IEEE TRANSACTIONS ON SERVICES COMPUTING | This is a pre-print version of IEEE TSC 2015. | 1

Supplemental Material:
Dynamic Job Ordering and Slot Configurations
for MapReduce Workloads

Shanjiang Tang, Bu-Sung Lee, Bingsheng He

Abstract—MapReduce is a popular parallel computing paradigm for large-scale data processing in clusters and data centers. A
MapReduce workload generally contains a set of jobs, each of which consists of multiple map tasks followed by multiple reduce
tasks. Due to 1) that map tasks can only run in map slots and reduce tasks can only run in reduce slots, and 2) the general execution
constraints that map tasks are executed before reduce tasks, different job execution orders and map/reduce slot configurations for a
MapReduce workload have significantly different performance and system utilization. This paper proposes two classes of algorithms
to minimize the makespan and the total completion time for an offline MapReduce workload. Our first class of algorithms focuses on
the job ordering optimization for a MapReduce workload under a given map/reduce slot configuration. In contrast, our second class of
algorithms considers the scenario that we can perform optimization for map/reduce slot configuration for a MapReduce workload. We
perform simulations as well as experiments on Amazon EC2 and show that our proposed algorithms produce results that are up to
15% ~ 80% better than currently unoptimized Hadoop, leading to significant reductions in running time in practice.

Index Terms—MapReduce, Hadoop, Flow-shops, Scheduling algorithm, Job ordering.

APPENDIX A
PROOF OF LEMMA 1

Lemma 1. For Chrnaz in Formula (3) of Main File, (1). if

Conaz = S50, TM 4 37 o TR, (1 < ko < n), there must
be X,/ = Ofor all kg < k' < n; (2). Reversely, if X, > 0
and X, = 0 for all ky < k < n, there must be C,,qp =
S0 TM 4 S TR, (1< ko <).

Proof: Let f(k,n) = X0 TM + 37" TR. Our proof

consists of the following two parts:

@). Chgw = f(ko,n) = X,y =0 forall ky < E<n
Proof: Let’s do the proof by contradiction. Suppose there
is a k1 (ko < k1 < n) such that X, > 0. According to
Formula (1) and (3) of Main File, it holds .I* | TM >
SETHIR X)) = maxicpar, 1 {f(k By — 1)} =
f(ko, k1—1). Therefore, we have f(ki,n) = Zf;l TM+
Z?:kl TZ-R > f(k‘o,kj - 1) + Z;L:kl Tl72 = f(k‘o,n),
which violates the concept of C,,,,,.. That is, the assump-
tion is wrong and therefore the proposition is true.
Xy, > 0&X,y = 0 forall kg < k' < n. = Crpar =
f(k?o, n)
Proof: According to Equation (3) of Main File, Cop =
Siny (X + TF) = N (X +TF) + By T
Thus our work is equivalent to prove Zfil (X; +TF) =
maxi<ip<ko{f(k, ko)} = f(ko,ko). That is to prove
maxlgkgko,l{f(k, ko)} < f(/ﬂm ko) NOtiIlg that ng >
0, based on Equation (1) of Main File, we have
Sho oM 5 SRoTl(TR L X)), Thus f(ko, ko) =

(ii).

e S.J. Tang, B.S. Lee, B.S. He are with the School of Computer Engineering,
Nanyang Technological University, Singapore.
E-mail: {stang5, ebslee, bshe} @ntu.edu.sg.

S TM 4 N, TR > S (TR 4 X))
Zi‘zko TR = maxicper,1{f(k ko — 1)} + T} =
maxi<i<ko—11(k, ko)}. Therefore, the proposition is
true.

—+

In summary, our proof completes by combining (i) and (ii).
|

APPENDIX B
PROOF OF LEMMA 2
Lemma 2. Given a job order ¢, there is a_upper bound

makespan denoted by Chnar (i.e. Coar < Chiuaz) for the
generalized case as follows:

k
~ _ M M R
Cmam—lg’?§7l{ZT + max {#] }+Z;1T + max {T7}}.
1
\J.M\tM ‘,J;R‘t/‘”‘v R
where TM = 3‘817/\4" TR = %, M =

~

max; ¢ j<| M| tfvl and tF
Proof: Lemma 1 glves us an important implication re-
garding the makespan estimation for the simplified case. That
is, finding a job Jj, such that X, > 0 and X, = 0 (i.e., no
idle period in the reduce phase after the reduce tasks of Jj,
starts) for all kg < k' < n. Then the makespan is equal to
Zfil TM+37 ., T 1tis also applicable for the generalized
case.
Let ¢M be the completion time at the map phase and c*

be the completlon time at the reduce Bhase for the generallzed
17570, m
case. Then we have ¢ < Z] 1 Zi= \TSM Lt +max1<3<l{t).

