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Supplemental Material:
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Abstract—To address the computing challenge of ’big data’, a number of data-intensive computing frameworks (e.g., MapReduce,
Dryad, Storm and Spark) have emerged and become popular. YARN is a de facto resource management platform that enables
these frameworks running together in a shared system. However, we observe that, in cloud computing environment, the fair resource
allocation policy implemented in YARN is not suitable because of its memoryless resource allocation fashion leading to violations of
a number of good properties in shared computing systems. This paper attempts to address these problems for YARN. Both single-
level and hierarchical resource allocations are considered. For single-level resource allocation, we propose a novel fair resource
allocation mechanism called Long-Term Resource Fairness (LTRF) for such computing. For hierarchical resource allocation, we
propose Hierarchical Long-Term Resource Fairness (H-LTRF) by extending LTRF. We show that both LTRF and H-LTRF can address
these fairness problems of current resource allocation policy and are thus suitable for cloud computing. Finally, we have developed
LTYARN by implementing LTRF and H-LTRF in YARN, and our experiments show that it leads to a better resource fairness than
existing fair schedulers of YARN.

Keywords—MapReduce, Hadoop, Fair Scheduler, YARN, Cloud Computing, Long-Term Resource Fairness.
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APPENDIX A
PROOF OF THEOREM 1

Theorem 1: When Twait � 0, H-LTRF allocates resources
the same as the single-level LTRF. In contrast, when Twait �

�8, H-LTRF is the same as the naive approach.
Proof: In Algorithm 2 of the main file, H-LTRF de-

tects/assumes a leaf node to be a starvation based on the
following two conditions: (1). it has the lowest total allocated
resources among all users; (2). it has been waiting for a longer
time than Twait without being allocated since its last time
allocation.

If Twait � 0, H-LTRF will choose the leaf node with the
lowest total allocated resources to allocate resources imme-
diately without delay, which is just equivalent to LTRF in
the single-level resource allocation. On the other hand, when
Twait � �8, according to the condition (2), the starvation
node has to wait (i.e., to be starved) until no other leaf nodes
need resources. The resulting effect is exactly the same as the
naive approach. Therefore, it holds for Theorem 1.

APPENDIX B
PROPERTY ANALYSIS FOR LTRF

Theorem 2: LTRF satisfies the sharing incentive property.
Proof: Consider a shared pay-as-you-use cloud comput-

ing system of R resources contributed by n clients with equal
share (or monetary cost) over t period time. When pursuing

 S.J. Tang is with the School of Computer Science&Technology, Tianjin
University, China. B.S. Lee and B.S. He are with the School of Computer
Engineering, Nanyang Technological University, Singapore.
E-mail: tashj@tju.edu.cn, {ebslee, bshe}@ntu.edu.sg.

individually with the same amount of money, 1). the amount of
resources R1 a client can receive is R

n ; 2). Under R1 resources,
she can get at most t � R1 resources, i.e., t � R

n . In contrast,
with fair allocation of LTRF, a client can get at least t � R

n
resources. Thus LTRF satisfies sharing incentive property.

Theorem 3: (Cost-efficient Workload Incentive) Any client
who submits cost-efficient workloads to the shared pay-as-
you-use computing system could get benefits under LTRF.

Proof: Recall that LTRF focuses on the fairness over total
resources with lending agreement. When a client’s resource
demand is less than its current share, she can lend unneeded
resources out. Later when she needs more resources in the
future, she can get extra amount of resources back from
others that she lent before. Reversely, if she submits lots of
dirty workloads to the system when her true demand is less
than her share, she will loose opportunity to get more extra
sources, especially when she has lots of important and urgent
workloads to compute later. Hence, LTRF meets the cost-
efficient workload incentive property.

Theorem 4: LTRF is resource-as-you-pay fairness in a
shared computing system.

Proof: Each client in a shared computing system has
right to enjoy at least the amount of resources she paid.
One key factor that affects resource-as-you-pay fairness is
the varied client’s demands at different time (i.e., unbalanced
workload which can be either less or larger than her current
share). LTRF overcomes the unbalanced workload problem
by considering the fairness at the level of total allocated
resources and following lending agreement. It adjusts the
current allocation of resources to each client dynamically
according to her historical total allocated resources and current
demand, making sure that the total resources a client received
are fair with each other. Thus LTRF is resource-as-you-pay
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fairness.
Theorem 5: LTRF satisfies strategy-proofness property.

Proof: Theorem 3 has demonstrated that LTRF satisfies
cost-efficient workload incentive property that can make a
client be truly willing to yield out her unused resources when
she does not need. On the other hand, it is possible that an
overloaded client lies about her true demands to let her get
more allocated resources in preemption with others at a time.
But due to lending agreement requirement under LTRF, the
consequence of lying in fact is a pre-overconsumption of her
resources and she needs to pay back at a later time to others.
Thus, lying cannot benefits her at all and our proof completes.

Theorem 6: LTRF satisfies pareto efficiency property.
Proof: In the LTRF algorithm [40], there is a discount-

based approach to incentivize users to preempt extra unused
resources from others actively. It indicates that the utilization
of system is fully maximized whenever there are pending
tasks. That is, it is impossible for a client to get more resources
without decreasing the resources of others and thereby our
proof completes.

