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Fairness-Efficiency Scheduling for Cloud
Computing with Soft Fairness Guarantees
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Abstract—Fairness and efficiency are two important metrics for users in modern data center computing system. Due to the heterogeneous
resource demands of CPU, memory, and network I/O for users’ tasks, it cannot achieve the strict 100% fairness and the maximum efficiency
at the same time. Existing fairness-efficiency schedulers (e.g., Tetris) can balance such a tradeoff elastically by relaxing fairness constraint
for improved efficiency using the knob. However, their approaches are unaware of fairness degradation under different knob configurations,
which makes several drawbacks. First, it cannot tell how much relaxed fairness can be guaranteed given a knob value. Second, it fails
to meet several essential properties such as sharing incentive. To address these issues, we propose a new fairness-efficiency scheduler,
QKnober, to balance the fairness and efficiency elastically and flexibly using a tunable fairness knob. QKnober is a fairness-sensitive
scheduler that can maximize the system efficiency while guaranteeing the θ-soft fairness by modeling the whole allocation as a combination
of fairness-oriented allocation and efficiency-oriented allocation. Moreover, QKnober satisfies fairness properties of sharing incentive, envy-
freeness and pareto efficiency given a proper knob value. We have implemented QKnober in YARN and evaluated it using both testbed and
simulated experiments. The results show that QKnober outperforms its alternatives DRF and Tetris by 31.2% and 4.5%, respectively.

Index Terms—Multi-Resource Allocation, Fairness, Efficiency, Hadoop
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1 INTRODUCTION

In the current era of ‘big data’, it has become typical to
take existing large-scale data computing frameworks such as
MapReduce [13] and Spark [39] for big data analytics in a data
center cluster consisting of many machines. At any time, there
are many users running their data-parallel applications on the
cluster. The jobs submitted by users normally contain many tasks
and the tasks often have heterogeneous resource requirements
towards different resource types (e.g., CPU and memory) [26]. In
addition to the heterogeneity, current data computing platforms
are often underutilized. Reiss et al. conducted a trace analysis of
12,000-server Google cluster, showing that its average memory
usage is lower than 35% and the CPU utilization does not exceed
40% [25]. Similarly, Delimitrou et al. showed that the majority of
machines at Twitter are below 20% utilization [14]. Moreover, an
experimental study estimated that the average server utilization
in Amazon EC2 is about 7.3%.

To address such inefficiency, resource sharing is an efficient
and widely used approach. It is based on the following facts that
1). the tasks demands of different users are generally different
and diverse with respect to different resource types; 2). even
for a single user, the resource demands of its workloads are
changing over time. By having multiple users to execute their
workloads simultaneously in a shared cluster, resource sharing
can improve the system efficiency since overloaded users can
leverage the unused resources from underloaded users.
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Apart from the system efficiency, fairness is another important
criteria for users in the shared cluster. Being aware of het-
erogeneous resource demands of users’ tasks, there is a need
to consider multi-resource fairness that takes multiple resource
types into account. By leveraging the game-theoretic definition,
a robust multi-resource fair allocation is the one in which

‚ all users in the shared system should perform no worse
than that under an exclusively non-sharing partition of the
system. (Sharing incentive)

‚ no user envies the allocations of any other users. (Envy
freeness)

‚ no user can increase its resource allocation without harm-
ing at least one other user. (Pareto efficiency)

Dominant Resource Fairness (DRF) is one of the most well-
known multi-resource fair allocation policies [18] with the above
three game-theoretic properties. The dominant resource refers
to as the resource that is heavily used by a user. The fairness
is achieved by equalizing the share of each user’s dominant
resource. Although there have been a number of extensions [23],
[24], [35], they draw little attention to the influence on system
efficiency. Recent studies have shown that there is a tradeoff
between fairness and efficiency in multi-resource allocation [19],
[21], [34]. Guaranteeing the strict 100% fairness across users
would produce inefficient resource allocations. Conversely, seek-
ing for high system efficiency is often at the cost of compromised
fairness. DRF and its extensions tend to over constrain the sys-
tem for high fairness guarantee, resulting in resource allocations
with low system efficiency.

Many existing fairness-efficiency schedulers seek to relax
fairness (i.e., allowing some degree of unfairness) for effi-
ciency improvement by employing knob-based heuristic algo-
rithms [11], [19], [28], [37]. Tetris [19] is the state-of-the-
art knob-based tradeoff scheduler that allows users to balance
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fairness and efficiency flexibly by tuning the fairness knob in a
data center cluster. However, due to its insensitiveness of fairness
degradation under different knob configurations, there are some
shortcomings (See Section 4): 1). it cannot show users how
much relaxed fairness can be guaranteed given a fairness knob;
2). it fails to satisfy several fairness properties such as sharing
incentive.

In this paper, we develop a new fairness-efficiency scheduler,
QKnober, to allow users to balance fairness and efficiency
flexibly with a knob factor ρ P r0, 1s. Unlike the previous
schedulers [11], [19], [37], QKnober is a fairness-sensitive
scheduler that works on the relaxed fairness (i.e., soft fairness
in Section 5.1), which refers to the maximum difference be-
tween the normalized shares of any two users. It is achieved
by modeling the multi-resource allocation as a combination
of fairness-oriented allocation and efficiency-oriented alloca-
tion (Section 5.1). Given a knob ρ, QKnober first performs the
fairness-oriented allocation for the θ-soft fairness guarantee (See
Theorem 1 in Section 5.1) and then does the efficiency-oriented
allocation for maximizing the system efficiency. We show that
with a proper knob configuration, QKnober can ensure that
each user in the shared system can get at least the amount of
resources as that under the exclusively non-sharing partition of
the system. It also can guarantee that every user prefers to its own
allocation and no user envies the allocations of any other users.
Furthermore, QKnober keeps that the system is fully utilized by
ensuring that no user can get more resource allocation without
decreasing the allocation of at least one user.

We have implemented QKnober in YARN [32]. We evaluated
QKnober with testbed workloads in a Amazon EC2 cluster
consisting of 60 nodes. Our results show that QKnober strikes
a flexible balance between fairness and efficiency. There can be
up to 57% performance improvement as we decrease the knob
factor from one to zero for QKnober. Moreover, it outperforms
its alternatives DRF and Tetris by 31.2% and 4.5% on average,
respectively. Finally, we show that the scheduling overhead of
QKnober is minor (ă 0.42 ms). In addition, we also conduct a
simulation-based experiment at a large scale with Google cluster-
usage traces. The simulation results are consistent with that of
testbed experiments.

Organization. Section 3 gives the formal definition of several
desirable fairness properties. Section 4 overviews existing sched-
ulers and motivates our work by showing their shortcomings.
We introduce and analyze our approach in Section 5. The
experimental evaluations are presented in Section 7. We review
the related work in Section 2. Finally, we conclude the paper in
Section 8.