For the generalized case, there are two types of idle periods
in the reduce phase, i.e., partial idle period (PIP) (e.g. X3
in Figure 4 for Job Js3) and full idle period (FIP) (e.g., X4 in

= maxléjguﬁ tz

IEEE TRANSACTIONS ON SERVICES COMPUTING

Figure 4 for Job Jy), unlike the simplified case that has FIP
only. Moreover, it is worth noting that for the simplified case,
the job execution order is the same between in the map phase
and in reduce phase. Whereas it does not always hold for the
generalized case. In Figure 4, for example, the reduce tasks of
Jo start earlier than that of J; although the map tasks of Jy
start earlier in the map phase. Therefore, we need to consider
the following two cases:

(1). Suppose the execution order in the map phase
is the same as in the reduce phase for the generalized
case. Let’s assume that Job Jj, is the splitting point that

X, > 0 (either FIP or FIP) and X,, = 0 (no idle period)
for all the remaining jobs J,s(ko < k < n). Then we
LIMI
i M
have Crue < ci‘;‘ + Z?:ko % + maX1<i<n{%zz} <
k MM ~ " \JileR
0 j=1 Vi, g j=1 "i,j
i1 Tem maxi<i<ho{t;)+ Dilk, Rt Tt
R k Z‘-J"M‘W
maxlgign{ti } < maxlgkgn{zizl W +

~ Zl,‘];k ‘ tR
maxy<;<k {81} + 20, % + maX1<i$n{?iR}}'

(2). On the other hand, it is possible that there are out of
order jobs in the reduce phase for the generalized case (e.g.
job order in Figure 4). Note that the cause of the out of order
at the reduce phase is due to the map tasks of later submitted
job finish first. It can have the reduce tasks begin earlier in
the reduce phase, making the maximum completion time for
a batch of jobs less than that of the ordered case. In other
words, if there is an out of order interval from the it" job
to the j*" job at the reduce phase, we can have CJ = <
C/3 ... where CJ, . denotes the maximum completion time for
J jobs in the out of order case and C’,;{ax denotes the maximum

completion time for j jobs in the ordered case. It may in turn

cause later jobs to complete earlier (i.e. C* < C;,’fam for k >
; tM
=1

M
7). Hence, we have C),q; < maxi<k<n {ZLl ”‘*57,\“” +
IR =
~ AR .
maXlgigk{t;{Vt} + Z?:k Jlfsliﬁlj + maxlggn{ff}} for this
case, based on the case (1).
Finally, our proof completes based on (1) and (2).

APPENDIX C
PROOF OF THEOREM 2

Theorem 2. Suppose ¢ is the optimal job order whose
makespan is COPL . based on Johnson’s Rule for the two-stage
flow shop with one processor per stage. The worst-case job
order ¢*, whose makespan is C“5t . can be obtained by simply
reversing .

Proof: Consider Formula (3) of Main File, it can be re-

written as follows:
Cmaz = max {Tk}7 (1)

1<k<n

where .
Ty = Y\ TM+ > TR
i=1 i=k

Given a job order ¢, let’s define

F(¢) = Cmaz = lrsnlggn{Tk} (2)

Therefore, our proof is equivalent to finding a job order ¢*
such that F'(¢*) > F(¢) for any ¢.
Let’s first consider a job order ¢ constructed by interchang-
ing J; and J;1 in ¢. Then we have
F(¢') = max {Ty}. ®)

1<k<n

where
k n
/ IM /R
- Y R
i=1 i=k

, TM (i#jri#j+1)
TM={ T (=)
™ (i=j+1)

, TR (i#jri#j+1)
TiR = TJ‘EA (Z :J)
1) (t=j+1).
Then it holds
1), = T, (k#jnk#j+1). (4)

Note that F(¢) < F(¢) if max{T;,Tj1} =
max{TJ'-,TJI-H}, otherwise F(¢') > F(¢). To make F(¢*) >
F(¢) be true for any ¢, we only need to make sure

’ ’
max{T;, Tj+1} = max{7T},T; 1} (5)

forall 1 < j < n in ¢*. Moreover, by subtracting 7+ M+

1=

P TR from each term in Formula (5), it turns out to be

max{ijj\fl, 7TJR} > max{fT]M, fTﬁH} (6)
or equivalent to
min{TM, TR |} > min{T}}',, TF}. (7

To satisfy Formula (7) for any two adjacent jobs J; and
Jiy1 in ¢*, let’s consider the conditions for the following
J+
possible cases:

@. When TM = TJ for Job J; and T}, < T, for Job
Jj+1, Formula (7) holds in this case without any further
condition.

