
IEEE TRANSACTIONS ON SERVICES COMPUTING 1

Supplemental Material:
Dynamic Job Ordering and Slot Configurations

for MapReduce Workloads
Shanjiang Tang, Bu-Sung Lee, Bingsheng He

Abstract—MapReduce is a popular parallel computing paradigm for large-scale data processing in clusters and data centers. A
MapReduce workload generally contains a set of jobs, each of which consists of multiple map tasks followed by multiple reduce
tasks. Due to 1) that map tasks can only run in map slots and reduce tasks can only run in reduce slots, and 2) the general execution
constraints that map tasks are executed before reduce tasks, different job execution orders and map/reduce slot configurations for a
MapReduce workload have significantly different performance and system utilization. This paper proposes two classes of algorithms
to minimize the makespan and the total completion time for an offline MapReduce workload. Our first class of algorithms focuses on
the job ordering optimization for a MapReduce workload under a given map/reduce slot configuration. In contrast, our second class of
algorithms considers the scenario that we can perform optimization for map/reduce slot configuration for a MapReduce workload. We
perform simulations as well as experiments on Amazon EC2 and show that our proposed algorithms produce results that are up to
15% „ 80% better than currently unoptimized Hadoop, leading to significant reductions in running time in practice.

Index Terms—MapReduce, Hadoop, Flow-shops, Scheduling algorithm, Job ordering.

�

APPENDIX A
PROOF OF LEMMA 1
Lemma 1. For Cmax in Formula (3) of Main File, (1). if
Cmax “ řk0

i“1 T
M
i ` řn

i“k0
TR
i , p1 ď k0 ď nq, there must

be Xk1 “ 0 for all k0 ă k
1 ď n; (2). Reversely, if Xk0 ą 0

and Xk1 “ 0 for all k0 ă k
1 ď n, there must be Cmax “řk0

i“1 T
M
i ` řn

i“k0
TR
i , p1 ď k0 ď nq.

Proof: Let fpk, nq “ řk
i“1 T

M
i ` řn

i“k T
R
i . Our proof

consists of the following two parts:

(i). Cmax “ fpk0, nq ñ Xk1 “ 0 for all k0 ă k
1 ď n.

Proof: Let’s do the proof by contradiction. Suppose there

is a k1pk0 ă k1 ď nq such that Xk1 ą 0. According to

Formula (1) and (3) of Main File, it holds
řk1

i“1 T
M
i ąřk1´1

i“1 pTR
i ` Xiq “ max1ďkďk1´1tfpk, k1 ´ 1qu ě

fpk0, k1´1q. Therefore, we have fpk1, nq “ řk1

i“1 T
M
i `řn

i“k1
TR
i ą fpk0, k1 ´ 1q ` řn

i“k1
TR
i “ fpk0, nq,

which violates the concept of Cmax. That is, the assump-

tion is wrong and therefore the proposition is true.

(ii). Xk0 ą 0&Xk1 “ 0 for all k0 ă k
1 ď n. ñ Cmax “

fpk0, nq.

Proof: According to Equation (3) of Main File, Cmax “řn
i“1 pXi ` TR

i q “ řk0

i“1 pXi ` TR
i q ` řn

i“k0`1 T
R
i .

Thus our work is equivalent to prove
řk0

i“1 pXi ` TR
i q “

max1ďkďk0tfpk, k0qu “ fpk0, k0q. That is to prove

max1ďkďk0´1tfpk, k0qu ă fpk0, k0q. Noting that Xk0 ą
0, based on Equation (1) of Main File, we haveřk0

i“1 T
M
i ą řk0´1

i“1 pTR
i ` Xiq. Thus fpk0, k0q “

‚ S.J. Tang, B.S. Lee, B.S. He are with the School of Computer Engineering,
Nanyang Technological University, Singapore.
E-mail: {stang5, ebslee, bshe}@ntu.edu.sg.

řk0

i“1 T
M
i ` řk0

i“k0
TR
i ą řk0´1

i“1 pTR
i ` Xiq `řk0

i“k0
TR
i “ max1ďkďk0´1tfpk, k0 ´ 1qu ` TR

i “
max1ďkďk0´1tfpk, k0qu. Therefore, the proposition is

true.

In summary, our proof completes by combining (i) and (ii).

