
EasyPDP: An Efficient Parallel Dynamic
Programming Runtime System

for Computational Biology
Shanjiang Tang, Ce Yu, Jizhou Sun, Bu-Sung Lee, Tao Zhang, Zhen Xu, and Huabei Wu

Abstract—Dynamic programming (DP) is a popular and efficient technique in many scientific applications such as computational

biology. Nevertheless, its performance is limited due to the burgeoning volume of scientific data, and parallelism is necessary and

crucial to keep the computation time at acceptable levels. The intrinsically strong data dependency of dynamic programming makes it

difficult and error-prone for the programmer to write a correct and efficient parallel program. Therefore, this paper builds a runtime

system named EasyPDP aiming at parallelizing dynamic programming algorithms on multicore and multiprocessor platforms. Under

the concept of software reusability and complexity reduction of parallel programming, a DAG Data Driven Model is proposed, which

supports those applications with a strong data interdependence relationship. Based on the model, EasyPDP runtime system is

designed and implemented. It automatically handles thread creation, dynamic data task allocation and scheduling, data partitioning,

and fault tolerance. Five frequently used DAG patterns from biological dynamic programming algorithms have been put into the DAG

pattern library of EasyPDP, so that the programmer can choose to use any of them according to his/her specific application. Besides,

an ideal computing distribution model is proposed to discuss the optimal values for the performance tuning arguments of EasyPDP.

We evaluate the performance potential and fault tolerance feature of EasyPDP in multicore system. We also compare EasyPDP with

other methods such as Block-Cycle Wavefront (BCW). The experimental results illustrate that EasyPDP system is fine and provides an

efficient infrastructure for dynamic programming algorithms.

Index Terms—Dynamic programming, Easypdp, DAG data driven model, fault tolerance, DAG pattern, multicore, block cycle.

Ç

1 INTRODUCTION

DYNAMIC programming (DP) is a popular algorithm
design technique for the solution to many decision and

optimization problems. It solves the problem by decom-
posing it into a sequence of interrelated decision or
optimization steps, and then solving them one after another.
It has been widely applied in many scientific applications
such as computational biology. Typical applications include
RNA and protein structure prediction [1], genome sequence
alignment [43], context-free grammar recognition [7], string
editing, optimal static search tree construction [8], and so
on. Indeed, dynamic programming realizes both of optim-
ality and efficiency of the computed results in comparison
to other methods for these applications, but the computing
cost is still too high when data sharply increase. Therefore,
the parallelization for the dynamic programming becomes
crucial and necessary. However, by virtue of the strong data
dependency of the dynamic programming, it is difficult and

error-prone for the programmer to write a correct and
efficient parallel program. Moreover, designing highly
efficient parallel programs that effectively exploit multi-
processor computer systems is a daunting task that usually
falls on a small number of experts, since the traditional
parallel programming techniques such as message passing
and shared-memory threads are often cumbersome for most
developers. They require the programmer to manage
concurrency explicitly by creating and synchronizing multi-
threads through messages or locks, which is difficult and
error-prone especially for the inexperienced programmer.

To simplify parallel programming, we need to develop
two components [2]: an abstract programming model that
allows users to describe applications and specify concur-
rency from the high level, and an efficient runtime system
which handles low-level thread creating, mapping, resource
management, and fault-tolerance issues automatically re-
gardless of the system characteristics or scale. Indeed, the
two components are closely related. Recently, there has
been a research trend toward these goals by using
approaches such as streaming [3], [41], memory transac-
tions [4], [5], data-flow-based schemes [6], and so on.

This paper presents EasyPDP, a runtime system based on
DAG Data Driven Model for dynamic programming. The
DAG Data Driven Model consists of three modules: user
application module, DAG pattern module, and DAG
runtime system module. The user application module
describes the critical steps that the programmer needs to
follow. The DAG pattern module establishes a DAG pattern
library, in which there are many DAG patterns provided by
the system or defined by users. The DAG runtime system

862 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 5, MAY 2012

. S.J. Tang, C. Yu, J. Sun, T. Zhang, Z. Xu, and H. Wu are with the School
of Computer Science and Techonology, Tianjin University, Weijin Road
92#, Nankai District, Tianjin, China 300072.
E-mail: {tashj, yuce, jzsun, whb}@tju.edu.cn,
{slnazhangtao, xuzhen_0126}@163.com.

. B.-S. Lee is with the School of Computer Engineering, Nanyang
Technological University, #N4-B2A-03(PDCC), 50 Nanyang Avenue,
Singapore 639798. E-mail: ebslee@ntu.edu.sg.

Manuscript received 22 Apr. 2010; revised 2 Aug. 2011; accepted 3 Aug.
2011; published online 5 Aug. 2011.
Recommended for acceptance by S. Aluru.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2010-04-0242.
Digital Object Identifier no. 10.1109/TPDS.2011.218.

1045-9219/12/$31.00 � 2012 IEEE Published by the IEEE Computer Society

module implements the static and dynamic task allocation
and scheduling algorithms according to the specific
applications. The program starts from the user application
module. It gets the selected DAG pattern from the DAG
pattern library, and initializes the pattern by setting the
pattern size, configuring the data mapping for each DAG
node and so on. After that, the DAG runtime system starts
to do parallel computation automatically. The final result is
obtained when the runtime parallel computing is done.

EasyPDP is aimed at shared-memory systems such as
multicore chips and symmetric multiprocessors. It uses
threads to spawn parallel data tasks, and further facilitates
communication through shared-memory buffers without
excessive data copying. The runtime schedules data tasks
dynamically to worker threads to achieve a good load
balance. The fault-tolerance and recovery mechanism
detects and recovers faults automatically during the task
execution by reassigning data tasks. Overall, the messy
details of parallelization, fault tolerance, data distribution,
and load balancing are hidden from the programmer and
are handled by the runtime system automatically. However,
it also allows the programmer to provide the application-
specific knowledge such as functions defined by the user (if
the system does not provide).

We evaluate EasyPDP on multicore systems and demon-
strate that it leads to scalable performance in this environ-
ment. An ideal computing distribution model is proposed
to discuss the optimal values for the performance tuning
arguments (DataSize, BlockSize, ThreadNum, Timeout) of
EasyPDP. We empirically demonstrate the EasyPDP de-
pendency on each performance argument. We discuss the
EasyPDP overhead by comparing EasyPDP with the
sequential iterative code and its cache miss ratio. We also
compare EasyPDP to a static parallel scheduling method
named Block-Cycle Wavefront (BCW) [9] through some
regular and irregular DP applications. The experimental
results demonstrate that EasyPDP outperforms BCW for the
DP algorithm parallelization. Through fault-injection ex-
periment, we show that the EasyPDP fault-tolerance and
recovery mechanism can detect and handle faults during
runtime execution.

