Service (QoS) guarantees, a precise quantification

of performance interference among colocated games is required.

However, achieving such precise interference prediction is very

challenging for games due to the complexity introduced by the

contention on many shared resources across CPU and GPU. More-

over, the distinctive properties of cloud gaming require that the

prediction model should be constructed beforehand and the pre-

diction should be made instantaneously at request arrivals, which

further increases the difficulty. The existing solutions are either not

applicable or not effective due to many limitations.

In this paper, we present GAugur, a novel methodology that

enables highly accurate prediction of the performance interference

among games arbitrarily colocated. By leveraging machine learning

technologies, GAugur is able to capture the complex relationship

between the interference and the contention features of colocated

games. We evaluate GAugur through extensive experiments us-

ing a large number of real popular games. The results show that
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GAugur is able to identify whether a colocated game satisfies QoS

requirement within an average error of 5%, and is able to quan-

tify the performance degradation of a colocated game within an

average error of 7.9%, which significantly outperforms the alterna-

tives. Moreover, GAugur incurs an offline profiling cost linear to

the number of games, and negligible overhead for online predic-

tion. We apply GAugur to guiding efficient game colocations for

cloud gaming. Experimental results show that GAugur is able to

increase the resource utilization by 20% to 60%, and improve the

overall performance by up to 15%, compared to the state-of-the-art

solutions.
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1 INTRODUCTION

Cloud gaming has gained great popularity in recent years. In cloud

gaming, games run on cloud servers and the players interact with
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games over the Internet through thin clients. Cloud servers encode

the rendered game scenes into videos and stream the videos to thin

clients. The thin clients decode and display the videos to players,

and send the control commands by players to games running on

cloud servers. Different from traditional console gaming, cloud

gaming puts the entire game workload to the cloud, which greatly

reduces the software and hardware requirements for players to

run high-end games. In this way, cloud gaming can deliver high-

quality gaming experiences to players anytime, anywhere and on

any device. Due to such advantages, cloud gaming has attracted

great interest from both academia and industry [4, 5, 7, 22].

For cloud gaming service providers, one of the major concerns

is the high operating cost. This is because high-end games are

usually resource intensive. Running the games consumes a large

amount of resources such as CPU, GPU, memory etc. In order to

provide satisfactory gaming experiences to players, existing cloud

gaming platforms often allocate each player to a dedicated server for

running the requested game. This approach causes huge resource

waste and may lead to unaffordable operating cost. For example,

OnLive [1], the pioneer of cloud gaming, was bankrupt just for this

reason.

In fact, colocating multiple games on a single server for improv-

ing server utilization is possible in some ways. Figure 1 shows the

frame rate (frames per second or FPS) of some pairs of colocated

games. As can be seen, some games such as Ancestors Legacy and

Borderland can still run at high frame rates when colocated with

each other. If we specify a minimum frame rate requirement (or

QoS requirement), say 60 FPS (which is good enough for playing

most games [11]), these two games can be safely colocated with per-

formance guarantees. If there is a way to quantify the performance

of arbitrary colocation of games, efficient colocation decisions can

be steered. However, it is not an easy task because the frame rate

of a game could be very different when colocated with different

games. For example,Ancestors Legacy can render 105 FPSwhen colo-

cated with Borderland, but can only run at 57 FPS when colocated

with H1Z1. This is because colocated games share many on-chip

resources such as CPU cores, GPU cores, cache, memory bandwidth

etc, and the resource contention introduces varying amounts of

performance interference among games.

Profiling the performance interference of all possible game colo-

cations beforehand is prohibitively expensive. The number of all

colocations is O(2N ), where N is the number of games. As a cloud

gaming platform may provide services for hundreds of games, a

brute-force profiling approach is not practical. A more computa-

tionally efficient approach is to learn the performance interference

through prediction. A large body of prior works [8, 13, 14, 19, 27, 28,

30, 31, 35, 38, 39] have studied the prediction of interference among

colocated applications due to the resource contention. However,

none of them can perfectly solve our problem due to the distinctive

challenges for cloud gaming.

First, the prediction must be performed before games are actu-

ally colocated. Otherwise, once games are not properly colocated

in practice, it is hard to readjust by migrating games among servers

due to interruption to game play. Therefore, the techniques such as
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Figure 1: Performance of colocated games. X-axis denotes

the colocated pairs. Y-axis is the frame rate of each colocated

game.

Heracles [27], Bubble-Flux [35] and DeepDive [31] are not applica-

ble to cloud gaming because they detect and handle the interference

only for applications already colocated and running.

Second, the prediction must be instantaneous. This is because

gaming requests from players must be assigned to servers imme-

diately after they are received, to avoid long waiting time for the

players. The instantaneity requirement prevents the non-real-time

prediction techniques such as Prophet [8] from being applicable.

Third, the contention behaviors among colocated games are

more complex. A game loop consists of many tasks (e.g., process-

ing user input, updating game state, and rendering frames), which

consume many shared resources across CPU and GPU. The inter-

ference among games may be due to contention on any type of

resources shared. Therefore, the techniques such as Bubble-Up [28]

and Cuanta [19] are not effective because they only consider the

contention on single resource. Moreover, this complexity leads to

several behaviors of games very different from general applications.

For example, the performance degradation of colocated games may

not be linear to the contention pressure suffered, and the aggre-

gate intensity of multiple colocated games may not be equal to

the sum of the individual intensities. So, the techniques relying on

assumptions incompatible with these distinctive properties (e.g.,

SMiTe [39], Parogon [13] and Quasar [14]) are ineffective for games.

Four , players may choose different parameter settings (e.g., res-

olutions) when playing games. Different parameter settings could

cause different resource consumptions and thus different contention

behaviors, making efficient and precise prediction of interference

even more challenging.