@. When TM < TF for Job J; and T}, > /57711 for
Job J;j41, we have min{TjM,Tﬁl} < min{TjH,TJR ,
which violates Formula (7). Hence this case is impossible
in ¢*.

@. When TM = TF for Job J; and Ty, = TR, for
Job J;i1, to satisfy Formula (7), we should keep the
following holdTJR < Tﬁl

@. When TM < T for Job J; and T, < T, for Job
Jj4+1, to satisfy Formula (7), we should guarantee T7M >
M,

These give us guidance to find ¢* in the following way:
Partition the jobs set J into two disjoint sub-sets J4 and
Jp. Set J4 contains those jobs J; whose TM > TR. Set
Jp contains the remaining jobs. Sort jobs in J4 in non-
decreasing order of T}%, according to 3). Sort jobs in Jp in

non-increasing order of 7, according to @. Finally, ¢* is

IEEE TRANSACTIONS ON SERVICES COMPUTING

formed by appending the sorted Jp to the end of J4 according
to DD.

Note that the resultant ¢* of the above job ordering rule is
just equivalent to reversing the order of the result based on
Johnson’s Rule. Hence Theorem 2 is true. O

APPENDIX D
PROOF OF LEMMA 3

Lemma 3. Let qS* denote the job order produced by MK_JR.
Let QS* be the reversing order of (;S* Then there is a lower
bound makespan denoted by Cmaz, as well as a upper bound
makespan denoted by C} .. forall Jjob orders . Particularly,
C:'Laz is estimated with regard to (b* by using Formula (3)
of Main File. C;“naz is estimated with regard to ¢* with the

Formula:

C* = max
max 1<k<n

1<igsn
Proof: Let ¢ denote an arbitrary job order. Our proof
makes up of the following two parts:

@. Craz = C oo
Proof: Let’s consider the following two scenarios:
(1). There is a scenario that the job execution order is
consistent between the map phase and reduce phase for
the generalized case, i.e, cj‘/‘ < ck if J; is submitted
before J,. We can construct a s1mphﬁed case regarding

\JM\tM Zul [e
quith(TM TR) = (S c?
Ji. Let Cmm denote the makespan for the simplified

[SM] 2 [SF
case. Let &M and ¢F denote the completion time at
the map phase and reduce phase for the simplified case

M g
: - Yici<i iy b
respectively. Then we have &M = M‘S—MM

. . | :
However, for the generalized case (See Figure 4), due
to the non- divisible condition for some jobs, we have

cM % by considering the possible tail

(e.g. a map task tail from 24 to 28 time unit for job Jy
in Figure 4). It reveals that for job J; of the simplified
case, its map tasks complete no later than those of the
corresponding job of the generalized case at the map
phase. Moreover, even though we let &M = ¢M for each
job J;, we still have ¢} < ¢ by con51der1ng the possible
tail (e.g. a reduce task tail from 36 to 44 time unit for job
J4 in Figure 4) at the reduce phase. Note that ¢; = c? and
¢ = EZR, where ¢; denotes the completion time for job J;
of the simplified case. Therefore, we have C, o, = émavw.
On the other hand, we can obtain an optimal job order ¢*
for makespan C’;’:m » in the simplified case with MK_JR,
in terms of Johnson’s Rule. Then we have Cl,qp > C;‘;mx
So it holds Cpae = C¥ ..
(2). Besides, there is another scenario that the job execu-
tion is out of order between map phase and reduce phase
for the generalized case (e.g. an out of order execution
between J; and J» in the reduce phase in Figure 4). We
can construct a simplified case based on the job execution

1) for each job

{ Z TM+ max {?ZMHZ T,R+11£?<xn{ff}}.