The remainder of this paper is organized as follows.
Section 2 provides an overview of the DAG Data Driven
Model. The DP algorithm and its classification are intro-
duced in Appendix A of supplemental material, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPDS.2011.218. Sec-
tion 3 summarizes common types of DAG patterns for DP
algorithms. Section 4 presents our EasyPDP implementa-
tion. The performance evaluation of EasyPDP is presented

in Appendix C, which is available in the online supplemental
material. Section 5 reviews related work. Section 6 concludes
the paper and gives out future work.

2 DAG DATA DRIVEN MODEL OVERVIEW

2.1 Programming Model

Data or tasks with data dependencies and precedence
relationships are modeled as Directed Acyclic Graph
(DAG), such as Genome alignment, RNA secondary
structure prediction, Gene finding, etc. Moreover, there
are some applications whose modeled DAG diagrams are
almost the same, except for their sizes, as shown in Fig. 1. In
view of the reuse concept, we could make those frequently
used DAGs as DAG Patterns and establish a DAG pattern
library to classify and store them. Besides, lots of static and
dynamic task allocation and scheduling algorithms are
based on DAG. For the simplicity of parallel programming
and the purpose of reusability, we could summarize one or
more frequently used algorithms according to the specific
application fields and implement them as code skeletons so
that the programmer could call them.

Inspired by this idea, we present DAG Data Driven Model,
as shown in Fig. 2. It is made up of three modules: User
Application Module, DAG Pattern Module, and DAG
Runtime System Module. The user application module
presents critical steps that the programmer needs to follow.
The DAG pattern module establishes a DAG pattern library,
in which lots of DAG patterns provided by the system or
defined by the user are stored. With regard to the DAG
runtime system module, it implements the static and
dynamic task allocation and scheduling algorithms accord-
ing to a specific application. The three modules are closely
corelated. The following are detailed descriptions of the
three modules.

2.2 User Application Module

The user application module is a trigger module which
presents the basic steps that should be concerned and done
by the programmer. It consists of five steps. According to a
specific application, the programmer first chooses one DAG
pattern from the DAG pattern library. If there are no suitable
DAG patterns for his or her applications, he or she could
define a new DAG pattern and add it into the DAG pattern
library. The next step is the DAG pattern initialization. For a
selected DAG pattern, the programmer should determine its

TANG ET AL.: EASYPDP: AN EFFICIENT PARALLEL DYNAMIC PROGRAMMING RUNTIME SYSTEM FOR COMPUTATIONAL BIOLOGY 863

Fig. 1. A DAG Diagram.

Fig. 2. The DAG Data Driven Model Diagram.

size (width, height) by setting the corresponding arguments
and therefore the total number of DAG nodes can be
calculated. For each DAG node, the programmer should
map it to the application data block. Before scheduling the
DAG runtime system, some arguments must be initialized
by the programmer, including input data, block size, the
number of threads, and the application-specific function,
where the programmer implements the application algo-
rithms and functionality, etc. When the DAG runtime
system starts, the application-specific function will be called
by the worker threads simultaneously. All the details of
parallel programming parts are transparent to the program-
mer, which are implemented and encapsulated in the DAG
runtime system module. After computation, the final data
result is returned and can be gained by the programmer.

In the user application module, the programmer just
needs to do simple initialization work and focus all of his or
her attention on the algorithm or functionality of an
application rather than on parallelization. The frequently
used DAG patterns are stored in the DAG pattern library so
that the programmer can choose to use one of them by
specifying the argument, which simplifies the program-
ming and reflects the reuse concept.

2.3 DAG Pattern Module

A DAG is denoted as D ¼ fV ;Eg, where V ¼ fv1; v2; . . . ; vng
is a set of n nodes, E represents the communication
relationship and the precedence constraints among data
nodes, and epq ¼ ðvp; vqÞ 2 E represents a data message sent
from data node vp to vq, which suggests that vq can start
computing only after vq is completed.

A DAG pattern is a regular DAG that defines the basic
dependence relationships among data nodes, while its size
(width, height, etc.) is changeable, set by arguments. By
setting different sizes, we can make a DAG pattern suitable
for different kinds of applications. For instance, Fig. 1 is a
regular DAG, and each of its nodes only depends on its left
and upper nodes. It can turn to be a DAG pattern by
making its size (width and height) changeable as argu-
ments. For a DAG pattern, each of its DAG nodes maps to a
block of data, and the dependency relationships between
nodes can be obtained from the DAG pattern, while the
computation workload for each DAG node cannot be
obtained, which is excluded from the DAG pattern.

For various application fields, we could summarize
frequently used DAG patterns and categorize them for
each. In order to organize and manage the DAG patterns
well, a DAG pattern library should be established. Each
DAG pattern in the DAG pattern library has a unique
identifier. There are two types of DAG patterns, i.e., one is
the system provided, the other is the user defined. The
system provided DAG patterns are those frequently used
DAG patterns summarized from the applications, while the
user defined patterns, which are defined and added to the
DAG library by the programmer, are the application-
specific DAG patterns instead of the frequently used ones.

2.4 DAG Runtime System Module

The DAG runtime system module is responsible for DAG
operations, parallelization, and concurrency control. The
runtime system adopts the master-slave pattern. Its master

part is used for DAG operations, data tasks allocation, and
fault-tolerance control. The DAG operations include the
DAG parsing and updating. On one hand, the DAG parsing
operation aims at discovering new computable data nodes:
it traverses every DAG node and gets all those nodes whose
in-degrees are zero. By parsing the DAG, the master
allocates those new computable node tasks to workers by
putting the tasks into worker pool buffer. On the other
hand, the DAG updating operation updates the DAG by
removing those completed DAG nodes.

The fault-tolerance and recovery mechanism is necessary
and crucial for the DAG Data Driven Model. When a
computing DAG node fails, the other nodes that depend on
it directly and indirectly will always be incomputable. After
a while, there will be no computable data nodes and the
whole computation stops thereafter without any results
returned. Taking Fig. 1 for instance, without fault-tolerance
and recovery mechanism, all nodes that depend on vð2;2Þ
directly and indirectly will finally be incomputable nodes if
the computing node vð2;2Þ fails unexpectedly. For the
runtime system, when detecting a failed DAG node, it will
reassign the DAG node, clean dirty results as well as
workers, and recover the data computing.

In order to manage slave workers, the slave part adopts
the structure of the worker pool. It has a pool buffer, which
is a task interface between the master and workers. The
master puts the computable node tasks into the buffer and
workers get the tasks from the buffer. Both static and
dynamic worker pools are supported here.

For the static worker pool, each worker has its own
buffer. Tasks and workers are bound together according to
a certain static data allocation method. Once the master puts
a task into the pool buffer, the static worker pool will figure
out which worker it belongs to and distributes the task to
that worker’s own buffer.

For the dynamic worker pool, tasks and workers are not
bound. The workers dynamically get the data tasks from the
pool buffer. If the pool buffer is not empty, all the workers
must be busy working. Compared with the static worker
pool, the load balancing for the dynamic worker pool is better.