Prior work [6, 21] has used Sigmoid functions to predict the

performance interference among games. However, this approach

assumes that the performance degradation of a game is only depen-

dent on the number of games that it is colocated with, which may

produce high prediction error since the performance degradation

of a game could be significantly different when it is colocated with

different games, as can be seen from Figure 1.

In this paper, we propose GAugur, a methodology that enables

precise performance interference prediction for arbitrarily colo-

cated games. GAugur leverages machine learning techniques to

build the prediction models. The entire process has four steps: con-

tention feature profiling, model building, model training and online
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Figure 2: (a) Resource demand (bubble size represents the

memory demand) and (b) Frame rate of 100 popular games

when they are running alone.

prediction. The first step is to profile the contention features of

games, including the sensitivity (refers to how much performance

degradation a game suffers under a pressure on a shared resource)

and the intensity (refers to the pressure that a game puts on a shared

resource) of each game on each shared resource. This is achieved

by colocating each game with a set of carefully designed bench-

marks with tunable pressure. With the contention features as the

input variables, the second step builds performance prediction mod-

els using machine learning technologies. Specifically, we consider

two prediction models: one classification model and one regres-

sion model. The classification model is used to identify whether

a game can meet the QoS requirement when it is colocated with

other games. The regression model is used to quantify the exact

performance degradation of a game under colocation. The models

are then trained in the third step using the data collected by testing

a number of real game colocations. Finally, in the fourth step, the

trained models can be used to predict the performance interference

for any given game colocation. Among all the four steps, the first

three steps are offline and need to be performed only once while the

last step (i.e., the prediction) is online and can serve continuously

arriving prediction requests.

GAugur has several promising features which perfectly address

the previously mentioned challenges. By using machine learning

techniques, it is able to capture the complex interactions of inter-

ference on different shared resources. Moreover, the well-trained

prediction models incur negligible overhead in online prediction,

allowing GAugur to predict the performance interference in real

time before games are actually colocated. Although contention pro-

filing and model training have some cost, the cost is offline and

is at the scale of the number of games (will be shown in Section

3). We evaluate GAugur using a large number of popular games of

various genres. The results show that the average prediction error

of GAugur is 5% for classification and 7.9% for regression, which

significantly outperforms the alternatives. We also demonstrate

through two gaming request assignment problems that GAugur is

able to steer efficient game coloations for cloud gaming. Experimen-

tal results show that we are able to increase the resource utilization

by 20% to 60%, and improve the overall performance by up to 15%,

compared to the state-of-the-art solutions.

The rest of this paper is structured as follows. Section 2 further

discusses the motivation of this work. Section 3 illustrates the

detailed design of GAugur. Section 4 and Section 5 present the

evaluations of GAugur. Section 6 summarizes the related work.

Section 7 presents some discussions. Finally, conclusions and future

work are summarized in Section 8.

2 MOTIVATION

This section introduces the existing game colocation policies. We

shall show that due to inability of precise performance interference

prediction, the existing policies either lead to resource overprovi-

sioning or incur QoS violations.

2.1 Disallowing Colocation

Many commercial cloud gaming platforms disallow game coloca-

tions in order to guarantee the gaming experiences [1, 4]. Each

game runs on a dedicated server, so games do not share any re-

source with other games. This policy delivers the best performance,

however, servers run at low utilization which results in resource

overprovisioning.

Figure 2a presents the resource demand for CPU, GPU and mem-

ory of 100 popular games (a full list of the games can be found

in [3]) when they run alone on a server. Each resource demand

is normalized to the maximum resource demand of all games for

the corresponding resource type. As can be seen, the resource de-

mand varies greatly across games and resource types, indicating

that large amounts of resources will be wasted if games run alone.

On the other hand, the diversity of resource demand provides great

opportunity for improving server utilization by colocating games

with various resource demands on the same server.

2.2 Vector Bin Packing (VBP)

This policy describes each game by a resource demand vector which

is generally measured as the resource consumptions when the game

runs alone on a server [24, 25]. Multiple games are allowed to run

on the same server if the total resource demand of the games does

not exceed the server capacity for each resource dimension. The

VBP policy significantly improves resource utilization compared to

disallowing colocations. However, it has two main problems.

First, resource over-provisioning still exists becausewhen a game

runs alone, it may consumemore resources than it actually demands

for satisfying the QoS requirement. Figure 2b presents the frame

rates of the 100 games when they run alone on a server. If we

specify a frame rate of 60 FPS as the QoS requirement, the games

with higher frame rates will consume more resources than the

actual demand.

Second, there may be QoS violations since the performance

interference among colocated games is not considered. For example,

we measure that the resource demands of DDDA and Little Witch

Academia are [0.45, 0.32, 0.06, 0.05] and [0.33, 0.6, 0.25, 0.5] (each

vector represents the CPU, GPU, CPU memory and GPU memory

consumption of the game, each value is normalized to the server

capacity of the corresponding resource) when they run alone. Under

the VBP policy, the two games can be colocated on the same server

as the total resource demand does not exceed the server capacity.

However, we find that when the two games are actually colocated,

the frame rate of Little Witch Academia is only 42 FPS, which is

much lower than 60 FPS.
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Figure 3: Design of GAugur.

3 DESIGN OF GAUGUR

3.1 Overview

The design objective of GAugur is to predict the performance in-

terference among colocated games, in real time before the games

are actually colocated. Figure 3 describes an overview of GAugur,

which consists of four main steps: contention feature profiling, pre-

diction model building, model training and online prediction. The

first three steps are offline and need to be performed only once,

while the last step serves prediction requests in an online manner.

The details of each step are presented in the rest of this section.

3.2 Contention Feature Profiling

This section discusses how we capture the sensitivity and inten-

sity of games. The sensitivity refers to how much performance

degradation a game suffers under a pressure on a shared resource.