APPENDIX B
PROOF OF LEMMA 2
Lemma 2. Given a job order φ, there is a upper bound
makespan denoted by pCmax (i.e. Cmax ď pCmax) for the
generalized case as follows:

pCmax “ max
1ďkďn

� kÿ
i“1

TM
i ` max

1ďiďk
tptMi u`

nÿ
i“k

TR
i ` max

1ďiďn
tptRi u(

.

where TM
i “

ř|JM
i |

j“1 tMi,j
|SM| , TR

i “
ř|JR

i |
j“1 tMi,j
|SR| , ptMi “

max1ďjď|JM
i | ptMi,j and ptRi “ max1ďjď|JR

i | ptRi,j .

Proof: Lemma 1 gives us an important implication re-

garding the makespan estimation for the simplified case. That

is, finding a job Jk0 such that Xk0 ą 0 and Xk1 “ 0 (i.e., no

idle period in the reduce phase after the reduce tasks of Jk0

starts) for all k0 ă k
1 ď n. Then the makespan is equal tořk0

i“1 T
M
i `řn

i“k0
TR
i . It is also applicable for the generalized

case.

Let cMi be the completion time at the map phase and cRi
be the completion time at the reduce phase for the generalized

case. Then we have cMi ă ři
j“1

ř|JM
i |

j“1 tMi,j
|SM| `max1ďjďitptMj u.

For the generalized case, there are two types of idle periods

in the reduce phase, i.e., partial idle period (PIP) (e.g. X3

in Figure 4 for Job J3) and full idle period (FIP) (e.g., X4 in

This is a pre-print version of IEEE TSC 2015.

IEEE TRANSACTIONS ON SERVICES COMPUTING 2

Figure 4 for Job J4), unlike the simplified case that has FIP
only. Moreover, it is worth noting that for the simplified case,

the job execution order is the same between in the map phase

and in reduce phase. Whereas it does not always hold for the

generalized case. In Figure 4, for example, the reduce tasks of

J2 start earlier than that of J1 although the map tasks of J1
start earlier in the map phase. Therefore, we need to consider

the following two cases:

(1). Suppose the execution order in the map phase

is the same as in the reduce phase for the generalized

case. Let’s assume that Job Jk0 is the splitting point that

Xk0 ą 0 (either FIP or FIP) and Xk1 “ 0 (no idle period)

for all the remaining jobs Jk1 pk0 ă k
1 ď nq. Then we

have Cmax ă cMk0
` řn

i“k0

ř|JM
i |

j“1 tMi,j
|SR| ` max1ďiďntptRi u ăřk0

i“1

ř|JM
i |

j“1 tMi,j
|SM| ` max1ďiďk0tptMi u ` řn

i“k0

ř|JR
i |

j“1 tRi,j
|SR| `

max1ďiďntptRi u ď max1ďkďn

� řk
i“1

ř|JM
i |

j“1 tMi,j
|SM| `

max1ďiďktptMi u ` řn
i“k

ř|JR
i |

j“1 tRi,j
|SR| ` max1ďiďntptRi u(

.

(2). On the other hand, it is possible that there are out of

order jobs in the reduce phase for the generalized case (e.g.

job order in Figure 4). Note that the cause of the out of order

at the reduce phase is due to the map tasks of later submitted

job finish first. It can have the reduce tasks begin earlier in

the reduce phase, making the maximum completion time for

a batch of jobs less than that of the ordered case. In other

words, if there is an out of order interval from the ith job

to the jth job at the reduce phase, we can have Cj
max ď

C
1j
max, where Cj

max denotes the maximum completion time for

j jobs in the out of order case and C
1j
max denotes the maximum

completion time for j jobs in the ordered case. It may in turn

cause later jobs to complete earlier (i.e. Ck
max ď C

1k
max for k ą

j). Hence, we have Cmax ă max1ďkďn

� řk
i“1

ř|JM
i |

j“1 tMi,j
|SM| `

max1ďiďktptMi u ` řn
i“k

ř|JR
i |

j“1 tRi,j
|SR| ` max1ďiďntptRi u(

for this

case, based on the case (1).

Finally, our proof completes based on (1) and (2).

APPENDIX C
PROOF OF THEOREM 2
Theorem 2. Suppose φ is the optimal job order whose
makespan is Copt

max, based on Johnson’s Rule for the two-stage
flow shop with one processor per stage. The worst-case job
order φ˚, whose makespan is Cwst

max, can be obtained by simply
reversing φ.

Proof: Consider Formula (3) of Main File, it can be re-

written as follows:

Cmax “ max
1ďkďn

tTku, p1q

where

Tk “
kÿ

i“1

TM
i `

nÿ
i“k

TR
i .