The whole DAG runtime system execution process is as
follows: the program in the user application module starts
the runtime system, and the master begins to work. It first
gets the user selected DAG and starts the worker pool.
Thereafter, the master parses the DAG and puts the
computable DAG data node tasks to the pool buffer. The
worker pool allocates tasks in the pool buffer to its workers.
The worker calls the programmer’s application-specific
function for computing. When a data node task is completed,
the master updates and parses the DAG to find new
computable DAG nodes. Once a fault is detected, the master
will reassign the data node. The whole runtime process
continues until all the DAG node tasks are completed.

3 THE DAG PATTERNS FOR DP ALGORITHMS

In Section 2, we categorize DAG patterns according to
various application fields and further establish the DAG
pattern library to manage them. Here for DP applications,
we present five common frequently used DAG patterns
derived from the DP algorithms shown in Fig. 3. Each DAG

864 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 5, MAY 2012

pattern is given a unique identifier according to its data
dependency relationship. The Left_LeftUpper_Upper_DAG
pattern, Left_Upper_DAG pattern and HalfUpperRightMost_
Left_Lower_DAG pattern are directly derived from (a), (b),
(c) of Fig. 1 available in the online supplemental material,
respectively, while the Left_LeftUpper_DAG and Upper_
LeftUpper_DAG are extracted from (a), (b) of Fig. 2 available
in the online Supplemental Material.

Although DAG patterns are often summarized from the
regular DP algorithms, they can be used in many irregular
ones. Taking the Left_Upper_DAG pattern for example, in
addition to fitting for regular DP algorithms like (b) of Fig. 1
available in the online Supplemental Material, it is also well
suited to irregular DP algorithms such as (d) of Fig. 1
available in the online Supplemental Material, (c) and (d) of
Fig. 2 available in the online Supplemental Material. With the
same DAG pattern, the difference between the regular and
irregular DP algorithms lies in the pattern-independent
workload for each DAG node that represents a block of data.

Essentially, there exist intrinsic connections between
different patterns. For example, Left_Upper_DAG pattern
and Left_LeftUpper_Upper_DAG pattern are topologically
equivalent. Both the Left_LeftUpper_DAG pattern and
Upper_LeftUpper_DAG pattern can be extracted from
Left_LeftUpper_Upper_DAG pattern by eliminating all its
upper/left dependencies. To put it another way, we could
use the Left_LeftUpper_Upper_DAG pattern instead of
Left_LeftUpper_DAG pattern and Upper_LeftUpper_DAG
pattern in some cases, except that it decreases the
parallelization degree.

4 THE EASYPDP SYSTEM

EasyPDP implements the DAG Data Driven Model for
shared-memory systems. Its goal is to support efficient
execution on multiple cores without burdening the pro-
grammer with concurrency management for DP algorithms.
EasyPDP consists of a simple API that is visible to application
programmers, runtime functions that are invisible to
application programmers and an efficient runtime that
handles parallelization, DAG operations and fault recovery.
The example and usability of EasyPDP is explained in
Appendix B available in the online Supplemental Material.
Moreover, the experimental performance evaluation of
EasyPDP is discussed in Appendix C available in the online
Supplemental Material.

4.1 The EasyPDP Functions

The current EasyPDP implementation provides four types
of functions for C and C++, i.e., user programming API, DAG

operation function, worker pool function, and fault-tolerance
function. However, similar functions can be defined for
other languages such as Java or C#. The details are
summarized in Table 1.

The user programming API, which is visible to application
programmers, includes two sets of functions. One set is
provided by EasyPDP, but used in the programmer’s
application code to initialize the system (1 required
function), and the other set is the user-defined functions
(1 required and 2 optional functions). Apart from the
process function that takes on the actual computation for
the application algorithms, the user could provide a DAG
pattern initialization function for the user-defined DAG
pattern as well as the data mapping function to map the
DAG nodes to the application data blocks. For the EasyPDP
API, it neither relies on any specific compiler options nor
requires a parallelizing compiler. However, it assumes that
its functions can freely use stack-allocated and heap-
allocated structures for private data on demand. It also
assumes that there is no communication through shared-
memory structures other than the input/output buffers for
these functions. For C/C++, we cannot check these
assumptions statically for arbitrary programs. Although
there are stringent checks within the system to ensure that
valid data are communicated between the user and the
runtime code, eventually we trust the user to provide
functionally correct code. For Java and C#, static checks that
validate these assumptions are possible.

For the DAG operation function, it has two optional
default functions that initialize the system-provided DAG
patterns and map DAG nodes to data blocks. The DAG
pattern handle function can parse the DAG for finding new
computable DAG nodes and update the DAG pattern by
deleting completed node from current DAG pattern.

To the worker pool function, it provides some basic thread
pool operation functions. The pool initialization function
plays the role of initializing the pool queue together with
queue lock and creating threads; pool destroy function is used
to destroy threads and free the memory space accordingly;
pool queue tasks adding function and runtime thread routine
function take on the work of actual computation.

The EasyPDP provides support for the fault tolerance. It
detects faults through timeouts. The critical fault-tolerance
function includes DAG node adding functions and DAG node
removing functions for the timeoutQueue, timeout checking
function that detects the timeout DAG nodes from time-
outQueue. Once detected, the timeout DAG node is removed
from the timeoutQueue, the timeout worker thread is cleaned
up and then the removed nodes are redistributed.

4.2 The EasyPDP Runtime

In order to obtain a good load balance for both regular and
irregular DP algorithms, the EasyPDP runtime adopts the
dynamic worker pool, which uses dynamic allocation and
scheduling algorithms. Moreover, the EasyPDP runtime is
developed on top of Pthreads [26], but can be easily ported
to other shared-memory thread libraries.

4.2.1 Basic Operation and Control Flow

Fig. 4 shows the basic data flow for EasyPDP runtime
system. The runtime is controlled by the scheduler (master)
and initialized by the user program. The programmer

TANG ET AL.: EASYPDP: AN EFFICIENT PARALLEL DYNAMIC PROGRAMMING RUNTIME SYSTEM FOR COMPUTATIONAL BIOLOGY 865

Fig. 3. Some DAG patterns for DP algorithms.

provides the scheduler with all the required data and
function pointers in terms of the scheduler_args_t

structure, which is the only data structure used for the basic
function and buffer allocation information to be commu-
nicated between the user program and the runtime. The
fields of scheduler_args_t are presented in Table 2. The
basic fields provide both pointers to DP data buffers and
user-provided functions. For the user’s DAG pattern, the
EasyPDP runtime system provides a basic data structure for
user to define his own DAG pattern and an interface
(callback function) for adding the pattern into the DAG

pattern library. When configured with user’s DAG pattern,

the runtime will automatically call the user’s callback

function to initialize the DAG pattern. The performance

tuning fields present some key arguments that affect the

system performance. All the fields should be properly set

by the programmer before calling EasyPDP_scheduler.