The intensity refers to the pressure that a game puts on a shared

resource. We identify seven shared resources which are most im-

portant for games, including CPU cores (CPU-CE), last level cache

(LLC), memory bandwidth (MEM-BW), GPU cores (GPU-CE), GPU

memory bandwidth (GPU-BW), GPU L2 cache (GPU-L2), and PCIe

bandwidth (PCIe-BW). We do not account for the memories (in-

cluding CPU memory and GPU memory), because we observe that

the memories have almost no impact on the frame rate of games as

long as the total memory demand of the colocated games does not

exceed the server capacity. It is worth noting that our methodology

can be extended to any shared resource.

Design of Benchmarks. In order to characterize the contention

features, we develop several benchmarks, one for each shared re-

source. The design of similar benchmarks for the shared resources

on CPU (including CPU-CE, LLC andMEM-BW) has been discussed

a lot in the prior work [12, 13, 28]. Below are some important prin-

ciples for the benchmark design summarized by the prior work:

• First, the benchmark should be able to progressively increase

the amount of pressure for the shared resource, from no

pressure to almost the maximum possible pressure;

• Second, the benchmark should not cause significant con-

tention in other shared resources.

The benchmarks for the shared resources on GPU have not been

studied before. This section briefly describes each one of them.

The Benchmark for GPU-CE. GPUs have a massively parallel

architecture consisting of thousands of cores designed for handling

multiple tasks simultaneously. In order to generate a pressure of x
(a pressure of x indicates the cores are busy with a probability of x ,
0 ≤ x ≤ 1), we repeatedly launch a thread on each core such that all

the cores execute the same kernel function in parallel. Between two

successive rounds, we insert a sleep and the sleep time will thus

determine the utilization of each core. In the implementation, we

carefully tune the sleep time for each sampled x such that the GPU

utilization (which can be observed from the performance counters)

is exactly equal to x .
The Benchmark for GPU-BW. In order to generate a pressure of

x on GPU-BW (a pressure of x means we occupy a portion x of

the GPU memory bandwidth), we repeatedly perform streaming

accesses to a fraction of the GPUmemory space (copy data from one

array to another one). We also insert a sleep between two rounds,

and carefully tune the sleep time for each sampled x such that the

bandwidth utilization is exactly equal to x . Note that there is no
instruction available on modern GPUs to access memory bypassing

cache (like _mm_stream_si64x on CPUs). Therefore, the benchmark

also generates pressures on GPU caches. We argue that this makes

sense because no application can occupy GPU bandwidth without

using any GPU cache in practice. The benchmark for PCIe-BW

is similar. The only difference is that it performs streaming data

accesses between CPU memory and GPU memory. We skip the

details in the interest of space.

The Benchmark for GPU-L2. A pressure of x on GPU-L2 means

that a portion x of the cache capacity is occupied. In order to gener-

ate a pressure of x , we create an array of size x ×capacity and issue

random access to the array. To ensure that all accesses go to the

L2 level cache, we set the address distance between two successive

accesses to be larger than the capacity of GPU L1 cache.

Profiling. This section presents how we profile the contention

features of games using the benchmarks. Consider a game A. Sup-
pose the shared resources are indexed by {1, . . . ,R}. To profile the

contention features of A for a shared resource r ∈ {1, . . . ,R}, we
colocate game A with the benchmark of r . We tune the benchmark

so that it gradually generates a set of pressures {0, 1/k, 2/k, . . . , 1}
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, where 0 indicates no pressure, 1 indicates the maximum pressure,

and k is the sampling granularity. For each pressure x , we record
the performance degradation ofA under x , denoted by δAr (x), which
refers to the ratio between the frame rate when gameA is colocated

with the benchmark and the frame rate when game A runs alone.

The frame rate of each game is measured as follows: we choose a

popular game scene (e.g., Summoner’s Rift for League of Legends)

and run the game for several minutes. Then, we compute the av-

erage frame rate during the test period. We regard the collected

performance degradations as the sensitivity curve of game A for

resource r , denoted by

SAr =
[
δAr (0),δ

A
r (

1

k
),δAr (

2

k
), . . . ,δAr (1)

]
. (1)

For each game A, we also record the slow down of the bench-

mark (in terms of the running time to complete a fixed number of

iterations) when it is colocated with game A compared to running

alone. We regard as the average slow down of the benchmark for

all pressures as the intensity of game A for resource r , denoted by

IAr .
Results and Observations. This section presents the profiling

results and the important observations on the results. We test 100

popular games with various genres [3]. We choose Windows 10

as the profiling platform, because most of modern games are for

Windows. We use a server with a 4-Cores Intel i7-7700 CPU, 8GB

RAM and an NVIDIA GeForce GTX 1060 GPU.

Figures 4 and 5 present the sensitivity curves and the intensity of

six representative games for different shared resources (the results

of other games are not shown here in the interest of space). For

each shared resource, we sample 10 different levels of pressure (i.e.,

k = 10). From the results we have several observations:

• Observation 1. Games could be sensitive to many shared

resources, and have different levels of sensitivity for different

shared resources. For example, Far Cry4 is sensitive to all

the shared resources, and has rather different performance

degradations for different shared resources under the same

pressure.

• Observation 2. The sensitivity of a game is not necessarily

correlated with the intensity of the game for the same shared

resource. For example, Granado Espada is very sensitive to

GPU-CE, but its intensity for GPU-CE is very light.

• Observation 3. Different games have different sensitivity and

intensity for the same shared resource. For example, The

Elder Scrolls5 suffers 70% performance degradation for CPU-

CE under the maximum pressure, while Far Cry4 suffers only

30% degradation.

Observations 1 to 3 show the diversity of sensitivity and intensity

among games for shared resources, suggesting that the sensitiv-

ity and intensity should be captured separately for each shared

resource.