Given a job order φ, let’s define

F pφq “ Cmax “ max
1ďkďn

tTku. p2q

Therefore, our proof is equivalent to finding a job order φ˚
such that F pφ˚q ě F pφq for any φ.

Let’s first consider a job order φ
1

constructed by interchang-

ing Jj and Jj`1 in φ. Then we have

F pφ1 q “ max
1ďkďn

tT 1
ku. p3q

where

T
1
k “

kÿ
i“1

T
1M
i `

nÿ
i“k

T
1R
i

T
1M
i “

#
TM
i pi ‰ j ^ i ‰ j ` 1q

TM
j`1 pi “ jq

TM
j pi “ j ` 1q

T
1R
i “

#
TR
i pi ‰ j ^ i ‰ j ` 1q

TR
j`1 pi “ jq

TR
j pi “ j ` 1q.

Then it holds

T
1
k “ Tk, pk ‰ j ^ k ‰ j ` 1q. p4q

Note that F pφ1 q ď F pφq if maxtTj , Tj`1u ě
maxtT 1

j , T
1
j`1u, otherwise F pφ1 q ą F pφq. To make F pφ˚q ě

F pφq be true for any φ, we only need to make sure

maxtTj , Tj`1u ě maxtT 1
j , T

1
j`1u p5q

for all 1 ď j ă n in φ˚. Moreover, by subtracting
řj`1

i“1 T
M
i `řn

i“j T
R
i from each term in Formula (5), it turns out to be

maxt´TM
j`1,´TR

j u ě maxt´TM
j ,´TR

j`1u p6q

or equivalent to

mintTM
j , TR

j`1u ě mintTM
j`1, T

R
j u. p7q

To satisfy Formula (7) for any two adjacent jobs Jj and

Jj`1 in φ˚, let’s consider the conditions for the following

possible cases:

1©. When TM
j ě TR

j for Job Jj and TM
j`1 ď TR

j`1 for Job

Jj`1, Formula (7) holds in this case without any further

condition.
2©. When TM

j ď TR
j for Job Jj and TM

j`1 ě TR
j`1 for

Job Jj`1, we have mintTM
j , TR

j`1u ď mintTM
j`1, T

R
j u,

which violates Formula (7). Hence this case is impossible

in φ˚.
3©. When TM

j ě TR
j for Job Jj and TM

j`1 ě TR
j`1 for

Job Jj`1, to satisfy Formula (7), we should keep the

following holdTR
j ď TR

j`1.

4©. When TM
j ď TR

j for Job Jj and TM
j`1 ď TR

j`1 for Job

Jj`1, to satisfy Formula (7), we should guarantee TM
j ě

TM
j`1.

These give us guidance to find φ˚ in the following way:

Partition the jobs set J into two disjoint sub-sets JA and

JB . Set JA contains those jobs Ji whose TM
i ą TR

i . Set

JB contains the remaining jobs. Sort jobs in JA in non-

decreasing order of TR
i , according to 3©. Sort jobs in JB in

non-increasing order of TM
i , according to 4©. Finally, φ˚ is

IEEE TRANSACTIONS ON SERVICES COMPUTING 3

formed by appending the sorted JB to the end of JA according

to 1© 2©.

Note that the resultant φ˚ of the above job ordering rule is

just equivalent to reversing the order of the result based on

Johnson’s Rule. Hence Theorem 2 is true.

APPENDIX D
PROOF OF LEMMA 3
Lemma 3. Let qφ˚ denote the job order produced by MK JR.
Let pφ˚ be the reversing order of qφ˚. Then there is a lower
bound makespan denoted by qCm̊ax, as well as a upper bound
makespan denoted by pCm̊ax, for all job orders Φ. Particularly,qCm̊ax is estimated with regard to qφ˚ by using Formula (3)
of Main File. pCm̊ax is estimated with regard to pφ˚ with the
Formula:

pCm̊ax “ max
1ďkďn

� kÿ
i“1

TM
i ` max

1ďiďn
tptMi u`

nÿ
i“k

TR
i ` max

1ďiďn
tptRi u(

.

Proof: Let φ denote an arbitrary job order. Our proof

makes up of the following two parts:

(i). Cmax ě qCm̊ax.