2 RELATED WORK

We review the literature work that are close to our work from
the following perspectives:

Multi-Resource Fairness. In multi-resource allocation, DRF
is one of the most popular fair policies [18]. It offers fair
allocation of multiple resources based on dominant resource
shares. The popularity of DRF lies in its good properties in-
cluding sharing incentive, envy-freeness, and pareto-efficiency.
It has been implemented in many current datacenter framework,
including YARN [32] and Mesos [20]. After that, there have

been a lot of extension and generalization for DRF. Bhattacharya
et al. [8] generalized DRF to support hierarchical scheduling.
Ghodsi et al. [17] extended DRF to fair queueing of package
processing. Kash et al. [22] extended the DRF model to a
dynamic setting where users can join the system over time but
will never leave. Wang et al. [35] generalized DRF in a dis-
tributed system with heterogeneous servers, followed by a TSF
fairness policy for the case when there is a placement constraint
for task placement [36]. Dolev et al. [15] generalized DRF to
consider multiple contended resources by proposing bottleneck-
based fairness, rather than the single dominant (bottleneck)
resource only for each user. Parkes et al. [24] extended DRF in
several ways and focused on in particular the case of indivisible
tasks. Liu et al. [23] proposed a Reciprocal Resource Fairness
by extending DRF to allow the trade among different types
of resources between users. When the resource demand vector
required by DRF is not available in computer architectures,
Zahedi et al. [40] proposed an alternative multi-resource policy
based on Cobb-Douglas utility function for multiprocessors. In
summary, all the works above focus on the 100% fairness. In
contrast, this paper considers tradeoff allocation between fairness
and performance simultaneously.

Fairness-efficiency Scheduling. There is a general tradeoff
between fairness and efficiency in multi-resource allocation,
which has been studied by a lot of research works. Joe-Wong et
al. [21] proposed a unifying mathematical framework to capture
the tradeoff between fairness and efficiency, which are specified
by two parameters for a given multi-resource allocation problem.
However, their work is purely a theoretic study and meanwhile
cannot allow users to balance the fairness and efficiency flexibly.
In contrast, our proposed knob-based policy QKnober is practical
and elastic. We have implemented it in Hadoop that allows
users to balance the fairness-efficiency tradeoff flexibly by tuning
the knob in the range of r0, 1s. Wang et al. [34], [37] and
Danna et al. [11] studied the fairness-efficiency tradeoff for
packet processing consuming both CPU and link bandwidth by
proposing a GPS-like fluid model. Wang et al. [33] proposed
a bottleneck-aware allocation policy to balance fairness and
efficiency for users in multi-tiered storage consisting of SSD
and HDD. ElasticSEM [27] is a fairness-efficiency scheduler for
semi-external memory caching system consisting of memory and
SSD. In contrast, we consider the big data job scheduling in the
data center cluster.

EMRF [28] and Tetris [19] are two closely related work to
our work. For the EMRF [28], it focuses on fairness-efficiency
scheduling for Coupled CPU-GPU architecture by modeling
CPU and GPU as different typed resources but considering
the fairness of overall GFLOPS from CPU and GPU across
users. In contrast, QKnober focuses on the fairness-efficiency
job scheduling for data center scenario where CPU and memory
resources are considered. Moreover, EMRF policy only consid-
ered a single machine with one APU chip, whereas QKnober
works for a data center consisting of multiple machines. Tetris is
a fairness-efficiency scheduler for cloud computing that balances
the performance and fairness by leveraging alignment heuristics
to efficiently pack tasks with heterogeneous resource demands
to servers. However, it cannot provide us a soft fairness guar-
antee given a knob setting due to its unawareness of fairness
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degradation (Section 4) during its fairness-efficiency scheduling.
Moreover, it doesn’t satisfy sharing incentive property. In com-
parison, our proposed knob-based policy QKnober is fairness-
sensitive, which maximizes the efficiency while guaranteeing
the θ-soft fairness under a knob configuration (See Theorem 1).
Additionally, it satisfies sharing incentive, envy freeness and
pareto efficiency properties.

3 DESIRABLE ALLOCATION PROPERTIES

From the economic point of view, a good fair allocation policy in
cluster computing system should provide the following essential
game theoretic properties, including sharing incentive, envy-
freeness, and pareto efficiency.

Sharing Incentive (SI): Resource sharing is an essential and
effective approach to improve the system utilization and effi-
ciency. A good allocation policy should satisfy sharing incentive
(SI) such that each user in the system performs at least as good
as it would be under a statically equal split of the resources of
the computing system. Otherwise, users would not be willing
to share their resources with others. Thus, to enable resource
sharing possible and sustainable, it is a must requirement to
satisfy sharing incentive.

Formally, let Ui “ xui,1, ¨ ¨ ¨, ui,my be the resource allocation
vector for user i. Let NipUiq denote the number of tasks
scheduled for user i under the resource allocation vector Ui. An
allocation policy is sharing incentive if it satisfies the following
condition for each user i P r1, ns,

NipUiq ě NipUiq, p1q

where Ui “ xui,1, ¨ ¨ ¨, ui,my represents the resource allocation
vector for user i under the exclusively non-sharing partition of
the computing system.

Envy-freeness (EF): An allocation is envy-freeness (EF) if no
user envies the allocation of other users associated with a desire
to receive that same allocation. That is, every user prefers its own
allocation to that of any other user. To provide EF, there is a need
to ensure that every user cannot have more tasks scheduled by
switching its allocation with any other user.

Given the resource allocation vector Ui for user i, an alloca-
tion policy satisfies EF if

NipUiq ě NipUjq, p2q

for any two users i, j P r1, ns.
Pareto Efficiency (PE): PE is another critical property that

should be satisfied by a fair resource allocation policy [31].
It is essential for high resource utilization and efficiency. An
allocation policy is PE if it is not possible for a user to get more
tasks scheduled without decreasing the number of running tasks
of at least one other user.

Let U “ xU1, ¨ ¨ ¨,Uny be the resulting allocation for all users
produced by a fair allocation policy. The allocation U is PE if it
does not exist any feasible allocation Ŭ satisfying the following
two conditions at the same time, i.e., 1). @i P r1, ns, NipUiq ď
NipŬiq; 2). Dj P r1, ns, NjpUjq ă NjpŬjq.

4 BACKGROUND AND MOTIVATION

In this section, we motivate our work by reviewing and analyzing
the limitations of existing schedulers.

Fairness vs. System Efficiency. For the single resource allo-
cation, we can achieve fairness across multiple users by dividing
the system resources in the ratio of their assigned weights. For
example, if there is a computing system with 100 CPUs shared
by two users equally, then each user receives 50 CPUs. Many
slot-based analytic frameworks like Hadoop [32] and Spark [39]
support the single resource allocation, which define slots based
on one resource (e.g., CPU). Their fair schedulers are work-
conserving schedulers, which can make the system fully utilized
as long as there are pending tasks. It indicates that we can
achieve both strict fairness and high system efficiency at the
same time for the single-resource allocation.

However, when it comes to the multi-resource allocation,
the situation becomes more complicated and challenging. The
fairness and system utilization/efficiency highly depend on the
workload characteristic and allocation ratio of the resource. If
the users with memory-intensive workloads have small allocation
ratio, it may result in low utilization for the memory resource
due to insufficient requests. Similar case does also hold for other
resources (e.g., CPU). On the contrary, maintaining high resource
utilization for all resources often generate the allocations in a
manner that starves some users, resulting in unfairness problem
for users in the allocation. We next demonstrate these problems
using examples of Dominant Resource Fairness (DRF) [18],
which is a popular multi-resource allocation policy with many at-
tractive merits (e.g., sharing incentive, envy-freeness and pareto-
efficiency).