order (denoted as qﬁ/) of the reduce phase of the gen-

M Mm IR R

eralized case, with (T, TR) = (Sders 2 e
for each job J;. Let’s consider an arbitrary pair of
jobs (e.g.,J;, Ji) with different orders between ¢ (e.g.
Jj — Ji in ¢) and qb' (e.g. Jp — Jjin gf)l). It can be noted
that there must be a tail for J; in the generalized case,
as out of order condition. After we exchange their order
(i.e. to be Jy — J;), we have &t < ¢, based on the
facts that: (a). the map tasks of Jj in the simplified case
will begin earlier than in the generalized case; (b). the
execution time for the map tasks of .Jj, in the simplified
kg,

[SM]
the generalized case. Moreover. we have &\ < ¢/ by
considering that the tail available at the last map wave
of J; in the generalized case. All of these indicate that,
each job J; in the simplified case will complete its map
tasks earlier than (or the same as) that in the generalized
case. We therefore can guarantee ¢ > ¢, for which
the reason is the same as what we explamed in case (1).
Therefore, we have C,,q00 = Coaz = C;’,‘mw
]%y combining (1) and (2), we therefore have C,,,, =
C} > Where C’maz can be estimated by using Formula
(3) of Main File regarding gi)*
Cmax < C:;La:v
Proof: We form gb* by reversing the result (denoted by
¢>1) of MK_JR. In terms of Lemma 2, we have C’mm <
Cmaa: = IMmaXjigk<n {Zz 1TM + n’1aX1<z<k{t } +
S TR rmax <icn {tR < maxicp<n {ZZ L TM+
P TR}+maX1<z<n{t }+max1<l<n{t }. Note that
max; <k<n { 21:1 TM+ 3", TR} = CF,, is just the
makespan estimation (Formula 3) for %* in the simplified
case. According to the Johnson’s Rule, we know that ¢
is the optimal job order for makespan in the simplified
case.AMoreover, in terms of Theorem 2, we can obtain
that ¢* is the worst-case job order for makespan in the

simplified case. Thus we have C;’;mz is maximum (i.e.,

case will be , which is smaller than that in

(ii).

Cras < C}) for any arbitrary job order ¢.
Finally, our proof of Lemma 3 completes based on (i) and (ii).
O
APPENDIX E

PROOF OF THEOREM 1

Theorem 1. MK_JR is an (1 + J)-approximation algorithm

for makespan optimization in the generalized case, where § =
max1<L<n{f }+max1<t<”{t } (0 < 5)

maxi<p<n{Xf_; TM+27, TR}’

Proof: Based on Lemma 2, it holds for the job order ¢,

produced by MK_JR that,

Cmaz S
1<k<n iz

< M TR ™ tR
1?’%"{; ; +§k T} max {5} + max {17}

_ & M iR
= Cmaz + max {t;"} + max {;°}. (8)

mar = Mmax {ET + max{tM}-‘rZTR-‘r max{t H

IEEE TRANSACTIONS ON SERVICES COMPUTING

Let’s define § = maX1<7<n{t }+maX1<1<n{t } (OS(SS 1)

Then Formula (8) is equlvalent to

Note that it holds Cpyay = C’;‘,‘mr for MK _JR based on
Johnson’s Rule. Moreover, according to Lemma 3, we have

C* .. < Co! Therefore, we have
Crmax < (1+6)-CoP2,. (10)
(]
APPENDIX F

PROOF OF THEOREM 3

Theorem 3. Given a homogeneous environment where the
Hadoop configurations of slave nodes are identical, the
job orders ¢y produced by MK_JR and ¢o produced by
MK_TCT_JR for a batch of jobs are independent of the
number of slave nodes, but rather depend on the number of
map/reduce slots configured within a slave node.

Proof: Let N denote the number of slave nodes. Let
|s™| and |s™| denote the number of map slots and reduce
slots configured per slave node respectively. We thereby have
|SM| = N - |sM] and |ST| —M - |s®|. Moreover, for each

[T M ;
job J;, we have T/M = 31M|i’J = % - S
IR P

TR = % 4 Z]:,Slinltnj Our proof is equivalent
to validating that the rule steps of each algorithm are N-
independent.
(i). ¢1 is N-independent for MK_JR.