Proof : Let’s consider the following two scenarios:

(1). There is a scenario that the job execution order is

consistent between the map phase and reduce phase for

the generalized case, i.e, cMj ď cMk if Jj is submitted

before Jk. We can construct a simplified case regarding

φ with pTM
i , TR

i q “ p
ř|JM

i |
j“1 tMi,j
|SM| ,

ř|JR
i |

j“1 tRi,j
|SR| q for each job

Ji. Let qCmax denote the makespan for the simplified

case. Let qcMi and qcRi denote the completion time at

the map phase and reduce phase for the simplified case

respectively. Then we have qcMi “
ř

1ďjďi

ř|JM
j |

k“1 tMj,k
|SM| .

However, for the generalized case (See Figure 4), due

to the non-divisible condition for some jobs, we have

cMi ě
ř

1ďjďi

ř|JM
j |

k“1 tMj,k
|SM| by considering the possible tail

(e.g. a map task tail from 24 to 28 time unit for job J4
in Figure 4). It reveals that for job Ji of the simplified

case, its map tasks complete no later than those of the

corresponding job of the generalized case at the map

phase. Moreover, even though we let qcMi “ cMi for each

job Ji, we still have qcRi ď cRi by considering the possible

tail (e.g. a reduce task tail from 36 to 44 time unit for job

J4 in Figure 4) at the reduce phase. Note that ci “ cRi andqci “ qcRi , where qci denotes the completion time for job Ji
of the simplified case. Therefore, we have Cmax ě qCmax.

On the other hand, we can obtain an optimal job order qφ˚
for makespan qCm̊ax in the simplified case with MK JR,

in terms of Johnson’s Rule. Then we have qCmax ě qCm̊ax.

So it holds Cmax ě qCm̊ax.

(2). Besides, there is another scenario that the job execu-

tion is out of order between map phase and reduce phase

for the generalized case (e.g. an out of order execution

between J1 and J2 in the reduce phase in Figure 4). We

can construct a simplified case based on the job execution

order (denoted as φ
1
) of the reduce phase of the gen-

eralized case, with pTM
i , TR

i q “ p
ř|JM

i |
j“1 tMi,j
|SM| ,

ř|JR
i |

j“1 tRi,j
|SR| q

for each job Ji. Let’s consider an arbitrary pair of

jobs (e.g.,Jj , Jk) with different orders between φ (e.g.

Jj Ñ Jk in φ) and φ
1

(e.g. Jk Ñ Jj in φ
1
). It can be noted

that there must be a tail for Jj in the generalized case,

as out of order condition. After we exchange their order

(i.e. to be Jk Ñ Jj), we have qcMk ă cMk , based on the

facts that: (a). the map tasks of Jk in the simplified case

will begin earlier than in the generalized case; (b). the

execution time for the map tasks of Jk in the simplified

case will be
ř|JR

k |
j“1 tRk,j

|SM| , which is smaller than that in

the generalized case. Moreover. we have qcMj ă cMj by

considering that the tail available at the last map wave
of Jj in the generalized case. All of these indicate that,

each job Ji in the simplified case will complete its map

tasks earlier than (or the same as) that in the generalized

case. We therefore can guarantee qcRi ě cRi , for which

the reason is the same as what we explained in case (1).

Therefore, we have Cmax ě qCmax ě qCm̊ax.

By combining (1) and (2), we therefore have Cmax ěqCm̊ax, where qCm̊ax can be estimated by using Formula

(3) of Main File regarding qφ˚.

(ii). Cmax ď pCm̊ax.

Proof : We form pφ˚ by reversing the result (denoted by

φ1) of MK JR. In terms of Lemma 2, we have Cmax ďpCmax “ max1ďkďn

� řk
i“1 T

M
i ` max1ďiďktptMi u `řn

i“k T
R
i `max1ďiďntptRi u(ď max1ďkďn

� řk
i“1 T

M
i `řn

i“k T
R
i

(`max1ďiďntptMi u`max1ďiďntptRi u. Note that

max1ďkďn

� řk
i“1 T

M
i ` řn

i“k T
R
i

(“ pCm̊ax is just the

makespan estimation (Formula 3) for pφ˚ in the simplified

case. According to the Johnson’s Rule, we know that φ1

is the optimal job order for makespan in the simplified

case. Moreover, in terms of Theorem 2, we can obtain

that pφ˚ is the worst-case job order for makespan in the

simplified case. Thus we have pCm̊ax is maximum (i.e.,

Cmax ď pCm̊ax) for any arbitrary job order φ.

Finally, our proof of Lemma 3 completes based on (i) and (ii).