After initialization, the master scheduler calls the DAG_

pattern_init function to initialize the DAG pattern and

pool_init function to startup the worker pool. After that,

the master scheduler calls DAG_pattern_handle function

to discover new computable DAG nodes whose in-degrees

are zero and then DAG_pattern_node_data_mapping

function to map DAG nodes to data blocks before sending

them into the pool buffer.
Once the pool buffer is not empty and there are idle

workers, the worker pool will distribute data tasks in the

pool buffer to idle workers. The Process is called by

worker threads to do DP algorithm computation. When a

worker thread completes a DAG node task, it pushes the

corresponding DAG node id into DAGPatternNodeFinished-

Stack for notifying the master.
The master checks the DAGPatternNodeFinishedStack in a

small regular time for completed DAG nodes. Once getting

a DAG node, the master will call DAG_pattern_handle to

update DAG and parse the DAG to find new computable

DAG nodes. The whole process continues until all the DAG

node tasks are completed. Finally, the output results return.

866 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 5, MAY 2012

TABLE 1
The Functions in the EasyPDP

R and O identify required and optional fuctions, respectively.

Fig. 4. The basic data flow for the EasyPDP runtime.

4.2.2 Fault Tolerance

Recall in Section 2.4 that the failure of a computing DAG
node can cause all other nodes that depend on it directly
and indirectly to be incomputable, and the whole computa-
tions will eventually pause at a place forever without fault-
tolerance and recovery mechanism. Therefore, it is critical
and necessary to build a fault-tolerance and recovery
mechanism to detect and recover from faults.

EasyPDP detects faults through timeout. If a worker does
not complete a task within a reasonable amount of time,
then a failure is assumed. Of course, a fault may cause a
task to complete with incorrect or incomplete data instead
of failing completely. EasyPDP has no way of detecting this
case on its own and cannot stop an affected task from
potentially corrupting the shared memory. To address this
shortcoming, one should combine the EasyPDP runtime
with other known error detection techniques [27], [28]. Two
kinds of faults that cause timeout are considered here. One
is caused by the death of a worker thread. The other case is
that a computing worker thread goes into the dead-loop or
deadlock for some reasons.

Fig. 5 presents the overall flow of EasyPDP fault-
tolerance mechanism. When the user program calls Easy-
PDP_scheduler, the following sequence of actions occur

(the numbered labels in Fig. 5 correspond to the numbers in
the list below).

1. The master distributes computable DAG nodes
discovered by parsing the DAG to both the time-
outQueue and pool queue simultaneously. For the
timeoutQueue, it has a time_start field that records the
current time for each DAG node when it is put into
the timeoutQueue.

2. The worker pool gets computable DAG data tasks
from the pool buffer and distributes them to its idle
worker threads dynamically.

3. When an idle worker thread obtains a DAG node
task, it will register its thread id and the DAG node
id in the worker_DAGPatternNode_register before
doing DP algorithm computation.

4. Once a worker completes a DAG node task, it will
push the DAG node id to the DAGPatternNodeFi-
nishedStack for notifying the master.

5. The master fetches the finished DAG node id from
the DAGPatternNodeFinishedStack in a small regular
time. Then, it goes to Step 7.

6. The master checks the timeoutQueue to see whether
there are timeout DAG nodes. Note that the value of
time_start for each DAG node in the timeoutQueue
strictly increases from queue front to queue rear.
Thereby the master need not check all nodes in the
timeoutQueue every time. Instead, it just needs to
check nodes from the queue rear to queue front in
order until a nontimeout node is found. If a timeout
DAG node is detected, the master looks up the
corresponding timeout thread id through the work-
er_DAGPatternNode_register, and then makes the
worker pool kill that thread and instead create a
new one, and go to Step 7 to remove the timeout DAG
node from the timeoutQueue. After that, the master
goes to Step 1 to redistribute the timeout DAG node.

7. The master removes a DAG node from the time-
outQueue. Then, it goes to Step 1.

The current EasyPDP does not provide fault recovery for
the master scheduler itself. The master scheduler runs only
for a very small fraction of the time and has a small memory
footprint, hence it is less likely to be affected. On the other
hand, a fault in the master scheduler has more serious

TANG ET AL.: EASYPDP: AN EFFICIENT PARALLEL DYNAMIC PROGRAMMING RUNTIME SYSTEM FOR COMPUTATIONAL BIOLOGY 867

Fig. 5. The overall flow of EasyPDP fault-tolerance mechanism.

TABLE 2
The Fields of scheduler_args_t Data Structure

implications for the correctness of the program. We can use
known techniques such as the redundant execution or
checkpointing to address this shortcoming.

4.2.3 Buffer Operation and Management

Four types of temporary buffers shown in Fig. 5 are
necessary to store data and support fault tolerance. All
buffers are allocated in shared memory but are accessed in a
well-specified way by a few functions, and are not directly
visible to user code.

The pool queue buffer is the only data interface between
the master and the worker pool. The master sends the
computable data tasks into the pool queue buffer, and the
worker pool fetches data from it. The queue lock is used to
guarantee that only one access exists every time.

In order to notify the master to update the DAG in real
time, the DAGPatternNodeFinishedStack buffer is adopted.
Every time the worker finishes the DAG node task, it writes
the DAG node id into the DAGPatternNodeFinishedStack
buffer so that the master could know it at once.

The worker_DAGPatternNode_register buffer and time-
outQueue buffer are two critical parts of fault-tolerance
mechanism. For the timeoutQueue buffer, it is only visible to
master and has a time_start field that records the distributed
time for each DAG node. The master repeatedly checks it
with the current time to see whether it exceeds the timeout
in a regular time. If a DAG node is assumed to be timeout,
the master will notify the worker pool to kill the dirty
worker just in case there are dead-loop threads or deadlock
threads. Since the EasyPDP adopts dynamic worker pool,
the master cannot know which worker thread did the
timeout DAG node task without worker_DAGPatternNode_
register buffer. Every time a worker gets a DAG node task, it
will register its thread id in worker_DAGPatternNode_register
buffer for that DAG node.

4.2.4 Refinements

Table 2 shows the performance tunable arguments that the
user could use to optimize his/her application. Some
optimization topics about these arguments are described
below.

Block size. The user setting of arguments block_row

and block_col determines the size of a data block. Note
that each block size setting will directly affect the size of the
corresponding DAG pattern for a DP application, which in
turn affects the parallelization degree indirectly. For the
irregular DP algorithms such as (d) of Fig. 1 available in the
online Supplemental Material, since computation workloads
of matrix cells are unequal (irregular), the workload of each
DAG node is sharply unequal (irregular) when the size of
data block is larger.