Proof: For MK_JR, we only need to check its Step 2(a)

and 2(b).
(1). Step 2(a) N-independent Validation. For each Job
1M
Ji € J in Ja, the condition TM < TR < Zimild <
Zul IR 1M Z'JR‘ R
\SR|” =]|51M|” < TR . Similarly, for each
M
Job J; € J in Jp, we have TM > TR < % >
Zl."'iR‘tR. (
J=1 2%

=]
(2). Step 2(b) N-independent Validation. For each Job
™ < TM

J; in the sorted set J,, it holds I =
M EACY M [EAY
j=1 7/\/; < ZJ=1H ?11,.7‘ j=1 t{\/; < Z] Tl t{\i17
[sM] = SM [sM] [sM]
Moreover, for each Job J; in the sorted set Jp, it has
. IR = 2"71711'1572
i=1 Yi,j 1 i+1,
TR > Th © Zgepd 2 S5 85 <
|/ | Il |
Z] 1 tR > Zj:Jrl tzilj
. s = [s7]
(ii). ¢ is N-independent for MK TCT_JR.
|T | M
t
Proof: Note in Step 1 of MK_TCT JR, T; = % +
IR = M BRI
2t 1 it 221ty
]\8172| - = ﬁ (J‘;Ml = + ‘R‘ 7). Let Tz =

[TMI 7R \ R ,
Zisifia o 2l then it holds T, = & - T} For
MK TCT _JR, we need to exam its rule steps 2, 3 as

follows:

N

(1). Step 2 N mdependent Valzdatzon Note T
(ITi<i<n T) (]_[1<Z<n) ForeachJobJ eJ

in J),, the conditon T; < T < + .

L . LM .
N (H1<i<nTi)" (HKign Tz’)"‘

j=1 ©J
[sM]

Similarly, for each Job J; € J in Jg, we have T; >

‘Jijvl‘ M 7y 1

T< %;M > (H1<z<nT)"-
(2). Step 3 N-independent Validation. Based on (i) that
MK_JR is N-independent, therefore it holds that Step 3
is N-independent.

A

=

In summary, our proof completes in terms of (i) and (ii). []

APPENDIX G
PROOF OF LEMMA 4

Lemma 4. Let p be the ratio of map slots to reduce slots, i.e.,
p = 1574 | The optimal configuration of p in the simplified
case for makespan C', ., and total completion time Cy.; are
all independent of the total number of slots |S|(|S| = |SM]| +
|S™|), but rather depends on the MapReduce workload as well
as its job submission order ¢.

Proof: The proof is based on the formula transformation
of the makespan and total completion time. Let p = ‘I sRl'
We can transform the Formula (3) and (4) of Main File in
the simplified case for makespan and total completion time

respectively, as follows:

o = s (3,70 + 12 2
k1M n 175
REE=N ‘3M| 121 JZ l; Py £}
k1M 1 n 177
|S‘ Jmax {(1+p) 21]Zl M 2 ; pX tR}. (1)
n
Ctet = Z Eﬁ?i‘u{,z M + Z TR}
n E 1IM u IR
- 2 |sM| 2 Z |SR|ZZk JZ
k1M w [IF]
|3| Z max {(1+p) ;1]Z 12; 321 tR:}.(12)

Formula (G.1), (G.2) show that the optimal configuration
of p for makespan and total completion time in the simplified
case is independent of the total number of slots |S|, but rather
depends on the MapReduce workload and job submission
order. Hence, Lemma 4 holds.

|

APPENDIX H
LoweER AND UPPER BOUND MAKESPAN EvAL-
UATION

Note that Lemma 2 gives a formula to compute the up-
per bound makespan for a MapReduce workload under an

IEEE TRANSACTIONS ON SERVICES COMPUTING

12
116 m LowerBound Makespan of
c Optimal Job Order
8112)
2 B Simulated Makespan of
= 1.08 Optimal Job Order
=
- 1.04 UpperBound Makespan of
ﬁ Optimal Job Order
© 1
£ m Simulated Makespan of
S 0.96 -
=z Worst-case Job Order
0.92 - H UpperBound Makespan of
0.88 - Worst-case Job Order

50 jobs

100 jobs 150 jobs

Fig. 1: The normalized comparison result of simulated makespan,
lower bound makespan and upper bound makespan for optimal job
order produced by MK_JR, as well as simulated makespan and upper
bound makespan for worst-case job order based on Theorem C.
Particularly, the results are normalized by dividing with simulated
makespan of the optimal job order.