APPENDIX E
PROOF OF THEOREM 1
Theorem 1. MK JR is an (1 ` δ)-approximation algorithm
for makespan optimization in the generalized case, where δ “
max1ďiďntptMi u`max1ďiďntptRi u
max1ďkďntřk

i“1 TM
i `řn

i“k TR
i u , p0 ď δ ď 1q.

Proof: Based on Lemma 2, it holds for the job order φ1

produced by MK JR that,

Cmax ď pCmax “ max
1ďkďn

� kÿ
i“1

TM
i ` max

1ďiďk
tptMi u `

nÿ
i“k

TR
i ` max

1ďiďn
ttRi u(

ď max
1ďkďn

t
kÿ

i“1

TM
i `

nÿ
i“k

TR
i u ` max

1ďiďn
tptMi u ` max

1ďiďn
ttRi u

“ qCmax ` max
1ďiďn

tptMi u ` max
1ďiďn

tptRi u. p8q

IEEE TRANSACTIONS ON SERVICES COMPUTING 4

Let’s define δ “ max1ďiďntptMi u`max1ďiďntptRi uqCmax
, p0 ď δ ď 1q.

Then Formula (8) is equivalent to

Cmax ď p1 ` δq ¨ qCmax. p9q

Note that it holds qCmax “ qCm̊ax for MK JR based on

Johnson’s Rule. Moreover, according to Lemma 3, we haveqCm̊ax ď Copt
max. Therefore, we have

Cmax ď p1 ` δq ¨ Copt
max. p10q

APPENDIX F
PROOF OF THEOREM 3
Theorem 3. Given a homogeneous environment where the
Hadoop configurations of slave nodes are identical, the
job orders φ1 produced by MK JR and φ2 produced by
MK TCT JR for a batch of jobs are independent of the
number of slave nodes, but rather depend on the number of
map/reduce slots configured within a slave node.

Proof: Let N denote the number of slave nodes. Let

|sM| and |sR| denote the number of map slots and reduce

slots configured per slave node respectively. We thereby have

|SM| “ N ¨ |sM| and |SR| “ N ¨ |sR|. Moreover, for each

job Ji, we have TM
i “

ř|JM
i |

j“1 tMi,j
|SM| “ 1

N ¨
ř|JM

i |
j“1 tMi,j

|sM| and

TR
i “

ř|JR
i |

j“1 tRi,j
|SR| “ 1

N ¨
ř|JR

i |
j“1 tRi,j

|sR| . Our proof is equivalent

to validating that the rule steps of each algorithm are N -

independent.

(i). φ1 is N -independent for MK JR.

Proof : For MK JR, we only need to check its Step 2(a)

and 2(b).

(1). Step 2(a) N -independent Validation. For each Job

Ji P J in JA, the condition TM
i ď TR

i ô
ř|JM

i |
j“1 tMi,j
|SM| ďř|JR

i |
j“1 tRi,j
|SR| ô

ř|JM
i |

j“1 tMi,j
|sM| ď

ř|JR
i |

j“1 tRi,j
|sR| . Similarly, for each

Job Ji P J in JB , we have TM
i ą TR

i ô
ř|JM

i |
j“1 tMi,j

|sM| ąř|JR
i |

j“1 tRi,j
|sR| .

(2). Step 2(b) N -independent Validation. For each Job

Ji in the sorted set JA, it holds TM
i ď TM

i`1 ôř|JM
i |

j“1 tMi,j
|SM| ď

ř|JM
i`1|

j“1 tMi`1,j

|SM| ô
ř|JM

i |
j“1 tMi,j

|sM| ď
ř|JM

i`1|
j“1 tMi`1,j

|sM| .

Moreover, for each Job Ji in the sorted set JB , it has

TR
i ě TR

i`1 ô
ř|JR

i |
j“1 tRi,j
|SR| ě

ř|JR
i`1|

j“1 tRi`1,j

|SR| ¨ tRi`1 ôř|JR
i |

j“1 tRi,j
|sR| ě

ř|JR
i`1|

j“1 tRi`1,j

|sR| .

(ii). φ2 is N -independent for MK TCT JR.