Example 1: Consider a computing system made up of 200
CPUs and 1000 GB memory in total. It is shared by two users
A and B equally with the task requirement of x1 CPU, 6 GB y
for A and x1 CPU, 2 GB y for B, respectively.

The dominant resource for user A is memory because each
task of A consumes 1{200 of the total CPUs and 6{1000 of the
total memory, while the dominant resource for B is CPU. DRF
achieves the fairness by equalizing the dominant resource shares
(i.e., 546{1000 “ 109{200) for A and B, with the resulting
allocation illustrated in Figure 1. The memory utilization is
only p546`218q

1000 « 76%. This is because DRF does not consider
resource efficiency when making allocation decision. It only
focuses on achieving the fairness among users, but does not deal
with the impact of such adjustments on the system efficiency.

91 CPUs 
546 GB 

218 GB 
109 CPUs 

     CPU      Memory 

   B:  <1 CPU, 2GB> 

   A : <1 CPU, 6GB> 

   0% 

   50% 

   100% 

    (200 CPUs total)      (1000 GB total) 

   76% 

Fig. 1: Allocation with DRF for Example 1. The utilization of memory
is only 76%.
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150 CPUs 
900 GB 

100 GB 
50 CPUs 

     CPU      Memory 

   B:  <1 CPU, 2GB> 

   A : <1 CPU, 6GB> 

   0% 

   50% 

   100% 

    (200 CPUs total)      (1000 GB total) 

Fig. 2: Allocation with 100% utilization for both CPU and memory of
Example 1.

58 CPUs 348 GB 

142 GB 
71 CPUs 

     CPU      Memory 

   B:  <1 CPU, 2GB> 

   A : <1 CPU, 6GB> 

   0% 

   50% 

   100% 

    (200 CPUs total)      (1000 GB total) 

   63% 
71 CPUs 

142 GB 

   C : <1 CPU, 2GB> 

Fig. 3: Allocation with DRF for three users case that modifying
Example 1 by adding a third user C of x1 CPU, 2 GBy per task. The
memory utilization decreases from 76% of Example 1 to 63%.

In fact, both CPU and memory resources in Example 1 can
be fully utilized if the scheduler allocates x150 CPUs, 900 GBy
to A and x50 CPUs, 100 GBy to B, as illustrated in Figure 2.
However, the dominant resource shares of A and B are no longer
the same (i.e., 900

1000 ą 50
200 ), being unfair for B. It implies

that there tends to be a tradeoff between fairness and system
efficiency in resource allocation.

Moreover, the system utilization is also highly dependent on
the competing workloads and can be worsen under DRF policy
with more users joining in the system. To demonstrate this, we
modify Example 1 by adding a third user C also with resource
demand of x1 CPU, 2 GBy per task. Figure 3 illustrates the
allocation of DRF policy. It achieves the fairness by allocating
x58 CPUs, 348 GBy, x71 CPUs, 142 GBy and x71 CPUs, 142
GBy to A, B and C, respectively. The memory-intensive user
B is severely throttled by DRF fairness constraint requirement,
making memory utilization decrease from 76% in Example 1
(Figure 1) to 63%. (Figure 3).

Flaws of Existing Fairness-Efficiency Schedulers. To bal-
ance the tradeoff between fairness and efficiency elastically and
flexibly, many fairness-efficiency schedulers [19], [28], [34], [37]
take knob-based heuristics, which is promised as an effective
approach in multi-resource allocation [19] and there are many
different definitions and implementations for it. Wang et al. [34],
[37] studied the fairness-efficiency tradeoff in networking system
by considering network packet processing and data transfer flow
across different machines. EMRF [28] is a fairness-efficiency
tradeoff scheduler for Coupled CPU-GPU architectures. In con-
trast, Tetris [19] is the state-of-the-art knob-based scheduler for
cloud computing. Specifically, in each resource allocation, it first
sorts all tasks according to the DRF. Then, it searches the best

task for efficiency among the runnable tasks belonging to the first
p1´fq tasks in the sorted list, where f P r0, 1s is a knob provided
by users in advance. It computes the alignment score, defined
as the weighted dot product between the vector of machine’s
available resources and the task’s peak resource demand, to the
machine for each task, and the best task is picked with the largest
alignment score. However, there are several flaws for Tetris as
follows:

166 CPUs
996 GB

4 GB4 GB

2 CPUs2 CPUs

CPU Memory

B:  <1 CPU, 2GB>

A : <1 CPU, 6GB>

0%

50%

100%

(200 CPUs total) (1000 GB total)

84%

Fig. 4: The resulting allocation with Tetris for Example 1 when the
knob f satisfies 0 ď f ď 0.45. In this case, different value of
knobs does not work for fairness improvement, indicating that Tetris
is insensitive to fairness under different knobs.

First, although Tetris allows users to relax fairness for effi-
ciency improvement by tuning the fairness knob, it is insensitive
to fairness degradation for different knobs during the allocation.
Particularly, it cannot show users how much relaxed fairness
(i.e., soft fairness in Section 5.1) can be guaranteed given a knob
configuration. To explain it, let’s revisit Example 1 by assuming
that there two users A and B each with one job consisting
of 1000 tasks, respectively. We can see that the task (share:
x 1
200 ,

6
1000y) of A’s job is more beneficial to the system utiliza-

tion than that (share: x 1
200 ,

2
1000y) of B’s job according to the

resource type difference of their tasks (A : | 1
200 ´

6
1000 | “

1
1000 ,

B : | 1
200 ´

2
1000 | “

3
1000 ). In this case, Tetris first sorts all

2000 tasks from A’s job and B’s job according to DRF policy.
Next it tries to pick up a task from the first p1 ´ fq tasks in
the sorted list that is most beneficial to the system efficiency.
When 0 ď f ď 0.45, the task range that Tetris can choose at
the second stage is 1100 ă p1´ fq ˚ 2000 ď 2000. Then Tetris
always picks up preferred tasks from A’s job rather than B’s
job until it cannot fulfilled, resulting in allocation as shown in
Figure 4 for all 0 ď f ď 0.45. It shows that the knob of Tetris
does not work for fairness improvement when 0 ď f ď 0.45, i.e.,
Tetris is insensitive to fairness degradation under different knobs,
implying that it cannot tell users how much relaxed fairness can
be guaranteed under a knob setting. However, in practice, the
guarantee of different levels of fairness is very important for
users under different knobs configurations.

Third, Tetris violates the sharing incentive property (See def-
inition in Section 3). Let’s take Example 1 as a counterexample
to demonstrate it. Provided that f “ 0, Tetris is purely for
system efficiency optimization by picking the best task for
efficiency among all tasks every time, resulting in the allocation
as illustrated in Figure 2. We can see that, B receives less
resources (i.e., fewer tasks scheduled) in the sharing system than
that (i.e., x100 CPUs, 200 GBy) of exclusively using its partition
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of the system without sharing, violating the sharing incentive
property.

Motivated by these, we seek to explore a new fairness-
efficiency allocation policy that guarantees the soft fairness and
satisfies all the desirable properties listed in Section 3.