Moreover, we also observe that games have several different

behaviors compared to general applications, including:

• Observation 4. The sensitivity of a game does not necessarily

change linearly with the pressure for some shared resources

such as GPU-CE, LLC etc.

• Observation 5. Game intensity on the same shared resource

is not additive.

Observation 4 indicates that games are very different from the

applications that have linear sensitivity to the pressure for the

shared resources. As a result, the prediction methodologies relying

on such properties [10, 39] are not applicable to games.

Observation 5 is identified through the following investigation.

We choose two games (AirMech Strike and Hobo Tough Life) and

run them together with each benchmark. We regard the slow down

of a benchmark as the aggregate intensity generated by the two

games for the corresponding shared resource. Figure 6 compares the

aggregate intensity of the two games with the sum of the individual

intensities of the two games. As can be seen, the aggregate intensity

could be very different from the sum of individual intensities for

some shared resources, which draws Observation 5.

Observation 5 indicates that when a game is colocated with more

than one games, the total intensity suffered by the game is not

simply equal to the sum of the intensities of the colocated games.

Therefore, the prior work [13, 14] relying on such assumption to

handle colocations of more than two applications is not applicable

to games.

3.3 Impact of Resolution

Game players may choose different resolutions when playing a

game. Profiling the sensitivity and intensity for all possible resolu-

tions for each game is too expensive. This section studies the impact

of resolution on the sensitivity and intensity of games. We identify

through a systematic investigation that the impact of resolution on

the sensitivity and intensity has strong similarity among games. In

the interest of space, we skip the details of the investigation and

only show the observations:

• Observation 6. The sensitivity curves of games are not af-

fected by resolutions.

• Observation 7. Resolution has insignificant impact on game

intensity for the shared resources CPU-CE, MEM-BW and

LLC.

• Observation 8. There is strong linear relationship between the

intensity and the number of pixels for the shared resources

GPU-CE, GPU-BW, GPU-L2 and PCIe-BW.

According toObservation 6, we only need to profile the sensitivity

curve of a game for one resolution. Note that Observation 6 only

implies that the performance degradation trends are similar when a

game runs at different resolutions, while the actual performance (i.e.,

the frame rate) of a game may be different at different resolutions.

This is reasonable because a game needs to generate more pixels

at a higher resolution, causing more workload. By testing a large

number of games, we identify the following relationship

FPSA = −aA ∗ Npixels + bA, (2)

where FPSA is the frame rate of game A when running alone,

Npixels is the number of pixels of the resolution, aA and bA are two

parameters. Equation (2) implies that if we know the frame rate of

a game for two different resolutions, the frame rate of the game at

any resolution can be calculated accordingly. Similarly, Observation

7 and Observation 8 indicate that if we know the intensity of a

game for two different resolutions, the intensity of the game at any

resolution can be calculated accordingly.
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Figure 4: Sensitivity curves of selected games.
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In addition to the resolution, some other graphics settings may

also affect the sensitivity and intensity of games, such as antialias-

ing, anisotropic filtering and lighting/shadows. However, these

settings are not tuned frequently in practice, so we do not consider

such impacts in this paper for simplicity.

3.4 Prediction Models

Using machine learning technologies, we propose two interference

prediction models for colocated games: one classificationmodel and

one regression model, targeting at different predicting objectives.

This section presents the details of the models.

Classification Model (CM). This model aims to identify whether

a game satisfies the QoS requirement (i.e., whether the frame rate of

the game is higher than the FPS requirement) when it is colocated

with a set of other games. With the CM, we are able to identify the

safe game colocations (i.e., the colocations with all games satisfying

QoS requirement), and use the results to improve server utilization.

The model is described as follows:

X̃A∨{B,C, ... } = CM(Q, FA
solo
, SA, IB , IC , . . .). (3)

This model can predict whether game A satisfies the QoS require-

ment when it is colocated with games B, C etc. The inputs of

the model include the QoS requirement Q (the minimum frame
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Figure 6: Aggregate intensity VS sum of intensity.

rate required), game A’s frame rate FA
solo

when running alone,

A’s sensitivity curves SA, and the intensities of all the colocated

games IB , IC etc, where SA = [SA1 , . . . ,S
A
R
], IB = [IB1 , . . . , I

B
R
] and

IC = [IC1 , . . . , I
C
R
]. The output X̃A∨{B,C, ... } is a binary variable,

with 1 indicating a positive answer and 0 indicating a negative

answer.

Regression Model (RM). The regression model aims to quantify

the exact performance degradation of a game when it is colocated

with other games. With the RM, we are able to predict the exact

performance of colocated games, which can help to identify the

colocations with less interference and improve the overall perfor-

mance. The model is described below:

δ̃A∨{B,C, ... } = RM(SA, IB , IC , . . .). (4)

The model can predict the exact performance degradation suffered

by game A when it is colocated with games B, C etc. The inputs of

the model include game A’s sensitivity curves, and the intensities

of all the colocated games. The output δ̃A∨{B,C, ... } is a ratio de-

scribing the performance degradation of game A compared to A’s
solo-run performance in terms of frame rate.

In the two models described above, the number of variables

characterizing the intensities of the colocated games is not fixed,

which is dependent on the number of colocated games. This is
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not allowed by machine learning models which require a fixed

number of input variables. We use a transformation technique to

solve this problem. Consider a set of colocated games, denoted

by G. Recall that the individual intensity of each game д ∈ G is

Iд = [I
д
1 , . . . , I

д
R
]. For each shared resource r ∈ {1, . . . ,R}, we

calculate the mean and variance of the intensity of all the games in

G for resource r , denoted bymeanGr and varGr respectively, where

meanGr =
1

|G |

∑
д∈G I

д
r and varGr =

1

|G |

√∑
д∈G (I

д
r −meanGr )

2.