Proof : Note in Step 1 of MK TCT JR, Ti “
ř|JM

i |
j“1 tMi,j
|SM| `ř|JR

i |
j“1 tRi,j
|SR| “ 1

N ¨ p
ř|JM

i |
j“1 tMi,j

|sM| `
ř|JR

i |
j“1 tRi,j

|sR| q. Let T
1
i “ř|JM

i |
j“1 tMi,j

|sM| `
ř|JR

i |
j“1 tRi,j

|sR| , then it holds Ti “ 1
N ¨ T 1

i . For

MK TCT JR, we need to exam its rule steps 2, 3 as

follows:

(1). Step 2 N -independent Validation. Note T “
pś

1ďiďn Tiq 1
n “ 1

N ¨pś
1ďiďn T

1
i q 1

n . For each Job Ji P J

in J
1
A, the condition Ti ď T ô 1

N ¨
ř|JM

i |
j“1 tMi,j

|sM| ď
1
N ¨ pś

1ďiďn T
1
i q 1

n ô
ř|JM

i |
j“1 tMi,j

|sM| ď pś
1ďiďn T

1
i q 1

n .

Similarly, for each Job Ji P J in J
1
B , we have Ti ą

T ô
ř|JM

i |
j“1 tMi,j

|sM| ą pś
1ďiďn T

1
i q 1

n .

(2). Step 3 N -independent Validation. Based on (i) that

MK JR is N -independent, therefore it holds that Step 3

is N -independent.

In summary, our proof completes in terms of (i) and (ii).

APPENDIX G
PROOF OF LEMMA 4
Lemma 4. Let ρ be the ratio of map slots to reduce slots, i.e.,
ρ “ |SM|

|SR| . The optimal configuration of ρ in the simplified
case for makespan Cmax and total completion time Ctct are
all independent of the total number of slots |S|p|S| “ |SM| `
|SR|q, but rather depends on the MapReduce workload as well
as its job submission order φ.

Proof: The proof is based on the formula transformation

of the makespan and total completion time. Let ρ “ |SM|
|SR| .

We can transform the Formula (3) and (4) of Main File in

the simplified case for makespan and total completion time

respectively, as follows:

Cmax “ max
1ďkďn

t
kÿ

i“1

TM
i `

nÿ
i“k

TR
i u

“ max
1ďkďn

t 1

|SM|
kÿ

i“1

|JM
i |ÿ

j“1

tMi,j ` 1

|SR|
nÿ

i“k

|JR
i |ÿ

j“1

tRi,ju

“ 1

|S| max
1ďkďn

tp1 ` ρq
kÿ

i“1

|JM
i |ÿ

j“1

tMi,j ` p1 ` 1

ρ
q

nÿ
i“k

|JR
i |ÿ

j“1

tRi,ju. p11q

Ctct “
nÿ

u“1

max
1ďkďu

t
kÿ

i“1

TM
i `

uÿ
i“k

TR
i u

“
nÿ

u“1

max
1ďkďu

t 1

|SM|
kÿ

i“1

|JM
i |ÿ

j“1

tMi,j ` 1

|SR|
uÿ

i“k

|JR
i |ÿ

j“1

tRi,ju

“ 1

|S|
nÿ

u“1

max
1ďkďu

tp1 ` ρq
kÿ

i“1

|JM
i |ÿ

j“1

tMi,j ` p1 ` 1

ρ
q

uÿ
i“k

|JR
i |ÿ

j“1

tRi,ju.p12q

Formula (G.1), (G.2) show that the optimal configuration

of ρ for makespan and total completion time in the simplified

case is independent of the total number of slots |S|, but rather

depends on the MapReduce workload and job submission

order. Hence, Lemma 4 holds.

APPENDIX H
LOWER AND UPPER BOUND MAKESPAN EVAL-
UATION

Note that Lemma 2 gives a formula to compute the up-

per bound makespan for a MapReduce workload under an

IEEE TRANSACTIONS ON SERVICES COMPUTING 5

Fig. 1: The normalized comparison result of simulated makespan,
lower bound makespan and upper bound makespan for optimal job
order produced by MK JR, as well as simulated makespan and upper
bound makespan for worst-case job order based on Theorem C.
Particularly, the results are normalized by dividing with simulated
makespan of the optimal job order.

arbitrary job submission order. Moreover, Lemma 3 tell us

how to derive a lower bound makespan as well as a upper

bound makespan for all job submission orders. We perform

experiments to evaluate the tightness of these lower (or up-

per) bound makespan with synthetic Facebook workloads. As

shown in Figure 1, we compute the lower bound and upper

bound makespan of the optimal job order produced by MK JR,

according to Lemma 2 and Lemma 3. In contrast, the upper

bound makespan of the worst-case job order can be computed

based on Theorem 2 and Lemma 2. Moreover, we derive the

simulated makespan for optimal job order as well as worst-

case job order with MREstimator to evaluate the tightness

of lower and upper bound makespan. All of these results

are normalized by dividing with simulated makespan of the

optimal job order. The experimental results show that, both

the lower bound makespan and upper bound makespan are

very close to the corresponding simulated makespan, which

validates the tightness of the upper bound and lower bound

makespan models.