5 ALLOCATION MODEL AND SCHEDULING POL-
ICY

In this section, we model the multi-resource allocation in cloud
computing based on DRF, and then propose a fairness-efficiency
scheduling policy called QKnober.

5.1 Multi-Resource Allocation Model

Basic Setting. We start by defining some terms used in our
model. Suppose that the computing system consists of m re-
source types (e.g., CPU, memory, disk) with the capacity of
R “ xr1, ¨ ¨ ¨, rmy shared by n users, where ri denotes the total
amount of resource i. For each user i, let wi denote its share
weight in the shared computing system and Di “ xdi,1, ¨¨¨, di,my
be its resource demand vector, where di,j denotes the amount
of resource j required by a task of user i. We assume that each
user has an infinite number of tasks to be scheduled, and all
its tasks are divisible and with the same resource demand. We
later discuss how these assumptions can be relaxed for practical
usage in Section 6.1.

Given the allocation matrix U “ xU1, ¨ ¨ ¨,Uny for all users, it
is a feasible allocation if it satisfies that,

n
ÿ

i“1

ui,k ď rk, @k P r1,ms. p3q

The maximum number of tasks NipUiq (possible fractional) that
user i can schedule under the resource allocation vector Ui is,

NipUiq “ min
1ďkďm

tui,k{di,ku. p4q

Allocation Model. An efficient resource allocation should
never let a user get more resources than it actually needs in
the computing system. We call such an allocation non-wasteful.
Formally, an allocation Ui is non-wasteful if and only if it
satisfies the following condition:

Ui “ NipUiq ¨ Di. p5q

It is worthy mentioning that we can always convert an al-
location to the non-wasteful allocation by transferring the re-
dundant/unused resources of each user to other potential users
without decreasing the number of tasks scheduled for that user.
Without loss of generality, in the following discussions, we limit
our focus on the non-wasteful allocation.

Scheduling tasks to the computing system is analogous to
the multi-dimensional knapsack problem [10] by viewing the
computing system as a knapsack and each task as a knapsack
item. The weight of an item (or task) from user i is Di. In
this work, since we are interested in the efficiency of resource
allocation, the value of an item ( or task) is the sum of the
amount of different typed resources it required (normalized to the
system capacity), i.e.,

řm
k“1 di,k{rk. Let εipUiq be the efficiency

(i.e, knapsack cost value) of a feasible resource allocation Ui

contributed by user i in the system. According to the knapsack
problem, we have

εipUiq “ NipUiq ¨

m
ÿ

k“1

di,k{rk, p6q

for a single user i. Then the efficiency εpUq of a feasible
allocation U for all users in the system can be calculated as

εpUq “
n

ÿ

i“1

εipUiq “

n
ÿ

i“1

tNipUiq ¨

m
ÿ

k“1

di,k{rku. p7q

Let si denote the share of dominant resource for user i in the
computing system. According to Formula (5), we have

si “ max
1ďkďm

ui,k{rk “ NipUiq ¨ max
1ďkďm

di,k{rk. p8q

Formula (8) indicates that there is a proportional relationship
between a user’s dominant resource share and the number
of tasks scheduled. The Dominant Resource Fairness (DRF)
achieves the fairness by guaranteeing that the (weighted) shares
of dominant resource across users are the same, i.e.,

s1
w1

“
s2
w2

“ ¨ ¨ ¨ “
sn
wn

. p9q

Let smaxi and NipUmaxi q represent the maximum share of dom-
inant resource and the corresponding number of tasks scheduled
for user i under the DRF allocation. The DRF allocation can be
viewed as progressive filling when all tasks are divisible [18].
The allocation terminates when at least one typed resource is
fulfilled. In that case, we are unable to increase each user’s
dominant resource. That is, the dominant resource share and
the corresponding number of tasks scheduled are maximized for
each user under DRF. It thus holds,

max
1ďkďm

t

n
ÿ

i“1

ui,k

rk
u “ max

1ďkďm
t

n
ÿ

i“1

NipUiq ¨ di,k
rk

u “ 1. p10q

ô

n
ÿ

i“1

NipUiq ¨ di,k
rk

“ 1 ô rk “
n

ÿ

i“1

NipUiq ¨ di,k, Dk P r1,ms.

By computing NipUiq with Formula (8) (9) (10), we can
derive NipUmaxi q as follows:

NipUmax
i q “ wi{tφ ¨ max

1ďkďm

di,k
rk
u,

where φ “ max1ďkďmt
1
rk
¨
řn
j“1

wj ¨dj,k

max
1ďk

1
ďm
t
d
j,k
1

r
k
1
u

u.

According to Formula (8), we can get smaxi as

smax
i “ wi{φ, p11q

5.2 QKnober
Recall that the model in Section 5.1 is a strict 100% fairness
allocation model. By altering the model slightly, we can develop
a knob-based fairness-efficiency scheduler, QKnober, to allows
users to balance fairness and system efficiency flexibly using a
fairness knob.

The basic idea is as follows. Instead of strictly seeking for
100% fairness as DRF does, we can compromise fairness for
increased allocation efficiency by tolerating some degree of
fairness loss. Particularly, we classify the fairness into two types:
hard fairness and soft fairness. The hard fairness refers to that the
allocation shares of all users should be the same (i.e., Formula (9)
should be guaranteed). In contrast, the soft fairness tolerates
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some degree (marked by θ) of unfairness across users. Formally,
we define θ-soft fairness by changing Formula (9) as follows:

|
si
wi
´
sj
wj
| ď θ,@i, j P r1, ns. p12q

Typically, DRF focuses on the hard fairness across users, limit-
ing the allocation efficiency improvement. In contrast, QKnober,
as a fairness-efficiency tradeoff scheduling policy, is interested
in the soft fairness, which can leave some room for efficiency
improvement. In the following, we describe our design of
QKnober policy.

5.2.1 QKnober Design
The fairness-efficiency tradeoff allocation can be considered
as an integration of two stages allocations: fairness-oriented
allocation (i.e., purely for fairness optimization) and efficiency-
oriented allocation (i.e., purely for efficiency optimization).
For QKnober, it first does the fairness-oriented allocation with
DRF to achieve the soft fairness guarantee. Next it turns to
the efficiency-oriented allocation for efficiency maximization.
Particularly, it offers users a knob ρ P r0, 1s to control and
balance the two stages allocations flexibly. Let s̄i and s

1

i be the
dominant resource shares of the resulting allocation for user i in
the stage of fairness-oriented allocation and efficiency-oriented
allocation, respectively. By combining the allocations of two
stages, we get the final dominant resource share si for each
user i as follows:

si “ s̄i ` s
1

i. p13q

Fairness-oriented Allocation. In the stage of fairness-oriented
allocation, instead of guaranteeing the hard (dominant resource)
fairness of smaxi for each user i, QKnober seeks to guarantee
the soft fairness of smaxi ¨ ρ (i.e., s̄i “ smaxi ¨ ρ). According to
Formula (13), we have

si “ smax
i ¨ ρ` s

1

i. p14q

Let Ū “ xŪ1, ¨ ¨ ¨, Ūny denote the fairness-oriented allocation
result of QKnober. According to Formula (8), it holds s̄i “
NipŪiq¨max1ďkďm di,k. Based on the DRF policy, we can model
the fairness-oriented allocation as follows,

Maximize pN1pŪ1q, N2pŪ2q, ¨ ¨ ¨, NnpŪnqq
subject to

NipŪiq ¨max1ďkďm di,k{rk
wi

“
NjpŪjq ¨max1ďkďm dj,k{rk

wj
. @i, j P r1, ns.

and
n

ÿ

i“1

tdi,k ¨NipŪiqu ď rk ¨ ρ, @i P r1, ns.