Then, the aggregate intensity of all the games in G is represented

by

IG =
[
|G |, (meanG1 ,var

G
1 ), . . . , (meanGR ,var

G
R )

]
, (5)

where |G | is the size of G. After this transformation, the aggregate

intensity of colocated games is represented by a fixed number of

2R+1 variables. We shall show in Section 4 that this approximation

incurs insignificant error. Note that according to Observation 5,

we cannot simply use the sum of the individual intensity of each

colocated game to represent the aggregate intensity.

It is worthing noting that the RM also can be used to identify

whether a game satisfies the QoS requirement according to the

predicted performance degradation. The reason why we still con-

sider the CM is that the CM achieves higher prediction accuracy

compared to using the RM for classification. This is because clas-

sification is generally easier than regression for machine learning.

We will show the results in Section 4.

Based on the models defined in (3) and (4), we use several pop-

ular machine learning algorithms to build the models, including

Decision Tree Classifier/Regression (DTC/DTR), Random Forest

(RF), Gradient Boost Decision/Regression Tree (GBDT/GBRT) and

Support Vector Clustering/Regression (SVC/SVR). The performance

of these algorithms are evaluated in Section 4.

3.5 Model Training and Online Prediction

Before the prediction models can be used, we need to train them

first. The training samples are collected through testing real game

colocations. For example, suppose we test a colocation of games

A, B and C , and measure that their frame rates are 40, 50, and 60

FPS respectively when colocated. Assume the solo-run frame rate

is 100 FPS for all the three games. Suppose the QoS requirement is

60 FPS. In terms of game A, we can generate the following training

sample for the CM:
[
60, 100, SA, IB , IC

]
→ 0, (6)

where 0 indicates that gameA does not satisfy the QoS requirement.

For the RM, we can generate the following training sample:
[
SA, IB , IC

]
→ 0.4, (7)

where 0.4 is the performance degradation of game A, calculated
according to 40/100. Similarly, we can generate corresponding

training samples for B and C . By testing one game colocation of k
games, we can generate k training samples for each model.

After the models are trained, we can use them for prediction.

Different from the contention feature profiling and model training

which are performed offline, the prediction is done online. Given

a game colocation, with the contention features as the input, the

models can output the corresponding results instantaneously.

3.6 Overhead Analysis

This section analyzes the overhead of GAugur. Contention feature

profiling is performed for each game, which incurs O(N ) overhead,

where N is the number of games. In order to train the models,

we need to measure a number of real game colocations. We shall

show in Section 4 that measuring several hundred game colocations

is sufficient. As a cloud gaming platform generally has hundreds

of games, it indicates that the overhead of model training is also

O(N ). The overhead of online prediction is negligible. As contention

feature profiling andmodel training need to be performed only once,

the total overhead of GAugur is thus O(N ).

4 EVALUATIONS

We conduct extensive experiments using the 100 popular games [3]

to evaluate GAugur. For each game, we profiled the contention

features and the solo-run frame rate of the game for two different

resolutions. The contention features and solo-run frame rates for

other resolutions of each game used in the evaluations are com-

puted according to Observations 6-8 and (2). We examined a large

number of real game colocations for model training and testing,

including 500 colocations of two games, 100 colocations of three

games and 100 colocations of four games. The game colocations

with more than four games are not considered, as we find that most

of the games run at very low frame rate when they are colocated

with four other games on our server. The games in each measured

colocation are randomly selected from the 100 games. Each game

runs at a randomly selected resolution. For each measured colo-

cation, we record the frame rate of each game and compute the

performance degradation compared to the solo-run frame rate of

the game. Among the 700 game colocations measured, we randomly

select 400 game colocations and use the samples generated by the

selected colocations (a game colocation of k games can generate

k samples) as the training set. The samples generated by the other

300 game colocations are used as the test set.

All the experiments are performed on a server configured with

a 4-Cores Intel i7-7700 CPU, 8GB RAM, an NVIDIA GeForce GTX

1060 GPU, and Windows 10 OS. In order to run multiple games

concurrently, we connect multiple monitors to the server. We use

ASTER [2], a multiseat software for Windows 10, which can pro-

vide an individual desktop for each monitor. All workplaces run

independently as if each of them has its own server.

4.1 Alternative Prediction Approaches

We compare our methodology with two state-of-the-art alternative

interference prediction approaches.

Sigmoid [6, 21]. This approach assumes the performance degrada-

tion of a game is only dependent on the number of games colocated.

The frame rate of game A when colocated with n games is modeled

by
αA,1

1 + e−αA,2×n+αA,3
, where αA,1∼αA,3 are the parameters. In the

implementation, for each game A, we derive the parameters by

regression using the game colocations containing game A among

the selected 400 game colocations for training.
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Figure 7: (a) Prediction error of GAugur using different machine learning algorithms. (b) Breakdown of prediction errors for

different colocation sizes. (c) CDF of prediction errors for different prediction methodologies.

SMiTe [39]. SMiTe is a methodology that enables performance in-

terference prediction on simultaneous multithreading (SMT) multi-

core processors. Suppose applicationA is colocated with application

B. SMiTe models the performance degradation of A as

δ̃A∨{B } =
R∑
r=1

(
cr × δAr (1) × IBr

)
+ c0, (8)

where δAr (1) is the sensitivity score of A for the shared resource

r (refers to the performance degradation that A suffers from the

maximum pressure for resource r ), c0 is a constant and cr is the

coefficient for resource r .
So far SMiTe is not able to handle colocations with more than two

applications. To solve this problem, we leverage the methodology

given by Paragon [13], assuming game intensity is additive. Suppose

game A is colocated with B, C , . . ., the new model predicts the

performance degradation of A according to

δ̃A∨{B,C, ... } =
R∑
r=1

(
cr × δAr (1) × (IBr + I

C
r + . . .)