APPENDIX I
ACCURACY AND EFFICIENCY VALIDATION OF
PCP
Recall in Section 6.3 of the Main File, we provide

a method PCP to address the possible time efficiency

problem for proposed slot enumerating algorithms (e.g.,

Algorithm MK SF JR, Algorithm MK TCT SF JR) in

map/reduce slot configuration optimization when the total

number of slots is very large. This section aims to validate

the accuracy and time efficiency of PCP.

As shown in Table 1, we make a contrast experiment

for PCP by comparing its predicted results (rows labeled

with ’PCP’) with those ones (rows labeled with ’algorithm’)

produced by corresponding map/reduce slot configuration al-

gorithms for a Facebook workload of 100 jobs. Particularly,

in our experiment, we choose a total number of 100 slots as

a basis for PCP to deduce the map/reduce slot configuration

results when the total number of slots is very large (e.g., 200,

400, 800, 1600). That is, we first run each slot configuration

algorithm to obtain the corresponding optimized result for a

small-size number of 100 slots. Then we use it to deduce the

corresponding result for a large number of slots, according to

PCP. We have the following observations:

First, for each size of total slots (e.g., 100, 200 ,400,

800, 1600), both the results of makespan (MK) and total

completion time (TCT) deduced by PCP are much close to

the ones obtained by running slot configuration algorithms

under that given size. For example, there is only a bit

difference of 3p« 211.34 ´ 207.98q seconds for MK and

6p« 18175.03 ´ 18169.31q seconds for TCT, between the

results from ’PCP’ and ’algorithm’ for a total number of 1600

slots, with respect to Algorithm MK SF JR. It validates the

accuracy of PCP approach.

Second, there is a significant Execution Time (ET) reduction

for the proposed algorithms combined with the PCP method

when the slot size is large. We can witness that, the execution

time of algorithm becomes almost twice when we double the

size of slots. For example, for Algorithm MK SF JR, when

the size of total slots is 400, it takes 10.3 seconds to get

the optimized result. However, it consumes 21 seconds when

we double the size of total slots to be 800. In comparison,

with PCP, we only need to use 2.48 seconds, reducing the

computation time significantly.

In summary, the PCP approach can reduce the computation

time significantly for proposed algorithms while keeping the

high accuracy results (i.e., makespan and total completion

time) when the size of total slots is very large.

APPENDIX J
ACCURACY VALIDATION FOR MRESTIMATOR

We validate the accuracy of our MREstimator by comparing

the simulated results of testbed workloads with the experimen-

tal results. Our validation work consists of two flavors. First,

we consider the makespan as well as total completion time

for all possible job orders of a testbed workload. Figure 2(a)

and Figure 2(b) present the results for all 24 job orders of

a batch of 4 jobs. We can note that the calculation results

of both makespan and total completion time are very close

(errors within 8%) to the experimental results. On the other

hand, we focus on a single job order of a testbed workload

and consider the completion time for each job. Figure 2(c)

shows completion time for each job of a testbed workload

of 10 jobs under the job order produced by MK TCT JR.

We can observe that the curve of simulated results almost

overlaps (errors within 5%) with that of experiment results. In

summary, all of these forcefully validate the accuracy of our

MREstimator.

APPENDIX K
PERFORMANCE IMPACT OF INACCURACY IN ES-
TIMATING MAP/REDUCE TASK TIME

In previous sections, we take the average task execution

time for map/reduce tasks of each job as input to optimize

the performance of a workload. However, in practice, the

execution time of map/reduce tasks can be fluctuated up and

IEEE TRANSACTIONS ON SERVICES COMPUTING 6

Total Slots Result Source
Algorithm MK SF JR Algorithm MK TCT SF JR

Slot Ratio MK TCT ET Slot Ratio MK TCT ET
(mapSlots
TotalSlots

) (sec) (sec) (sec) (mapSlots
TotalSlots

) (sec) (sec) (sec)