It leaves R
1

“ xr
1

1, ¨¨¨, r
1

my idle resources for efficiency-oriented
allocation, where r

1

k “ rk ´
řn
j“1

smaxj ¨ρ¨dj,k
max

1ďk
1
ďm

d
j,k
1
{r
k
1

“ rk ´
řn
j“1NkpU

max
k q ¨ ρ ¨ dj,k according to Formula (8).

The small value of ρ favors the efficiency optimization. In
contrast, the large value of ρ can make the fairness-oriented
allocation dominant, benefiting more for fairness optimization.
Typically, when ρ “ 1, there must exist k P r1,ms satisfying
rk “

řn
j“1NkpU

max
k q ¨ ρ ¨ dj,k ô r

1

k “ 0 according to
Formula (10). It indicate that no task can be allocated in this case
and s

1

i “ 0 given ρ “ 1. According to Formula (14), QKnober
reduces to DRF when ρ “ 1.

Theorem 1: QKnober is a θ-soft fairness policy where

θ “

#

max1ďiďnt
max1ďkďn di,k{rk

max1ďkďm
wi¨di,k

rk´ρ¨
řn
j“1

NkpU
max
k

q¨dj,k

u, p0 ď ρ ă 1q

0, pρ “ 1q.

The proof of Theorem 1 can be found in Appendix A of the
supplemental material.

Efficiency-oriented Allocation. Theorem 1 shows that the
fairness-oriented allocation of QKnober can guarantee θ-soft
fairness across users. In the second stage, we perform the
efficiency-oriented allocation with the remaining idle resource
vector R

1

so that its overall efficiency is maximized.
Formally, our work is to search a feasible allocation U

1

such that Formula (7) is maximized. Particularly, for any two
users i and j with the same normalized task demands (i.e.,
Di
|Di| “

Dj
|Dj | ), exchanging resources between them has no impact

on efficiency but could affect fairness. In order to achieve better
fairness, we still keep Formula (9) holding for any two users
satisfying Di

|Di| “
Dj
|Dj | by adding Formula (16). We can model

the efficiency-oriented allocation as a linear integer programming
optimization problem as follows:

Maximize εpU
1

q “

n
ÿ

i“1

tNipU
1

iq ¨

m
ÿ

k“1

di,k{rku. p15q

subject to:

s
1

i{wi “ s
1

j{wj . pDi{|Di| “ Dj{|Dj |,@i, j P r1, nsq. p16q

and
n

ÿ

i“1

tdi,k ¨NipU
1

iqu ď rk ´
n

ÿ

j“1

smax
j ¨ ρ ¨ dj,k

max1ďk
1
ďm dj,k1 {r

k
1

. p17q

for @k P r1,ms. By resolving the linear integer program, the
optimal (maximum) value of εpU

1

q can be obtained. Finally, the
total system efficiency εpUq can be computed by combining the
allocation efficiencies in the two allocation phases.

To summarize, we have shown that QKnober is a knob-
based fairness-efficiency scheduling policy that can maximize
the system efficiency while guaranteeing the θ-soft fairness with
the provided knob ρ. Particularly, different configurations of the
fairness knob ρ can result in different soft fairness guarantees for
QKnober (i..e, QKnober is sensitive to the fairness degradation
under different knobs).

5.2.2 Properties Analysis of QKnober
We give an analysis of the three essential properties defined in
Section 3 for QKnober.

Theorem 2: (Sharing Incentive): The QKnober allocation
policy is sharing incentive when

ρ ě p max
1ďkďm

t
1

rk
¨

n
ÿ

j“1

wj ¨ dj,k

max1ďk1ďmt
d
j,k
1

r
k
1
u

uq{

n
ÿ

j“1

wj .

The proof of Theorem 2 is given in Appendix B of the supple-
mental material.

By properly configuring the knob ρ according to Theorem 2,
QKnober can guarantee that each user can schedule at least as the
number of tasks as that under exclusively using its own partition
of the system resources with no sharing. Next, we show that
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QKnober is envy-freeness, namely, no user envies the allocation
results of any other users under its allocation.

Theorem 3: (Envy Freeness): Every user under the QKnober
allocation prefers its own allocation to others.
The proof of Theorem 3 can be found in Appendix C of the
supplemental material.

We next show that QKnober produces an efficient allocation
under which no user can increase its allocation without decreas-
ing that of other users.

Theorem 4: (Pareto Efficiency): The QKnober allocation pol-
icy is pareto efficient.

Please refer to Appendix D of the supplemental material for
the proof of Theorem 4.

Moreover, we also have a discussion on the discrete resource
allocation for QKnober in the Appendix E of the supplemental
material.

6 IMPLEMENTATION OF QKNOBER

YARN has been a de facto distributed resource management
system that enables many big data processing frameworks (e.g.,
MapReduce [12], Spark [39], HIVE [30], HBase [16]) running
on top of it to share a computing cluster efficiently. In this
section, we implement QKnober policy in YARN by developing
a fairness-efficiency scheduler called QKYARN. We start with
practical considerations in real world, followed by the detailed
implementation of QKnober in YARN.

6.1 Practical Considerations
In our former discussions of QKnober policy, there are several
key assumptions that may not be the case in a real-world
computing system. For practical application of QKnober, we
need to relax these assumptions by considering complicated and
challenging factors for real applications and computing system.
In the following, we highlight these challenges and then give
our solutions to address them in YARN.

C1: Online Users with a Finite Number of Tasks. In the
previous discussions, it has assumed that there are an infinite
number of tasks for each user at any time. However, in practice,
the tasks of users are arriving over time, implying that the
number of tasks per user is generally finite at a time.

Iterative QKnober Approach. We can address this problem
through a small modification on QKnober as follows. First,
we classify all users into two kinds: active users (i.e., with
pending tasks) and inactive users (i.e., with no pending tasks).
The system maintains the list of active users, where an inactive
user becomes active whenever there arrives a pending task of
it. The system performs QKnober allocation iteratively. In each
allocation round, the system uses progressive filling approach
to allocates resources to active users based on QKnober until
one of them has all its pending tasks scheduled. After that, the
active user becomes inactive and will not be considered in the
following allocation. The system then starts a new allocation
round and repeats the above allocation procedure until there is
no active user or no sufficient idle resources that can be allocated.

C2: Heterogeneous and Indivisible Tasks. In QKnober
allocation model, we have assumed that tasks are divisible and all
the tasks of a user are homogeneous in their resource demands.

However, in the real world, it may not be the case. First, the
tasks demands of a user are most likely to be diverse (e.g.,
different demands between map and reduce tasks of a user’s
MapReduce job). Second, fractional tasks are often not supported
and accepted by existing systems (e.g., MapReduce, Spark).