arbitrary job submission order. Moreover, Lemma 3 tell us
how to derive a lower bound makespan as well as a upper
bound makespan for all job submission orders. We perform
experiments to evaluate the tightness of these lower (or up-
per) bound makespan with synthetic Facebook workloads. As
shown in Figure 1, we compute the lower bound and upper
bound makespan of the optimal job order produced by MK _JR,
according to Lemma 2 and Lemma 3. In contrast, the upper
bound makespan of the worst-case job order can be computed
based on Theorem 2 and Lemma 2. Moreover, we derive the
simulated makespan for optimal job order as well as worst-
case job order with MREstimator to evaluate the tightness
of lower and upper bound makespan. All of these results
are normalized by dividing with simulated makespan of the
optimal job order. The experimental results show that, both
the lower bound makespan and upper bound makespan are
very close to the corresponding simulated makespan, which
validates the tightness of the upper bound and lower bound
makespan models.

APPENDIX |
ACCURACY AND EFFICIENCY VALIDATION OF
PCP

Recall in Section 6.3 of the Main File, we provide
a method PCP to address the possible time -efficiency
problem for proposed slot enumerating algorithms (e.g.,
Algorithm MK_SF_JR, Algorithm MK_TCT_SF_JR) in
map/reduce slot configuration optimization when the total
number of slots is very large. This section aims to validate
the accuracy and time efficiency of PCP.

As shown in Table 1, we make a contrast experiment
for PCP by comparing its predicted results (rows labeled
with *PCP’) with those ones (rows labeled with ’algorithm’)
produced by corresponding map/reduce slot configuration al-
gorithms for a Facebook workload of 100 jobs. Particularly,
in our experiment, we choose a total number of 100 slots as
a basis for PCP to deduce the map/reduce slot configuration
results when the total number of slots is very large (e.g., 200,
400, 800, 1600). That is, we first run each slot configuration

algorithm to obtain the corresponding optimized result for a
small-size number of 100 slots. Then we use it to deduce the
corresponding result for a large number of slots, according to
PCP. We have the following observations:

First, for each size of total slots (e.g., 100, 200 ,400,
800, 1600), both the results of makespan (MK) and total
completion time (TCT) deduced by PCP are much close to
the ones obtained by running slot configuration algorithms
under that given size. For example, there is only a bit
difference of 3(~ 211.34 — 207.98) seconds for MK and
6(~ 18175.03 — 18169.31) seconds for TCT, between the
results from *PCP’ and ’algorithm’ for a total number of 1600
slots, with respect to Algorithm MK_SF_JR. It validates the
accuracy of PCP approach.

Second, there is a significant Execution Time (ET) reduction
for the proposed algorithms combined with the PCP method
when the slot size is large. We can witness that, the execution
time of algorithm becomes almost twice when we double the
size of slots. For example, for Algorithm MK_SF_JR, when
the size of total slots is 400, it takes 10.3 seconds to get
the optimized result. However, it consumes 21 seconds when
we double the size of total slots to be 800. In comparison,
with PCP, we only need to use 2.48 seconds, reducing the
computation time significantly.

In summary, the PCP approach can reduce the computation
time significantly for proposed algorithms while keeping the
high accuracy results (i.e., makespan and total completion
time) when the size of total slots is very large.

APPENDIX J
ACCURACY VALIDATION FOR MRESTIMATOR

We validate the accuracy of our MREstimator by comparing
the simulated results of testbed workloads with the experimen-
tal results. Our validation work consists of two flavors. First,
we consider the makespan as well as total completion time
for all possible job orders of a testbed workload. Figure 2(a)
and Figure 2(b) present the results for all 24 job orders of
a batch of 4 jobs. We can note that the calculation results
of both makespan and total completion time are very close
(errors within 8%) to the experimental results. On the other
hand, we focus on a single job order of a testbed workload
and consider the completion time for each job. Figure 2(c)
shows completion time for each job of a testbed workload
of 10 jobs under the job order produced by MK_TCT_JR.
We can observe that the curve of simulated results almost
overlaps (errors within 5%) with that of experiment results. In
summary, all of these forcefully validate the accuracy of our
MREstimator.