)
+ c0. (9)

In the implementation, the coefficients are derived by regression

using the samples in the training set.

4.2 Prediction Accuracy

Accuracy for Regression.We first present the results for regres-

sion. The objective is to predict the performance degradation of

a game when colocated with other games. Figure 7a presents the

mean prediction error produced by GAugur using different machine

learning algorithms with different numbers of training samples.

The training samples are randomly selected from the training set.

The prediction error is defined as |δ̃ − δ |/δ , where δ̃ and δ denote

the predicted and the actual performance degradation respectively.

For GAugur(RM), we applied DTR, GBRT, RF and SVR machine

learning algorithms to build the model. As can be seen, using more

training data generally produces smaller prediction errors for all the

algorithms. The prediction error is within 10% for all the algorithms

when using 1000 training samples. Among all the algorithms, GBRT

achieves the best performance, which produces an error of 7.9%.

In the rest of discussions, GAugur(RM) particularly refers to the

GBRT model trained using 1000 samples.

Figure 7b compares GAugur(RM) with Sigmoid and SMite. As

can be seen, SMiTe produces an average error of 23.6%, which is

much higher than that of GAugur(RM). This is because SMiTe uses

a linear model to capture the relationship between the interference

and the contention features of colocated games, which is inaccurate.

Sigmoid produces an average error of 22.5%, which is similar to

SMiTe. This is because Sigmoid assumes the interference is only

dependent on the number of colocated games, which is obviously

inaccurate as has been shown earlier. A breakdown of the predic-

tion errors for different colocation sizes are also summarized in

Figure 7b. As can be seen, as the colocation size increases, all the

methodologies produce a higher prediction error. GAugur(RM) out-

performs the alternatives significantly for each colocation size. For

the colocations of four games, GAugur(RM) still keeps the predic-

tion error within 10%, indicating that GAugur(RM) is very effective

for dealing with colocations of large sizes. In contrast, SMiTe pro-

duces very large prediction errors for the colocations of four games.

This is because it assumes that game intensity is additive, which is

not true in practice.

Figure 7c summarizes the CDF of the prediction errors produced

by each methodology. As can be seen, GAugur(RM) produces much

smaller prediction error than the alternatives at each percentile

range.

Accuracy for Classification. This section presents the results for

classification. The objective is to predict whether a game satisfies

the QoS requirement when colocated with other games. Figure 8a

presents the prediction accuracy produced by GAugur(CM) with

different numbers of training samples under a QoS requirement of

60 FPS. The prediction accuracy is defined as the percentage of the

correct judgements among all the testing samples. We applied DTC,

GBDT, RF and SVC machine learning algorithms to build the CM

of GAugur. Similarly, using more training data generally achieves

higher prediction accuracy for all the algorithms. When using 1000

training samples, GBDT achieves as high as 95% accuracy, which

outperforms other algorithms. Figure 8b shows the results for a

lower QoS requirement, and similar performance trends are ob-

served. In the rest of discussions, GAugur(CM) particularly refers

to the GBDT model trained using 1000 samples.

We also compare GAugur(CM) with Sigmoid, SMiTe and GAu-

gur(RM). Note that Sigmoid, SMiTe and GAugur(RM) are models

for regression, which can only predict the performance (degrada-

tion). To apply them for classification, we first compute the frame

rate of a colocated game using the regression results, and then

check whether the game satisfies the QoS requirement according

to the predicted frame rate. Figure 8c shows the results. As can

be seen, GAugur(CM) achieves the highest prediction accuracy

among all the methodologies. It implies that GAugur(CM) can very

precisely judge whether a colocated game satisfies the QoS require-

ment. GAugur(RM) achieves a bit worse performance compared to

GAugur(CM), indicating that classification using regression models
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Figure 8: (a) Prediction accuracy of GAugur(CM) under a QoS requirement of 60 FPS. (b) Prediction accuracy of GAugur(CM)

under a QoS requirement of 50 FPS. (c) Prediction accuracy of different methodologies.

loses some accuracy compared to using classification models di-

rectly. Sigmoid and SMiTe perform much worse than GAugur(CM),

which both achieve an accuracy around 80% only. A breakdown

of the prediction accuracies for different colocation sizes are also

summarized in Figure 8c. It can be seen that GAugur(CM) achieves

very high prediction accuracy for all colocations sizes.

5 INTERFERENCE-AWARE GAME
COLOCATIONS

In this section, we present an evaluation of applying GAugur to

guide efficient colocations of games in order to improve resource

utilization and overall performance for cloud gaming. Specifically,

we consider two problems. All the prediction models used in this

section are trained as in Section 4.

5.1 Minimizing Resource Usage with QoS
Guarantee

The first problem strives to minimize the number of servers used

to pack a given set of gaming requests such that all the games

satisfy the specified QoS requirement. The proposed GAugur(CM)

can be used to solve this problem, because it is able to identify

the feasible colocations (colocations with all games satisfying the

QoS requirement). With this information, gaming requests can be

assigned according to the feasible colocations of large sizes, so that

the number of servers needed will be reduced.

We first demonstrate the performance of GAugur on judging

whether a game colocation is feasible or infeasible. We divide the

colocations tested into four categories: true positives (TP, actual

feasible colocations that are judged as feasible colocations), false

positives (FP, actual infeasible colocations that are judged as fea-

sible colocations), false negatives (FN, actual feasible colocations

that are judged as infeasible colocations), true negatives (TN, actual

infeasible colocations that are judged as infeasible colocations). We

are concerned with three metrics: accuracy, precision and recall.