In QKnober, whether to perform fairness-oriented allocation
or to do efficient-oriented allocation is determined by the max-
imum dominant resource share smaxi and provided knob ρ (See
Section 5.1). When the demands of all the tasks of a user are
homogeneous, the maximum dominant resource share is fixed
and can be estimated by Formula (11) for each user. However,
in the heterogeneous case, it varies dynamically with the running
and new arriving tasks. Moreover, estimating the maximum
dominant resource share in such case is NP-hard.

Fitness-based Approximation Approach. We propose a heuris-
tic approach based on the First-Fit algorithm [9]. The algorithm
first estimates the current average resource demand of tasks
based on its running and pending tasks for each user. Then,
it computes the maximum dominant resource share for each
user by using its current average resource demand of tasks
with Formula (11). However, in practice, there could be a large
number of pending tasks at runtime. It indicates that picking
all pending tasks might not reflect the current average resource
demand of a user. To address it, we instead only consider a
certain number of tasks that just fill the remaining idle space
of the cluster. We achieve and update it for current average
resource demand by using the First-Fit algorithm dynamically.
That is, we count the pending tasks in the queue order until the
cluster can be filled. Then the current average resource demand
can be estimated based on the running tasks and those counted
pending tasks. Therefore, the time complexity for estimating the
maximum dominant resource share smaxi is Opnq.

C3: Heterogeneous and Distributed Computing System.
The QKnober allocation model assumes the computing system as
a single super-server, which however may not always be the case.
A real-world computing system (e.g., Google production cluster,
Amazon EC2) generally consists of many heterogeneous servers
with different resource capacities connected via a high-speed net-
work. In this case, scheduling tasks efficiently to the computing
system is analogous to the NP-hard multi-dimensional knapsack
problem [10] mentioned above.

Affinity-based Task Scheduling Approach. We develop a
heuristic approach for efficiency-oriented allocation by defining
affinity of a task relative to the system. That is, when there are
some idle resources on a server, we first filter out a set of pending
tasks that can be accommodated by that server. Specifically, we
first do the fairness-oriented allocation by looking for the user
with the lowest dominant resource. If the soft fairness of that user
is not guaranteed, then we consider all pending tasks from that
user. Otherwise, we consider all pending tasks from all active
users. Next, we compute the affinity score for each of these
tasks, as the dot product between the task’s resource demand
and the vector of that server’s idle resources. The one with the
highest affinity score among all these pending tasks is chosen
for scheduling.
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6.2 Implementation
Figure 5 overviews the architecture design of QKYARN in
YARN. We add four new components on top of YARN Resource
Manager, namely, QueueInfo Tracker (QT), Maximum Domi-
nant Resource Share (MDRS) Updater, QKnober Policy, and
QKnober Resource Allocator. QT tracks and monitors the task
resource allocation information for each queue. MDRS Updater
periodically updates the maximum dominant resource share for
each user. With the provided runtime allocation information and
maximum dominant resource share, QKnober Policy decides
which resource allocator should be chosen for resource alloca-
tion, after which Resource Allocator allocates multiple resources
to queues dynamically.

Resource Manager Resource Manager 

SchedulerScheduler

Queue ManagerQueue Manager

QKnober Resource
Allocator

QKnober Resource
Allocator

(3). Reply 
queue Info

(2). Query 
queue Info
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Updater

Node
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Fig. 5: QKYARN Architecture Overview. New components are added
and shown in rectangle with pink background color, and others are from
YARN.

Algorithm 1 Pseudocode for QKnober Allocation.
1: R “ xr1, ..., rmy: total resource capacities.
2: Ui “ xui,1, ..., ui,mypi P r1, nsq: currently allocated resources for user i.
3: si: current dominant resource share for user i.
4: smaxi : the estimated maximum resource share for user i under DRF policy.
5: W “ xw1, ..., wny: weighted share. wi denotes the weight for user i.
6: ρp0 ď ρ ď 1q: the knob argument, provided by users.

7: while there are pending tasks do
8: Find active user i with lowest dominant resource share si.
9: if si ă smaxi ¨ ρ then Ź Fairness-oriented allocation.

10: Allocate resource Di,k to that task of user i.
11: else Ź Efficiency-oriented allocation.
12: Find user j whose task k of demand Di,k best fits for efficiency
13: optimization allocation among all users’ tasks.
14: Allocate resource Dj,k to that task of user j.

QueueInfo Tracker (QT): As a multi-tenant system, YARN
organizes resources into multiple queues, each of which repre-
sents a user or an organization. Users submit jobs to the queues.
To enable the fairness-efficiency allocation across queues, QK-
YARN needs to maintain the runtime allocation information,
which is achieved by inserting a component called Queue
Tracker (QT) into each queue. It tracks the resource allocations
of running and completed tasks for each queue. Moreover, it
maintains the average task resource demand for each queue,
based on the sliding window proposed in Section 6.1.

MDRS Updater: It is responsible for periodically updating
the maximum dominant resource share smaxi needed by QKnober
Policy. Given a time interval ∆t, it takes the average task
resource demand of each queue provided by QT as input.
The update is then triggered based on Formula (10) whenever
tcurr%∆t “ 0, where tcurr represents the current time.

QKnober Policy: It is a key component of QKYARN. Being
as a fairness-efficiency tradeoff scheduler, QKYARN relies on

it to decide whether to perform fairness-oriented allocation or
efficiency-oriented allocation at runtime. Algorithm 1 shows
the pseudocode for QKnober allocation. Whenever there are
pending tasks and idle resources available, QKnober will pick
up the active user with the lowest dominant resource share
(Line 8), of which the time complexity is Opnq. It first checks
whether its dominant resource exceeds the dominant resource
share of soft fairness(Line 9). If not exceeded, it will perform the
fairness-oriented allocation with DRF (i.e., Opnq). Otherwise, it
does the efficiency-oriented allocation by resolving the linear
integer programming optimization problem of Formula (15)
with GLPK [5] (Line 11). It adopts the simplex algorithm to
solve the linear integer programming, of which the worst-case
time complexity can be exponential. Fortunately, the number of
constraints k (i.e., the number of different resource types) in
Formula (17) is small (e.g., k “ 2 in this paper) and the number
of active users n is generally not large in practice, making
the computing matrix for simplex algorithm is small and thus
efficient in computation (See overhead evaluation in Appendix F
of the supplemental material).

7 EXPERIMENTAL EVALUATION

We use two complementary methods to evaluate the effectiveness
of our proposed approach. We first evaluate QKnober using our
prototype QKYARN on an Amazon EC2 cluster. To evaluate
QKnober at larger scale, we perform trace-driven simulations
using Google cluster-usage traces.

7.1 Experimental Setup

Hadoop Cluster. We have implemented QKnober in the version
of YARN-2.4.0. We deploy the YARN framework in an Amazon
EC2 cluster consisting of 60 Amazon EC2 t2.medium instances
each with 2 virtual cores and 4 GB memory. We configure 1
instance as master, and the remaining 59 instances as slaves,
each of which is configured with ă2 virtual cores, 4 GBą.