Number of threads. In systems with multiple cores,
since DP applications are data intensive, it had better set the
value of argument thread_num as the number of available
cores in order to typically maximize the system throughput
even if an individual task takes longer time.

Timeout. If a failure occurs during the runtime execu-
tion, the timeout value will be a critical criterion for the
fault-tolerance and recovery mechanism to detect the fault
in real time. On one hand, too large value of timeout will
make the fault-tolerance and recovery mechanism obtuse to

discover faults; on the other hand, too small value of
timeout will make the fault-tolerance and recovery mechan-
ism wrongly assume that a being computed task is failed
and recompute that task, which also adversely influences
the performance. Therefore, the user’s proper value setting
of timeout is important according to the specific character-
istics for various DP applications. For the irregular DP
algorithms, the workload for each DAG node task may be
unequal, which means that the user’s timeout value setting
may not suit most irregular DAG node tasks. To address
this shortcoming, we present a self-adjusted/adaptive
mechanism for timeout. That is, according to the success-
fully completed DAG node task from DAGPatternNodeFi-
nishedStack, the total execution time for that DAG node task
can be calculated by subtracting time_start for that DAG
node in timeoutQueue from the current time. If the total
execution time is less than timeout, but greater than
80 percent of timeout, it indicates that the timeout is a bit
small at present and then our self-adjusted/adaptive
mechanism will double the current timeout value.

4.2.5 Discussion on Performance Arguments

The proper setting for each performance argument men-
tioned above is critical for EasyPDP runtime performance.
However, what is the relationship between these arguments
for performance optimization? Are these arguments in-
dependent of each other or not? In order to answer these
questions, we take the regular DP application as an example
for analysis.

Fig. 6 is an ideal computing distribution model for a
common DAG of a regular DP application. It is made up of
three computing domains: two nonsaturated computing
domains and one saturated computing domain. Here, we
assume that the computing process goes along the anti-
diagonal step by step in the EasyPDP system. On one hand,
in the nonsaturated computing domain, its maximum
parallelization degree is less than the number of computing
workers. It implies that there must be some idle workers
when computation is going on in the domain. On the other
hand, the saturated computing domain indicates that the

868 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 5, MAY 2012

Fig. 6. The ideal computing distribution model for a regular DP algorithm.

maximum parallelization degree is greater than or equal to

the number of computing workers. All the workers should

be busy and no idle workers exist during the computation

in this domain. Variable definitions for further discussion

are listed as follows:

. d : the size of the targeted matrix data. d ¼ n� n
when it is a n� n matrix.

. b : the size of a block data. b ¼ m�m when the block
is a m�m matrix.

. t : the number of threads.

. r : the initial value of timeout.

. kij : the calculation cost for a matrix cell ði; jÞ.

. k : the average calculation cost for each matrix cell.

. cij : the communication cost for a matrix cell ði; jÞ.

. c : the average communication cost for each matrix
cell.

. c0 : the average cost of all other overheads for a block
data, such as DAG node parsing and updating cost.

The average calculation cost for a block data should be

b� k. There is no communication cost for a matrix cell among

the worker threads in the shared-memory environment in

contrast to the message passing in the distributed memory

environment. So the average total computation cost for a

block data should be b� kþ c0. Then, we could get

1. The total nonsaturated computing domain cost is

2� ðt� 1Þ � ðb� kþ c0Þ: ð1Þ

2. The total saturated computing domain cost is

d
b � 2� ðt�1Þ�t

2

t
� ðb� kþ c0Þ: ð2Þ

3. Therefore, the total cost for a regular DP algorithm is

S ¼ 2� ðt� 1Þ � ðb� kþ c0Þ

þ
d
b � 2� ðt�1Þ�t

2

t
� ðb� kþ c0Þ

¼ ðb� kþ c0Þ � t� 1þ d

b� t

� �
:

ð3Þ

Based on the results above, we could obtain the

following conclusion.

Theorem 1. When t ¼ t0ðt0 � 1Þ, the optimal value of b for the

minimal value S is

b ¼
d ðt0 ¼ 1Þ;ffi

c0 � d
k� t0 � ðt0 � 1Þ

s
ðt0 > 1Þ:

8><
>: ð4Þ

Therefore, the optimal minimal value S is

S ¼
d� kþ c0 ðt0 ¼ 1Þ;ffi
t0 � ðt0 � 1Þ � c0 � d� k

p
þ d� k�

ffiffiffiffi
t0
p

t0

þ c0 � ðt0 � 1Þ þ
ffi
c0 � d� k� ðt0 � 1Þ

p
ðt0 > 1Þ:

8><
>:

ð5Þ

Proof. See Appendix D available in the online Supplemental
Material. tu

Theorem 2. When b ¼ b0ð0 > b0 � dÞ, the optimal value of t for
the minimal value S is

t ¼

ffiffiffiffi
d

b0

s
ð0 < b0 � dÞ; ð6Þ

in this case, the optimal minimal value S is

S ¼ ðb0 � kþ c0Þ � 2�

ffiffiffiffi
d

b0

s
� 1

 !
ð0 < b0 � dÞ: ð7Þ

Proof. See Appendix E available in the online Supplemental
Material. tu

Theorem 3. The optimal value of timeout r for the DP algorithm is

r ¼

ffiffi
d
b

q
� t
t

2
666

3
777þ 1

0
@

1
A

�ðb� kþ c0Þ þ " t <

ffiffiffi
d

b

r
; 0 < b � d

 !
;

ðb� kþ c0Þ þ " t �
ffiffiffi
d

b

r
; 0 < b � d

 !
:

8>>>>>>>>>>><
>>>>>>>>>>>:

ð8Þ

where "ð" > 0Þ represents a small extra necessary delayed time
for the fault-tolerance and recovery mechanism.

Proof. See Appendix F available in the online Supplemental
Material. tu

5 RELATED WORK

As an efficient algorithm design technique, DP has been
widely applied in many scientific applications such as
computational biology. With the burgeoning amount of
scientific data, the DP computation cost is still too high, and
it is necessary and meaningful to parallelize it. Lots of work
has been done to exploit the parallelization of DP algorithms.
Edmonds et al. [29] and Galil and Park [30] described several
parallel algorithms on general shared-memory multiproces-
sor systems. Bradford [31] presented several algorithms that
solve optimal matrix chain multiplication parenthesization
using the CREW PRAM model. Tan et al. [33], [34] focused on
a specific type of nonserial polyadic DP with triangular
matrix, for which he introduced some optimization algo-
rithms and theoretical models on multicore architectures. All
these works above are concerned with how to reduce the
complexity of the arithmetic cost on varied theoretical
parallel models, while the parallel implementation complex-
ities for their approaches are not well considered. For the
distributed memory multiprocessor system, Almeida et al.
[35] presented a parallel implementation with tiling on a ring
processors, whereas this parallel tiling algorithm cannot
achieve load balance. Zhou and Lowenthal [36] proposed a
parallel out-of-core [37] algorithm based on the conventional
out-of-core model. Although a load-balancing algorithm was
used, the method only ensures that the number of entries for
each processor is the same, however, it cannot be satisfied for
the irregular DP since the arithmetic cost on each processor is
not the same because of the irregular data dependence. Liu