100
PCP 73

100
“ 0.73 3075.58 266758.98 2.48 72

100
“ 0.72 3129.10 68329.93 4.33

algorithm 73
100

“ 0.73 3075.58 266758.98 2.48 72
100

“ 0.72 3129.10 68329.93 4.33

200
PCP 146

200
“ 0.73 1545.47 134160.39 2.48 144

200
“ 0.72 1567.91 34359.75 4.33

algorithm 147
200

“ 0.735 1535.18 135302.15 5.08 144
200

“ 0.72 1567.91 34359.75 8.88

400
PCP 292

400
“ 0.73 781.78 67904.30 2.48 288

400
“ 0.72 814.30 15515.18 4.33

algorithm 294
400

“ 0.735 775.76 68336.39 10.30 286
400

“ 0.715 804.66 15518.56 18.51

800
PCP 584

800
“ 0.73 400.57 34666.10 2.48 576

800
“ 0.72 413.20 8819.44 4.33

algorithm 588
800

“ 0.735 396.13 34703.35 21.0 568
800

“ 0.71 409.70 8818.06 37.61

1600
PCP 1168

1600
“ 0.73 211.34 18169.31 2.48 1152

1600
“ 0.72 219.86 6277.49 4.33

algorithm 1176
1600

“ 0.735 207.98 18175.03 42.06 1164
1600

“ 0.727 218.03 6235.14 73.45

TABLE 1: The comparison of map/reduce slot configuration (Slot Ratio), makespan (MK) and total completion time (TCT) for slot
configuration optimization algorithms under two different result sources: PCP and algorithm for the Facebook workload of 100 jobs. The
’PCP’ represents that the map/reduce slot configuration as well as optimized job submission order for the case of current (large) size of total
slots is figured out based on the result from a small-size number of total slots (e.g., 100 slots in total in our example), in terms of PCP. In
contrast, the ’algorithm’ denotes that the results of slot configuration and job submission order are obtained by running slot configuration
algorithms with given size of total slots (e.g., 200, 400, 800, 1600). ET denotes the execution time needed for the corresponding optimization
algorithm.

(a) Makespan for a batch of 4 jobs in all job orders (b) Total completion time for a batch of 4 jobs in
all job orders

(c) The completion time for each job of a testbed
workload of 10 jobs under a job order

Fig. 2: Simulation results versus experimental results for testbed workloads.

down the average value, depending on specific applications.

In this section, we study the impact of such a variation on

the overall performance of a workload for our job ordering

algorithms.

In our experiment below, we assume that it follows the

uniform distribution for the variation percentage of map/reduce

task execution time relative to the corresponding average task

execution time. We take the testbed workload of 100 jobs and

the synthetic Facebook workload of 100 jobs as examples to

study the influence of different task execution time variations

on makespan and total completion time, as the results shown

in Figure 3(a) and Figure 3(b), respectively. The x-axis gives

the maximum variation percentage (i.e., variation domain) of

map/reduce task execution time relative to its average value.

We generate the specific execution time for each map/reduce

task with the monte carlo method that follows the uniform

probability distribution for the variation percentage of execu-

tion time subject to the given variation domain. For example,

Point 12 at the x-axis in Figure 3(a) means that the execution

time for each map/reduce task fluctuates up or down randomly

within 12% relative to the average task execution time with

uniform probability distribution. Hence, Point 0 at the x-axis

represents the performance results under the pure average

task execution time. Moreover, we normalize the makespan

(or total completion time) with makespan speedup (or total

completion time speedup) through dividing the makespan (or

total completion time) of originally unoptimized job order by

the one of optimized one with our job ordering algorithms

(MK JR and MK TCT JR). Particularly, it is worth mention

that the job ordering optimization performed is still based on

the average task execution time.

The results of Figure 3 show that there is a small increase

for makespan (and total completion time) for both cases of

unoptimized job order and optimized one with our proposed

job ordering algorithms under different degrees of variation in

map/reduce task execution time, whereas the relative perfor-

mance improvement (i.e., makespan speedup, total completion

time speedup) is fine or even better under this case. It indicates

that we can take the average task execution time as input

for job ordering algorithms under the case of inaccuracy in

estimating map/reduce task time, assuming that the variation

percentage of task execution time follows uniform probability

distribution.

IEEE TRANSACTIONS ON SERVICES COMPUTING 7

(a) Makespan for the testbed workload of 100 jobs. (b) Total completion time for the synthetic Facebook workload of 100 jobs.

Fig. 3: The performance impact of map/reduce task execution time variation for different variation percentages.