Bin Job Type Map Tasks Reduce Tasks # Jobs# Demand # Demand

1 rankings selection 1 ă1,1 GBą NA NA 38
2 grep search 2 ă1, 1.5 GBą NA NA 18
3 uservisits aggregation 10 ă2, 0.5 GBą 2 ă4,2 GBą 14
4 rankings selection 50 ă4, 1 GBą NA NA 10
5 uservisits aggregation 100 ă2, 1.5 GBą 10 ă2, 2 GBą 6
6 rankings selection 200 ă3, 2 GBą NA NA 6
7 grep search 400 ă2, 1 GBą NA NA 4
8 rankings-uservisits

join
400 ă1, 2 GBą 30 ă2, 0.5

GBą
2

9 grep search 800 ă2, 0.5 GBą 60 ă1, 3 GBą 2

TABLE 1: Job types and sizes for synthetic Facebook workloads.

Testbed Workloads. We run four data-intensive workloads
for QKYARN:
‚ Synthetic Facebook Workload: We synthesize Facebook

workload based on the distribution of jobs sizes and inter-
arrival time at Facebook provided by Zaharia et. al. [38]. The
workload consists of 100 jobs. We categorize them into 9 bins
of job types and sizes, as listed in Table 1. It is a mix of
large number of small-sized jobs (1 „ 15 tasks) and small
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number of large-sized jobs (e.g., 800 tasks1). The job submission
time is derived from one of SWIM’s Facebook workload traces
(e.g., FB-2009 samples 24 times 1hr 1.tsv) [3]. The demand
distribution of map/reduce tasks is based on Figure 1 provided
by Ghodsi et al [18]. The jobs are from Hive benchmark [1],
containing four types of applications, i.e., rankings selection,
grep search (selection), uservisits aggregation and rankings-
uservisits join.
‚ Purdue Workload: Five benchmarks (e.g., WordCount, Tera-

Sort, Grep, InvertedIndex, HistogramMovices) are randomly
chosen from Purdue MapReduce Benchmarks Suite [7]. We use
40G wikipedia data [6] for WordCount, InvertedIndex and Grep,
40G generated data for TeraSort and HistogramMovices with
provided tools. To emulate a series of regular job submissions
in a data warehouse, we submit these jobs sequentially at an
interval of 3 mins to the system.
‚ Spark Workload: We choose two machine learning algo-

rithms, namely, kmeans and alternating least squares (ALS) with
provided example benchmarks. We ran 10 instances of each
algorithm, which are launched by a script that waits 2 minutes
after each job completed to submit the next. We configure each
kmeans instance with 100 workers, each with ă2 CPUs, 2 GBą
resources. In contrast, each ALS instance is set with 100 works,
each with ă1 CPU, 2 GBą.
‚ TPC-H Workload: To emulate continuous analytic query,

such as analysis of users’ behavior logs, we ran TPC-H bench-
mark queries on Hive [2]. 40 GB data are generated with
provided data tools. Four representative queries Q1, Q9, Q12,
and Q17 are chosen, each of which we create five instances. We
launch one query after the previous one finished in a round robin
fashion.

Trace-driven Simulator. To evaluate H-MRF at a larger scale,
we developed a trace-driven simulator that replays logs from
Google clusters. The simulator mimics these aspects of tasks
from the original trace: task submission time, task resource
requirements (e.g., cpu, memory and disk) and execution time,
which are the least required information needed for any task
scheduling simulator.

Trace Dataset. Originally, the Google traces provide the
information about tasks submitted by over 900 users on a
cluster of 12K machines in one month, which are specified
by job events, task events, machine events, machine attributes,
task constraints, task usage listed in the schema.csv file. The
data of our simulator are retrieved from task events (user,
task index, cpu request, memory request, disk space request,
¨ ¨ ¨) and task usage (user, task index, start time, end tme)
tables, both of which contain a common attribute of user and
task index. To generate our dataset, we first sort task events
according to user attribute. Next, we select tasks of the first
one hundred users from tasks events and find the corresponding
task start time and end time from task usage according to
task index. The execution time is calculated as end time minus
start time. However, the Google trace does not provide the task
submission time. In order to make simulator work, we make an
assumption by setting start time as task submission time.

1. We reduce the size of the largest jobs in [38] to have the workload fit our cluster
size.

7.2 Testbed Experimental Results
This section first evaluates the fairness and efficiency of
QKnober under different knob values. Next we compare the
performance of QKnober with its alternatives DRF and Tetris.
Finally, we show the overhead of our QKnober system in
Appendix F of the supplemental material.

7.2.1 Fairness vs. Efficiency
We show in Section 5 that QKnober is an elastic knob-based
tradeoff allocation policy that allows users to balance the fairness
and efficiency flexibly. In this section, we evaluate the impact
of different knob values on the fairness and efficiency with the
mix of four workloads experimentally. Suppose that there are
four users A,B,C,D with the weighted shares of 1 : 2 : 3 : 4,
each running Facebook, Purdue, Spark and TPC-H workloads
on the YARN cluster, respectively. With QKnober policy, we
can then maximize the system efficiency while guaranteeing the
soft fairness. We define a term called soft fairness degree to
quantify the soft fairness based on Formula (12). The smaller
soft fairness degree indicates the better fairness, and vice versa.
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Fig. 6: The system efficiency and soft fairness for QKnober under
different knobs, where the speedup of Makespan is normalized over
the case of knob ρ “ 1, and the estimated soft fairness is computed
according to Theorem 1. Figure 6(b) shows that the estimated soft
fairness is close to the (experimental) soft fairness, implying that in
practice we can instead tune the estimated soft fairness directly for the
corresponding knob and use that knob value to perform the fairness-
efficiency optimizstion with QKnober.

Figure 6 presents the experimental results (i.e., Makespan and
Soft Fairness) as well as estimated soft fairness according to
Theorem 1 for QKnober policy under different knob configu-
rations. We compute the speedup based on the case when the
knob is one. The larger value indicates the better performance.
It can be observed that there is a strong tradeoff between fairness
and efficiency. When the knob is small, it benefits the system
efficiency but harms the fairness. In contrast, when we increase
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the knob value, the fairness can become better at the cost
of system efficiency. It means that users can make their own
tradeoff preference over the fairness and efficiency by tuning
the knob value.

Moreover, the computed soft fairness is much close to the
(experimental) soft fairness, indicating that we can estimate the
soft fairness in practice with Theorem 1. It can be important for
users who want to tune the soft fairness θ directly instead of the
knob ρ in practice. That is, given a certain desirable value θ of
soft fairness, it can figure out the corresponding value ρ (i.e.,
estimate x-axis value according to y-axis value in Figure 6(b)).
Under that knob value of ρ, it can then maximize the efficiency
allocation with QKnober. (e.g., Figure 6(a)).