TANG ET AL.: EASYPDP: AN EFFICIENT PARALLEL DYNAMIC PROGRAMMING RUNTIME SYSTEM FOR COMPUTATIONAL BIOLOGY 869

and Schmidt presented a static parallel scheduling strategy
named block-cycle-based wavefront method and did some
work including giving some algorithms, making a pattern-
based prototype system afterward, in [9], [38], and [39].
Despite some optimization work they have done, their static
scheduling methods still cannot achieve a better load balance
especially for irregular DP applications compared with the
dynamic scheduling as the EasyPDP runtime has adopted. In
contrast, some other schedulers such as work-stealing (WS)
scheduler [45] and parallel depth-first search (PDF) scheduler
[47], [48], [49], which take data locality into account, can have
a good performance for DP algorithms as well due to the
reduced cache and TLB misses. We explained in Section 4.2.2
that the fault tolerance is crucial and necessary for parallel DP
algorithms, whereas there are no fault-tolerance and recovery
mechanisms which have been considered and supported in
previous work except our EasyPDP. Chowdhury [11], [12],
[13], [14] proposed a cache-efficient divide-and-conquer
algorithm which divides the DP problem into lots of
subproblems and solves them concurrently in one direction.
It can achieve a good cache efficiency and space complexity.
In contrast, our EasyPDP automatically partitions the DP into
lots of blocks represented with DAG according to the
argument BlockSize set by the user, and solves each by
working threads iteratively. The argument BlockSize of
EasyPDP could be used to reduce the cache miss (see
discussion in Appendix C.4 available in the online Supple-
mental Material) in some cases.

For simplifying parallel programming, we propose
EasyPDP based on our DAG Data Driven Model for DP
applications. Recently, there is a significant approach that is
developing two components: a parallel programming
model and runtime system for parallel program simplifica-
tion. MapReduce [40] proposed by google for simplifying
the parallel programming and data processing on clusters is
a parallel programming model as well as a runtime system
at the same time. Phoenix [2] is an efficient runtime system
based on MapReduce model for shared-memory systems.
StreamIt uses a synchronous data-flow model that allows a
compiler to automatically map a streaming program to a
multicore system [41].

6 CONCLUSION AND FUTURE WORK

In the paper, a parallel dynamic runtime system named
EasyPDP, based on DAG Data Driven Model, is proposed
and implemented for parallelization of DP algorithms in
shared-memory systems. However, it can also be applied to
other applications, especially those with strong data or task
dependencies. With EasyPDP, the programmer only needs to
concern about the specific DP formulas, provides some
application-related arguments, and leaves parallelization
and scheduling tasks to the EasyPDP runtime system.
EasyPDP automatically partitions the DP matrix into blocks
and allocates those computable block data to idle threads
dynamically during the parallel execution. It can also recover
from runtime faults through its timeout fault-tolerance
mechanism. An ideal computing distribution model is
proposed to discuss the performance tuning arguments
(DataSize, BlockSize, ThreadNum, Timeout) of EasyPDP (see
Section 4.2.5). We empirically demonstrate the dependency
on each performance argument by experiments. We discuss

EasyPDP overhead by comparing EasyPDP with the sequen-
tial code and its cache miss. We also compare EasyPDP to a
static parallel scheduling method named Block-Cycle Wave-
front. Experimental results show that EasyPDP outperforms
BCW for DP algorithms parallelization.

Indeed, there are still some shortcomings in our current
version of EasyPDP, which will be addressed in our future
work. For instance, space complexity is a major issue in the
usability of many DP algorithms, and there are some methods
and technologies [42], [43], [44], can be used to reduce it.
Moreover, the argument BlockSize of EasyPDP can be used to
reduce the cache miss (see discussion in Appendix C.4
available in the online Supplemental Material) for some DP
algorithms, but is not sufficient enough. However, the
schedulers such as work-stealing scheduler for distributed
caches [45], which take data locality into account, can reduce
cache miss significantly. We plan to incorporate it into our
future version of EasyPDP by using Cilk [46].

In addition, our future work also include expanding
EasyPDP to support other multiprocessor/many-core ar-
chitectures such as CELL BE and GPU, exploring more
commonly used DAG patterns for DP algorithms, and
extending current EasyPDP so that it can be applied to other
applications. Moreover, in order to achieve a good reusa-
bility, we plan to optimize our EasyPDP system and
provide some basic APIs needed for biological program-
ming further in future.

The EasyPDP source code is publicly available for
downloading at http://easypdp.sourceforge.net/.

ACKNOWLEDGMENTS

The authors would like to thank the editor, all the reviewers,
Chao Sun, Jun Du, Liya Fan, Libo Sun, and Tingxu Yan for the
help in improving this paper. This work is sponsored by the
National Natural Science Foundation of China (10978016,
11003027), and the Key Technologies R & D Program of
Tianjin, China (09ZCKFGX00400, 11ZKFGX01000). C. Yu
(yuce@tju.edu.cn) is the corresponding author.

REFERENCES

[1] J. Bowie, R. Luthy, and D. Eisenberg, “A Method to Identify
Protein Sequences that Fold into a Known Three-Dimensional
Structure,” Science, vol. 253, no. 5016, pp. 164-170, 1991.

[2] C. Ranger et al., “Evaluating MapReduce for Multi-Core and
Multiprocessor Systems,” Proc. IEEE 13th Int’l Symp. High
Performance Computer Architecture, pp. 13-24, 2007.

[3] E. Kohler, R. Morris, and B. Chen, “Programming Language
Optimizations for Modular Router Configurations,” Proc. 10th Int’l
Conf. Architectural Support for Programming Languages and Operating
Systems (ASPLOS), pp. 251-263, 2002.

[4] B.D. Carlstrom et al., “The ATOMO Transactional Programming
Language,” Proc. ACM SIGPLAN Conf. Programming Language
Design and Implementation, pp. 1-13, June 2006.

[5] T. Harris and K. Fraser, “Language Support for Lightweight
Transactions,” Proc. 18th Ann. ACM Conf. Object-Oriented Program-
ming, Systems, Languages, and Applications, Oct. 2003.

[6] S. Balakrishnan and G.S. Sohi, “Program Demultiplexing:
Data-Flow Based Speculative Parallelization of Methods in
Sequential Programs,” Proc. 33rd Ann. Int’l Symp. Computer
Architecture (ISCA ’06), June 2006.

[7] C. Ciressan, E. Sanchez, M. Rajman, and J.C. Chappelier, “An
FPGA-Based Coprocessor for the Parsing of Context-Free Gram-
mars,” Proc. IEEE Symp. Field-Programmable Custom Computing
Machines, 2000.