The accuracy is defined as the fraction of correct judgements among

all judgements, i.e., (|TP |+ |TN |)/(|TP |+ |FP |+ |FN |+ |TN |), which

indicates an overall performance. The precision is defined as the

fraction of the true positives among all the feasible colocations

identified by the model, i.e., |TP |/(|TP | + |FP |). It expresses the
ability to identify only the feasible colocations. The recall is defined

as the fraction of the true positives among all actual feasible colo-

cations, i.e., |TP |/(|TP | + |FN |), which expresses the ability to find

all the feasible colocations. To give a complete verification, we con-

sider a small problem size with 10 (randomly selected) games. We

only consider the game colocations containing less than five games

(there are 385 such colocations for 10 games). For the considered

colocations, we first identify all the actual feasible colocations by

measuring the actual performance of the colocated games. Then, we

use GAugur(CM) to judge the colocations according to prediction.

We also compare GAugur(CM) with GAugur(RM), Sigmoid, SMiTe

and VBP. The feasible colocations identified by VBP refer to the

colocations satisfying that the sum of resource utilizations of all

games in the colocation does not exceed the server capacity for

each shared resource (LLC and GPU-L2 are not included because

cache is generally not characterized by utilization).

Figure 9a presents the TP, FP, FN, and TN produced by each

methodology under 60 FPS QoS requirement. Figure 9b summa-

rizes the accuracy, precision and recall of each methodology. As

can be seen the accuracy, precision and recall of GAugur(CM) are

all very high, indicating that GAugur(CM) is able to identify the

feasible colocations very precisely. The precision of GAugur(CM) is

94%, implying that among all the feasible colocations identified by

GAugur(CM), only 6% violate the QoS requirement, which is much

smaller than that of the alternatives. The recall of GAugur(CM)

is 88%, indicating that almost 90% actual feasible colocations can

be identified by GAugur(CM). In contrast, the precisions of Sig-

moid, SMiTe and VBP are much lower than that of GAugur(CM),

indicating that many infeasible colocations are mistakenly judged

as feasible colocations by these models. This kind of mistakes are

very serious for cloud gaming because such wrong decisions could

lead to unsatisfied gaming experiences to players. Moreover, the

recalls of Sigmoid, SMiTe and VBP are also much lower than that

of GAugur(CM). It implies that many actual feasible colocations

cannot be identified by these models, which limits the potential

resource utilization improvement opportunities.

We next show how GAugur(CM) can improve the resource uti-

lization compared to GAugur(RM), Sigmoid, SMiTe and VBP. Given

a set of gaming requests, we compare the number of servers used

by each methodology to pack the gaming requests, such that all the

games satisfy the specified QoS requirement, i.e., the game coloca-

tion at each server is feasible colocation. For each methodology, we

assume the gaming requests are packed to servers according to Al-

gorithm 1. It can be proved that Algorithm 1 has an approximation

ratio of ln(k) [33] (k is the maximum size of a single colocation)

compared to the optimal algorithm that uses the minimum number
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Figure 9: (a) TP, FP, FN and TN of each methodology. (b) Prediction accuracy, precision and recall of each methodology. (c)

Number of servers used by each methodology.

Algorithm 1 Interference-aware Request Assignment

1: F ← the set of all actual feasible colocations identified

2: while there are requests remaining do

3: c ← the colocation of the maximum size in F

4: if each game in c has remaining requests not assigned then

5: Allocate a server and assign a request of each game in c
to the server

6: else

7: remove c from F

8: end if

9: end while

of servers to pack the gaming requests1. Note that we only consider

the actual feasible colocations identified by each methodology as us-

ing the false positives is not meaningful because those colocations

violate QoS requirement.

Figure 9c presents the number of servers used by each method-

ology, when there are 5000 gaming requests which are randomly

distributed among the 10 selected games. As can be seen, GAu-

gur(CM) always uses the minimum number of servers compared

to other methodologies for different QoS requirements. The advan-

tage is from 20% to 40% over Sigmoid, SMiTe and VBP. Note that

if colocation is not allowed, 5000 servers will be used, indicating

that GAugur(CM) can increase resource utilization by up to 60%.

This is because GAugur(CM) can identify more feasible colocations

than other methodologies, providing more colocation choices when

assigning requests to servers.

5.2 Maximizing Overall Performance

The second problem strives to pack a given set of gaming requests

to a fixed number of servers such that the average frame rate of

games is maximized. The proposed GAugur(RM) can be used to

solve this problem, because it is able to quantify the performance

interference among colocated games. With this information, games

causing high interferences can be assigned to different servers, so

that the overall performance can be improved.

To evaluate the benefits, we again use the 10 selected games and

consider the game colocations of size smaller than five. We com-

pare GAugur(RM) with Sigmoid, SMiTe and VBP. For GAugur(RM),

Sigmoid and SMiTe, the gaming requests are assigned to servers as

follows: requests are assigned one by one according to the predicted

1The gaming request packing problem is NP-hard, so the optimal algorithm is not
used due to high computational overhead.
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Figure 10: (a) Average FPS achieved by eachmethodology. (b)

CDF of frame rates for different methodologies.

performance, each request is assigned to the server producing the

maximum (predicted) average frame rate after assignment among

all servers. For the VBP, the gaming requests are assigned in a

worst-fit manner, where each request is assigned to the server with

the largest remaining capacity (the remaining capacity of a server is

measured by the total remaining capacity of all the shared resources

except for LLC and GPU-L2).

Figure 10a presents the average frame rate produced by each

methodology for different numbers of servers, when there are 5000

gaming requests which are randomly distributed among the 10

selected games. As can be seen, using more servers leads to higher

frame rate for all the methodologies, because the average number

of games assigned on each server is smaller. GAugur(RM) achieves

the best performance and the advantage over the alternatives is

up to 15%. Figure 10b summarizes the CDF of the frame rates of

all games for each methodology when 2000 servers are used. An

obvious higher frame rate from GAugur(RM) can be observed. This

is because GAugur(RM) can predict the performance interference

more precisely than the alternatives according to the results shown

earlier.