7.2.2 Performance Evaluation

Figure 7 (a) gives the normalized performance results for Static
Partitioning, DRF, Tetris and QKnober under different knob
configurations, where the speedup is computed over that of Static
Partitioning on makespan. Particularly, we implement the static
partitioning policy by dividing the whole cluster resources (e.g.,
CPU and memory) into four isolated portions for four workloads
according to their weights mentioned in Section 7.2.1, and let
them run exclusively without sharing. We have the following
observations:

First, resource sharing (e.g., DRF, Tetris and QKnober) per-
forms better than non-sharing (e.g., Static Partitioning). For
fairness-only policy DRF, there is about 10% performance
improvement over Static Partitioning. In contrast, for fairness-
efficiency policies like Tetris and QKnober, the improvement can
be up to 57% as we decrease the knob value from one to zero.
The performance gain is mainly due to the resource preemption
of unused resources from overloaded users in the sharing case,
making the resource utilization higher than the non-sharing case.
As illustrated in Figure 7 (b), the resource utilizations for sharing
policies (e.g., DRF, Tetris, QKnober) are higher than that of static
partitioning. For example, the average cpu utilizations for DRF,
Tetris and QKnober are 55%, 57% and 69%, respectively, higher
than the static partitioning of 46%.

Second, QKnober outperforms other baseline allocation poli-
cies DRF and Tetris in all knob configurations. Particularly,
the reason why QKnober is better than DRF even when the
knob is one is due to its efficient affinity-based task placement
in reducing the fragmentation of machines in multi-resource
allocation, whereas DRF policy does not have such a concern and
simply views all machines as a single super machine. Moreover,
both Tetris and QKnober are knob-based fairness-efficiency
allocation policies. The reason why QKnober performs better
than Tetris is due to their different approaches in the efficiency-
oriented allocation. Tetris takes heuristic bin packing approach,
whereas QKnober adopts the optimal linear integer programming
method. It makes QKnober achieve a higher resource utilization
than Tetris as shown in Figure 7 (b). Moreover, the performance
improve as we decrease the knob from one to zero as illustrated
in Figure 7 (a). This is because it benefits the efficient-oriented
allocation as we decrease the knob, making it have a better
resource utilization as shown in Figure 7 (c).

7.3 Google Trace Driven Simulation Results

In this section, we evaluate QKnober at a larger scale using
Google cluster-usage traces [4]. We start by evaluating fairness
and efficiency under different knobs using our built simulator to
replay the execution of tasks from a Google cluster. Next we
compare the performance among different scheduling policies
under different numbers of users.

7.3.1 Evaluation on Different Knobs
In Section 7.2.1, we have shown the fairness-efficiency results for
QKnober in a cluster shared by only four users. In this section,
we evaluate fairness and efficiency for QKnober at a larger scale
using Google cluster-usage traces. The distribution for tasks with
respect to different resource demands is illustrated in Figure ??.
We simulate 100 users submitting tasks with different resource
demands for three resource types (i.e., CPU, memory, and disk)
in 24 hours to a Google cluster of 1000 machines, consisting of
527.5 CPU units, 513.2 memory units and 520.0 disk units in
total, based on the Google trace’s provided capacity information
about machines. We assume that the resources of the cluster are
equally shared across users.

Figure 8 illustrates the simulation results for QKnober under
different knobs, where the speedup is computed over the case
of ρ “ 1. It shows that, it favors the speedup (efficiency) but
worsens the fairness (i.e., the soft fairness degree is large) when
knob value is very small. For example, there can be 26.7%
performance improvement over the case of ρ “ 1, but at the
same time the soft fairness degree is as high as 4.26. In contrast,
as we increase the knob value, the fairness becomes better at
the expense of efficiency. In Figure 8, the soft fairness degree
reduces to 2.71 when ρ “ 1. In summary, all of these tradeoff
observation results are consistent with those in Section 7.2.1.

7.3.2 Evaluation on Different Numbers of Users
This section evaluates the efficiency for various scheduling
policies under different numbers of users. Figure 9 presents
the speedup results for four scheduling policies under different
numbers of users, where the speedup is computed over that of
Static Partitioning and the knob value of Tetris and QKnober are
0.2. There are several observations as follows.

First, for each fair scheduling policy (e.g., DRF, Tetris and
QKnober), there is a decreasing trend of speedup results as we
increase the number of users. For example, the speedup for
QKnober decreases from 1.21ˆ to 1.10ˆ as we increase the
number of users from 100 to 600. The behind reason is that, the
resource contention becomes more serious when there are more
users, which in turn leads to a lower resource utilization.

Second, sharing policies (e.g., DRF, Tetris and QKnober) is
more efficient than non-sharing (e.g., Static partitioning) policy
for all numbers of users. It can be observed in Figure 9 that all
speedup results are larger than one for sharing policies. This is
because resource sharing can allow idle unused resources from
underloaded users to be utilized by overloaded users, which can
improve the system utilization over the non-sharing case.

Third, Tetris works better than DRF, whereas QKnober out-
performs Tetris for all numbers of users. Note that DRF is a pure
fairness policy, which does not take into account the efficiency
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Fig. 7: The comparison results of performance and resource utilization for Static Partitioning (i.e., non-sharing case), DRF, Tetris and QKnober
under different knob configurations, where the speedup of makespan is computed over that of Static Partitioning.

2

2.5

3

3.5

4

4.5

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

So
ft

 F
ai

rn
e

ss
 D

e
gr

e
e

Sp
e

ed
u

p

Knob

Makespan Soft Fairness

Fig. 8: The fairness-efficiency simulation results for QKnober under
different knobs. We compute the speedup over the case of knob ρ “ 1.
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Fig. 9: The speedup results for four scheduling policies under different
numbers of users, where the speedup is computed relative to that of
Static Partitioning and the knob is ρ “ 0.2.

optimization in its resource allocation. In contrast, both Tetris
and QKnober are knob-based fairness-efficiency policies, which
can trade some fairness for improved performance when 0 ď ρ ă
1. In this case, the knob is ρ “ 0.2, which is close to zero. As
we have illustrated in Section 7.2.1 and 7.3.1, the system favors
the efficiency when the knob is smaller. Moreover, although both
Tetirs and QKnober adopt the knob-based approach, they take
different optimization methods in their efficiency-oriented allo-
cation. Tetris uses the bin-packing heuristics whereas QKnober
utilizes the optimal liner programming method, making Qknober
achieve better performance than Tetris.
8 CONCLUSION
This work studies the tradeoff between fairness and efficiency
for users in a shared computing system. A preliminary version
of this paper appears as [29]. We show that the knob-based
approach is a promising solution to achieving the flexible and
elastic tradeoff balance for users. However, existing knob-based
fairness-efficiency schedulers are not aware of fairness degrada-
tion during its fairness-efficiency allocation, which either fail to
guarantee δ-fairness or violate desired properties in Section 3.
To address it, we develop a new knob-based fairness-efficiency
policy called QKnober. It is a fairness sensitive scheduler that

allows users to balance the fairness and efficiency with a knob
while guaranteeing δ-soft fairness. Typically, we provably show
that it meets several desirable properties including sharing incen-
tive, envy freeness and pareto efficiency. Finally, we implement
QKnober in YARN and our experiments show the promised
initial results for QKnober that 1) there can be up to 57%
performance improvement as we decrease the knob value for
QKnober; 2) QKnober is better than DRF and Tetris by about
31.2% and 4.5%.

So far, this paper focuses only on the batch jobs in a datacenter
by considering only CPU and memory resources. In future, we
plan to study the fairness-efficiency job scheduling for multiple
streaming jobs whose computing data are arriving over time.
Moreover, we also consider the job scheduling for deep learning
model training on a GPU-based environment.
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