APPENDIX C
PROPERTY ANALYSIS FOR H-LTRF

Theorem 7: H-LTRF is sharing incentive.
Proof: The hierarchical resource allocation is a top-to-

down recursively collective resource allocation across children
of the same parent node. Consider a hierarchy example of
Figure 1(b) of the main file. With H-LTRF, starting from the
root node nr, it allocates resources across its children n1, n2

with LTRF. According to Theorem 2, it can guarantee that
n1, n2 are at least good or better than that without sharing.
Similarly, under each internal node (e.g., n1), LTRF is further
adopted to perform resource allocation across its children (e.g.,
n1,1, n1,2). Such recursive LTRF allocation continues until the
leaf node occurs. We see that at each time allocation, based
on LTRF, we can guarantee that each child node of the same
parent perform at least good or better than non-sharing case.
Thus, H-LTRF meets the sharing incentive property.

Theorem 8: H-LTRF satisfies cost-efficient workload incen-
tive and resource-as-you-pay fairness properties.

Proof: H-LTRF performs the resource allocation recur-
sively at each level with LTRF, based on total allocated
resources, i.e., the historical resource allocation is taken into
accounted. At each time allocation, according to Theorem 3,
LTRF has a mechanism which enables to benefit nodes
that yields unused resources to others in future time and
punishes those nodes submitting cost-inefficient workloads.
Thus, H-LTRF is cost-efficient workload incentive. Moreover,
LTRF can ensure that the total allocated resources received
by each node is proportional to its payment according to
Theorem 4. Hereby, H-LTRF also meets resource-as-you-pay
fairness property.

Theorem 9: H-LTRF satisfies strategy-proofness property.
Proof: According to Theorem 5, LTRF can guarantee that

users cannot get benefits by falsely reporting their demands.
H-LTRF is an extension of LTRF for hierarchical resource

allocation which allocates resources at each level with LTRF.
It means that at each time allocation, H-LTRF can ensure that
no nodes can get benefits by lying the system. Therefore, H-
LTRF satisfies strategy-proofness property.

Theorem 10: H-LTRF is pareto efficiency.
Proof: The discount-based approach of LTRF encourages

users to preempt extra unused resources from others actively.
H-LTRF is on top of LTRF for hierarchical resource allocation
that allocates resources collectively with LTRF at each level.
It implies that the utilization of system is fully maximized
whenever there are pending tasks. Thereby H-LTRF is pareto
efficiency.

Finally, Table 1 summarizes the properties that are satisfied
by MLRF, LTRF, and H-LTRF, respectively. We can see that
MLRF is not suitable for pay-as-you-use computing system
due to its lack of support for three important desired properties.
In contrast, LTRF and H-LTRF, are suitable for pay-as-you-
use computing system.

Property Allocation Policy
MLRF LTRF H-LTRF

Sharing Incentive ? ? ?

Cost-Efficient Workload Incentive ? ?

Resource-as-you-pay Fairness ? ?

Strategy-Proofness ? ?

Pareto Efficiency ? ? ?

TABLE 1: List of properties for MLRF, LTRF and H-LTRF.

APPENDIX D
ADAPTIVE TASK QUANTUM POLICY EVALUA-
TION

To demonstrate the importance and effectiveness of adaptive
task quantum policy for YARN, this section performs a con-
trast experiment by showing the effects of accumulated re-
source results over time under the fixed time quantum and the
adaptive task quantum mechanism proposed in Section 6.2.1
of the main file.

We consider a scenario where the configured task quantum
(e.g., 600s) is much larger than the real task execution time of
workloads. Figure 1 shows the compared accumulated results
for LTYARN over time within one hour, which are normalized
with respect to the system capacity. We have the following
observations:

First, Figure 1(a) illustrates that the accumulated resource
under the fixed task time quantum policy fluctuates up and
down (i.e., unstable) significantly over time, making it unable
to be an indicator for resource-as-you-pay fairness and failed
to converge fast for fairness. This is due to the computation
method for assumed execution time in the time quantum-based
approach: 1). the assumed execution time for the completed
task is equal to its real execution time; 2). for the running task,
we compute its assumed execution time using the maximum
value of the configured time quantum and its real execution
time. Take Facebook workload for example. Its average task
execution time is about 11s. At time 1439s, there are 107
running tasks, whose assumed execution time is 600, and its
normalized accumulated resource is 1019. However, at time
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(a) Normalized accumulated resources under
the fixed task time quantum of 600s, with
respect to the system capacity.
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(b) Normalized accumulated resources with
adaptive task quantum mechanism, with re-
spect to the system capacity.
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(c) Adaptive task quantum, initialized to be
600s.

Fig. 1: The adaptive task quantum results for LTYARN in one hour.

1450s (i.e., after 11s), there are 31 running tasks, indicating
that at least 76 tasks completed during this period, causing a
significant drop for its normalized accumulated resource (e.g.,
630).

In contrast, with adaptive task quantum policy, as shown
in Figure 1(b), the curves of accumulated resource become
much smoother, making it good as an indicator for resource-
as-you-pay fairness. Figure 1(c) shows the adaptive task quan-
tum results over time for four workloads. We see that each
workload has varied task quantum and our policy can adjust
them dynamically, validating the effectiveness of our adaptive
approach.
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