870 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 5, MAY 2012

[8] M. Farach and M. Thorup, “Optimal Evolutionary Tree Compar-
ison by Sparse Dynamic Programming,” Proc. 35th Ann. Symp.
Foundations of Computer Science, pp. 770-779, 1994.

[9] W.G. Liu and B. Schmidt, “Parallel Design Pattern for Computa-
tional Biology and Scientific Computing Applications,” Proc. IEEE
Int’l Conf. Cluster Computing, pp. 456-459, 2003.

[10] V. Kumar, A. Grama, A. Gupa, and G. Karypis, Introduction to
Parallel Computing. Benjamin/Cummings Publishing Company,
Inc., 1994.

[11] R.A. Chowdhury and V. Ramachandran, “Cache-Efficient
Dynamic Programming Algorithms for Multicores,” Proc. 20th
Ann. Symp. Parallelism in Algorithms and Architectures, pp. 207-
216, 2008.

[12] R.A. Chowdhury, H.S. Le, and V. Ramachandran, “Cache-
Oblivious Dynamic Programming for Bioinformatics,” IEEE/
ACM Trans. Computational Biology and Bioinformatics, vol. 7, no. 3,
pp. 495-510, July-Sept. 2009.

[13] R.A. Chowdhury and V. Ramachandran, “Cache-Oblivious
Dynamic Programming,” Proc. 17th Ann. ACM-SIAM Symp.
Discrete Algorithms, pp. 591-600, 2006.

[14] R.A. Chowdhury, H. Le, and V. Ramachandran, Efficient
Cache-Oblivious String Algorithms for Bioinformatics, Technical
Report TR-07-03, Dept. of Computer Sciences, Univ. of Texas,
Feb. 2007.

[15] G. Blelloch, R. Chowdhury, P. Gibbons, V. Ramachandran, S.
Chen, and M. Kozuch, “Provably Good Multicore Cache
Performance for Divide-and-Conquer Algorithms,” Proc. 19th
Ann. ACM-SIAM Symp. Discrete Algorithms, pp. 501-510, 2008.

[16] Z. Galil and K. Park, “Dynamic Programming with Convexity,
Concavity and Sparsity,” Theoretical Computer Science, vol. 92,
pp. 49-76, 1992.

[17] X. Huang and K.M. Chao, “A Generalized Global Alignment
Algorithm,” Bioinformatics, vol. 19, no. 2, pp. 228-233, 2003.

[18] N. Futamura, S. Aluru, and X. Huang, “Parallel Syntenic
Alignments,” HiPC ’02: Proc. Ninth Int’l Conf. High Performance
Computing, pp. 420-430, 2002.

[19] T. Smith and M. Waterman, “Identification of Common Molecular
Subsequences,” J. Molecular Biology, vol. 147, no. 1, pp. 195-197,
1981.

[20] R. Durbin, S. Eddy, A. Krogh, and G. Mitchison, Biological Sequence
Analysis: Probabilistic Models of Protein and Nucleic Acids. Cam-
bridge Univ. Press, 1998.

[21] R. Nussinov, G. Pieczenik, J.R. Griggs, and D.J. Kleitman,
“Algorithms for Loop Matchings,” SIAM J. Applied Math.,
vol. 35, no. 1, pp. 68-82, 1978.

[22] A. Viterbi, “Error Bounds for Convolutional Codes and an
Asymptotically Optimum Decoding Algorithm,” IEEE Trans.
Information Theory, vol. TIT-13, no. 2, pp. 260-269, Apr. 1967.

[23] D.W. Mount, Bioinformatics-Sequence and Genome Analysis. Cold
Spring Harbor Laboratory Press, 2001.

[24] M.S. Gelfand, A.A. Mironov, and P.A. Pevzner, “Gene Recogni-
tion via Spliced Sequence Alignment,” Proc. Nat’l Academy of
Sciences of USA, vol. 93, no. 17, pp. 9061-9066, 1996.

[25] M. Zuker and P. Stiegler, “Optimal Computer Folding of Large
RNA Sequences Using Thermodynamics and Auxiliary Informa-
tion,” Nucleic Acids Research, vol. 9, no. 1, pp. 133-148, 1981.

[26] B. Lewis and D.J. Berg, Multithreaded Programming with Pthreads.
Prentice Hall, 1998.

[27] S. Mitra, N. Seifert, M. Zhang, Q. Shi, and K.S. Kim, “Robust
System Design with Built-In Soft-Error Resilience,” Computer,
vol 38, no. 2, pp. 43-52, 2005.

[28] J.C. Smolens et al., “Fingerprinting: Bounding Soft-Error Detection
Latency and Bandwidth,” Proc. 11th Int’l Conf. Architectural
Support for Programming, Languages and Operating Systems,
pp. 224-234, Oct. 2004.

[29] P. Edmonds, E. Chu, and A. George, “Dynamic Programming on a
Shared Memory Multiprocessor,” Parallel Computing, vol. 19, no. 1,
pp. 9-22, 1993.

[30] Z. Galil and K. Park, “Parallel Algorithm for Dynamic Program-
ming Recurrences with More than O(1) Dependency,” J. Parallel
and Distributed Computing, vol. 21, no. 2, pp. 213-222, 1994.

[31] P.G. Bradford, “Efficient Parallel Dynamic Programming,” Proc.
30th Ann. Allerton Conf. Comm. Control and Computing, pp. 185-194,
1992.

[32] A. Mark and S. Ramesh, “PC Software Performance Tuning,”
Computer, vol. 29, no. 8, pp. 47-54, 1996.

[33] G.M. Tan, H.N. Sun, and R.G. Gao, “A Parallel Dynamic
Programming Algorithm on a Multi-Core Architecture,” Proc.
19th Ann. ACM Symp. Parallel Algorithms and Architectures, pp. 135-
144, 2007.

[34] G.M. Tan et al., “Locality and Parallelism Optimization for
Dynamic Programming Algorithm in Bioinformatics,” Proc.
ACM/IEEE Conf. Supercomputing (SC ’06), pp. 11-17, 2006.

[35] F. Almeida, R. Andonov, and D. Gonzalez, “Optimal Tiling for
RNA Base Pairing Problem,” Proc. 14th Ann. ACM Symp. Parallel
Algorithm and Architecture (SPAA ’02), pp. 173-182, 2002.

[36] W. Zhou and D.K. Lowenthal, “A Parallel, Out-of-Core Algorithm
for RNA Secondary Structure Prediction,” Proc. Int’l Conf. Parallel
Processing (ICPP ’06), pp. 74-81, 2006.

[37] J.S. Vitter, “External Memory Algorithms and Data Structures:
Dealing with Massive Data,” ACM Computing Surveys, vol. 33,
no. 2, pp. 209-271, 2001.