6 RELATEDWORK

Prior work [12, 13, 28, 39] discussed the design of benchmarks for

characterizing the sensitivity and intensity of applications for the

shared resources. However, all these works only considered the

shared resources on CPUs. Our work is the first time to design

such benchmarks for the shared resources on GPUs. Prior work

[13, 14] leveraged collaborative filtering techniques to reduce the

overhead of profiling the sensitivity and intensity for applications.

Such techniques are complementary to our work.

Many interference-aware resource management techniques were

proposed in the literature, such as Q-Cloud [30], CPI2 [38], Deep-

Dive [31], and Heracles [27]. They detect interference between
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colocated workloads and generate interference-aware schedules for

improving resource utilization. However, prediction of the perfor-

mance (degradation) of the colocated workloads was not discussed

in these works.

The prediction of performance interference due to the shared

resource contention on CPUs was studied a lot [10, 13, 14, 19, 28, 35,

39]. However, as games are very different from general applications,

applying the existing approaches to our problem is nontrivial for

many reasons. Cuanta [19], Bubble-Up [28], and Bubble-Flux [35]

are not able to capture the contention behavior among multidi-

mensional resources. Bubble-Up [28] and SMiTe [39] can only deal

with colocations of two applications. SMiTe [39] and the work [10]

assume the sensitivity is linear to the contention pressure suffered

which is incorrect for games. Paragon [13] and Quasar [14] rely on

the assumption that application intensity is additive which is not

true for games. Machine learning techniques were utilized in the

performance interference prediction models [16, 26, 29]. However,

high prediction errors (> 16%) were produced because these models

did not consider the sensitivity and intensity of applications.

Several techniques were proposed in the prior work to improve

the utilization of GPUs. TimeGraph [23], GPUSync [17], Baymax [9],

vGASA [37] and VGRIS [32] schedule GPU tasks of colocated work-

loads to improve the hardware utilization with QoS guarantees.

These techniques are complementary to our work. Prophet [8] is

able to predict the performance interference of colocated applica-

tions on GPUs. However, it is not applicable to our problem because

it relies on a simulator to synthesize the execution trace of colo-

cated applications, and thus the prediction is not done in real time.

dJay [20] dynamically tunes the game settings for the colocated

games during game play to adapt to changes of game scenes for

improving performance. However, it focuses on a set of games al-

ready colocated. Our approach can work together with dJay and

they are complementary.

The resource management issues in cloud gaming also have

been extensively studied, including request assignment, schedul-

ing, server provisioning etc [6, 15, 18, 21, 24, 34, 36]. However,

the interference among colocated games was not considered in

these works. Some simple game colocation policies were adopted,

including the Disallowing Colocation and Vector Bin Packing poli-

cies [15, 18, 24, 34]. However, these policies either lead to resource

overprovisioning or cause QoS violations as we have discussed

in Section 2. The performance prediction of colocated games was

studied in prior work [6, 21]. However, their models simply assume

that the performance degradation is only dependent on the number

of games colocated, and as such could incur large prediction errors

as we have demonstrated earlier.

7 DISCUSSIONS

In this paper, we use frame rate as the metric to characterize the

performance of a game. However, the frame rate may change during

game play, because game scenes vary dynamically which gener-

ates different amounts of rendering workload. In our profiling, we

measure the frame rate in a moderate way which computes the

mean frame rate of a game during a period of time. This could lead

to temporary QoS violations when all the colocated games render

complex game scenes simultaneously (although this rarely happens

in practice). A conservative mechanism to solve this problem is

to measure the minimum frame rate instead of the mean in the

profiling. Another approach is to adapt the dynamic changes of

game scenes as dJay [20] does. All these solutions are compatible

with GAugur.

In cloud gaming, servers not only run games, but also need to

encode the outputs into videos and stream the videos to the players.

Modern GPUs such as NVIDIA GRID have integrated video en-

coders and streaming units on their chips. Hardware encoders con-

sume much less resource compared to the traditional software en-

coders, which would generate insignificant impact on game perfor-

mance. Therefore, video encoding and streaming are not considered

in this paper for simplicity. However, our proposed methodology

can easily be extended to consider video encoding and streaming.

In addition to the frame rate, cloud gaming is also sensitive to

the interaction delay, which consists of processing delay (the delay

at the server side, including the time spent on processing player’s

command, rendering, video encoding etc) and network delay. The

processing delay of colocated games can be predicted in a similar

way using our methodology. One thing to be aware of is that the

processing delay could also be affected by the contention on the

network bandwidth. The network delay is generally not affected

by game colocations, and thus does not need to be predicted.

8 CONCLUSIONS AND FUTUREWORK

In this work, we have presented GAugur, a novel methodology

that enables precise prediction of performance interference among

colocated games. GAugur leverages machine learning technologies

to model the complex relationship between the interference and

the contention on various shared resources across CPU and GPU.

We evaluate GAugur using 100 real games and the results show that

GAugur achieves very high prediction accuracy and significantly

outperforms the alternatives. We apply GAugur to guiding efficient

game colocations in cloud gaming. The results show that GAugur

can improve the resource utilization by up to 60% and can improve

the overall performance by up to 15%, compared to the state-of-the-

art solutions.

There are several interesting directions for future work. First,

GAugur is only tested on one server type in this paper. We wish to

test GAugur on more server types in the future. Second, we assume

the server has only one CPU and one GPU in this paper. Sharing

multiple CPUs and GPUs may have scheduler related issues which

we plan to address as part of our future work. Third, we only discuss

the impact of resolution on the contention features of games in this

paper. We would like to further study the impact of other graphics

settings. Fourth, we plan to extend GAugur so that it can predict

the interaction delay of colocated games.
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