[38] W. Liu and B. Schmidt, “A Generic Parallel Pattern-Based System
for Bioinformatics,” Proc. EURO-PAR, pp. 989-996, 2004.

[39] W. Liu and B. Schmidt, “Parallel Pattern-Based Systems for
Computational Biology: A Case Study,” IEEE Trans. Parallel and
Distributed Systems, vol. 17, no. 8, pp. 750-763, Aug. 2006.

[40] J. Dean and J. Ghemawat, “MapReduce: Simplified Data Proces-
sing on Large Clusters,” Comm. ACM, vol. 51, no. 1, pp. 107-113,
2008.

[41] M.I. Gordon et al., “A Stream Compiler for Communication-
Exposed Architectures,” Proc. 10th Int’l Conf. Architectural Support
for Programming Languages and Operating Systems, pp. 291-303, Oct.
2002.

[42] D. Hirschberg, “A Linear Space Algorithm for Computing
Maximal Common Subsequences,” Comm. ACM, vol. 18, no. 6,
pp. 341-343, 1975.

[43] X. Huang, “A Space-Efficient Parallel Sequence Comparison
Algorithm for a Message-Passing Multiprocessor,” Int’l J. Parallel
Programming, vol. 18, no. 3, pp. 223-239, 1989.

[44] S. Rajko and S. Aluru, “Space and Time Optimal Parallel Sequence
Alignments,” IEEE Trans. Parallel and Distributed Systems, vol. 15,
no. 12, pp. 1070-1081, Dec. 2004.

[45] U.A. Acar, G.E. Blelloch, and R.D. Blumofe, “The Data Locality of
Work Stealing,” Theory of Computing Systems, vol. 35, no. 3,
pp. 321-347, 2002.

[46] M. Frigo, C.E. Leiserson, and K.H. Randall, “The Implementation
of the Cilk-5 Multithreaded Language,” Proc. ACM SIGPLAN Conf.
Programming Language Design and Implementation, pp. 212-223,
1998.

[47] G.E. Blelloch and P.B. Gibbons, “Effectively Sharing a Cache
among Threads,” Proc. 16th Ann. ACM Symp. Parallelism in
Algorithms and Architectures, pp. 235-244, 2004.

[48] G.E. Blelloch, P.B. Gibbons, and Y. Matias, “Provably Efficient
Scheduling for Languages with Fine-Grained Parallelism,”
J. ACM, vol. 46, no. 2, pp. 281-321, 1999.

[49] G.E. Blelloch, P.B. Gibbons, G.J. Narlikar, and Y. Matias, “Space-
Efficient Scheduling of Parallelism with Synchronization Vari-
ables,” Proc. Ninth Ann. ACM Symp. Parallel Algorithms and
Architectures, pp. 12-23, 1997.

Shanjiang Tang received the bachelor’s and
master’s degrees from Tianjin University (TJU),
China, in July 2008 and January 2011, respec-
tively. Currently, he is working toward the PhD
degree in the School of Computer Engineering,
Nanyang Technological University, Singapore.
He has worked at the IBM China Research Lab
(CRL) in the area of performance analysis of
multicore oriented Java multithreaded program
as an intern for four months in 2009. In 2006, he

won the “Golden Prize” in the 31th ACM/ICPC Asia Tournament of
National College Students. He was awarded the “Talents Science
Award” from Tianjin University in 2007. His research interests include
parallel algorithms and programming model, parallel program perfor-
mance analysis, and computational biology.

TANG ET AL.: EASYPDP: AN EFFICIENT PARALLEL DYNAMIC PROGRAMMING RUNTIME SYSTEM FOR COMPUTATIONAL BIOLOGY 871

Ce Yu received the BS and MS degrees in 1992
and 2005 in the Tianjin University (TJU),
respectively, and the PhD degree in computer
science from the same University in 2009.
Currently, he is working as an instructor and
director of High Performance Computing Lab
(HPCL) of Computer Science and Technology in
Tianjin University. He holds three patents, one
software copyright, and published more than 17
academic papers in peer-reviewed journals and

conferences. His main research interests include parallel computing,
astronomy computing, cluster technology, cell BE, multicore, and grid
computing.

Jizhou Sun received the master degree in
computer science from Tianjin University
(TJU), China, in 1982, and the PhD degree in
electrical engineering and computer science
from Sussex University, United Kingdom, in
1995. Currently, he is working as a professor
in computer science and technology, Tianjin
University. His main research interests include
parallel computing: parallel algorithms and ar-
chitectures, and high-performance computing;

computer graphics: scientific visualization, image synthesis, and image
processing; network information security: network intrusion detection,
security software. He has got three patents, eight software copyrights,
and published more than 120 papers in international journals and
conferences. He is a senior member of Chinese Society of Image and
Graphics, and a member of Tianjin Software community.

Bu-Sung Lee received the BSc (Hons) and PhD
degrees from the Electrical and Electronics
Department, Loughborough University of Tech-
nology, United Kingdom, in 1982 and 1987,
respectively. Currently, he is working as an
associate professor in the School of Computer
Engineering, Nanyang Technological University,
Singapore. He was elected the inaugural pre-
sident of Singapore Research and Education
Networks (SingAREN), 2003-2007, and has

been an active member of several national standards organizations,
such as Board member of Asia Pacific Advanced Networks (APAN) Ltd.
In 2010, he holds a joint appointment as director, Service Platform Lab,
HP Labs Singapore. His research interests include computer networks
protocols, distributed computing, network management, and Grid/Cloud
computing.

Tao Zhang received the bachelor degree in the
School of Software, Tianjin University (TJU),
China, in July 2011. Currently, he is working
toward the PhD degree with the Department of
Computer Science, Tsinghua University, China.
His research interests include the high-perfor-
mance climate system model coupler, program-
ming model, and parallel program performance
analysis.

Zhen Xu received the bachelor’s, master’s, and
PHD’s degrees from the Tianjin University
(TJU), China, in 2005, 2007, and 2010, respec-
tively. She has worked at the High Performance
Computing Lab, University of Tianjin City in the
area of hybrid parallel programming, perfor-
mance analysis, supported tools and environ-
ment. She has participated in several research
projects in parallel computing sponsored by the
National Natural Science Foundation of China

and Tianjin Municipal Science and Technology Committee, as important
participant and accomplisher. Her research interests include distributed
algorithms and systems, applied parallel computing, and high-perfor-
mance computing.

Huabei Wu received the bachelor’s and mas-
ter’s degree from Zhenzhou University, China, in
1999 and 2004, respectively, and the PHD
degree from Tianjin University (TJU), China, in
2009. He has participated and completed
several research projects in parallel computing
sponsored by the National Natural Science
Foundation of China and Tianjin Municipal
Science and Technology Committee. His re-
search interests include parallel programming

model and design pattern, distributed algorithms and systems, high-
performance computing, and computational biology.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

872 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 5, MAY 2012

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