APPENDIX K

PERFORMANCE IMPACT OF INACCURACY IN Es-
TIMATING MAP/REDUCE TASK TIME

In previous sections, we take the average task execution
time for map/reduce tasks of each job as input to optimize

the performance of a workload. However, in practice, the
execution time of map/reduce tasks can be fluctuated up and

IEEE TRANSACTIONS ON SERVICES COMPUTING

Algorithm MK_SF_JR Algorithm MK_TCT_SF_JR

Total Slots|| Result Source Slot Ratio MK TCT ET Slot Ratio MK TCT ET
(ﬁ‘;ﬁf;f;ﬁ) (sec) (sec) (sec) (T";‘Z:l‘qll"(f:) (sec) (sec) (sec)

100 PCP @ =0.73 3075.58 | 266758.98 | 2.48 @ =0.72 3129.10 | 68329.93 | 4.33
algorithm ﬁ =0.73 3075.58 | 266758.98 | 2.48 ﬁ =0.72 3129.10 | 68329.93 | 4.33

200 PCP ;ég =0.73 1545.47 | 134160.39 | 2.48 % =0.72 1567.91 | 34359.75 | 4.33
algorithm % =0.735 1535.18 | 135302.15 | 5.08 % =0.72 1567.91 | 34359.75 | 8.88

400 PCP 222 =0.73 | 78178 [6790430 | 248 25 =0.72 | 81430 [1551518 | 4.33
algorithm % =0.735 775.76 68336.39 | 10.30 % =0.715 804.66 | 15518.56 | 18.51

800 PCP 200 =0.73 [400.57 | 34666.10 | 2.48 % =0.72 | 41320 | 8819.44 | 4.33
algorithm % = 0.735 396.13 34703.35 21.0 % =0.71 409.70 8818.06 | 37.61

1600 PCP % =0.73 211.34 18169.31 2.48 % =0.72 219.86 6277.49 4.33
algorithm }(1;(7)3 =0.735 | 207.98 18175.03 | 42.06 }(1}83 =0.727 | 218.03 6235.14 | 73.45

TABLE 1: The comparison of map/reduce slot configuration (Slot Ratio), makespan (MK) and total completion time (TCT) for slot
configuration optimization algorithms under two different result sources: PCP and algorithm for the Facebook workload of 100 jobs. The
’PCP’ represents that the map/reduce slot configuration as well as optimized job submission order for the case of current (large) size of total
slots is figured out based on the result from a small-size number of total slots (e.g., 100 slots in total in our example), in terms of PCP. In
contrast, the ’algorithm’ denotes that the results of slot configuration and job submission order are obtained by running slot configuration
algorithms with given size of total slots (e.g., 200, 400, 800, 1600). ET denotes the execution time needed for the corresponding optimization

algorithm.

3000

©
38
3

ntal Result Result 1600 perimental Result Result

13
3

NN
8 &
s g
8 3

N ®
s 3
8 3

1

%? o

o

1500

&
3

1000

Makespan (sec)
2 o oo
2
8
Total Completion Time (sec)

w
8
3

@

3

3

200

=

S

3
o

123456 7 8 9101112131415161718192021222324
Different job orders

perime
-l 1400 A

g 1200 %
1 2 1000
W i‘ ¥ V . £

E _/

' 800

g J/

35 600

£ A

§ a00

200 /_‘-/I' #
0

12345678 9101112131415161718192021222324 1 2 3 4 5 6 7 8 9 10
Different job orders Job ID

(a) Makespan for a batch of 4 jobs in all job orders (b) Total completion time for a batch of 4 jobs in (c) The completion time for each job of a testbed

all job orders

workload of 10 jobs under a job order

Fig. 2: Simulation results versus experimental results for testbed workloads.

down the average value, depending on specific applications.
In this section, we study the impact of such a variation on
the overall performance of a workload for our job ordering
algorithms.

In our experiment below, we assume that it follows the
uniform distribution for the variation percentage of map/reduce
task execution time relative to the corresponding average task
execution time. We take the testbed workload of 100 jobs and
the synthetic Facebook workload of 100 jobs as examples to
study the influence of different task execution time variations
on makespan and total completion time, as the results shown
in Figure 3(a) and Figure 3(b), respectively. The x-axis gives
the maximum variation percentage (i.e., variation domain) of
map/reduce task execution time relative to its average value.
We generate the specific execution time for each map/reduce
task with the monte carlo method that follows the uniform
probability distribution for the variation percentage of execu-
tion time subject to the given variation domain. For example,
Point 12 at the x-axis in Figure 3(a) means that the execution
time for each map/reduce task fluctuates up or down randomly
within 12% relative to the average task execution time with
uniform probability distribution. Hence, Point O at the x-axis
represents the performance results under the pure average
task execution time. Moreover, we normalize the makespan

(or total completion time) with makespan speedup (or total
completion time speedup) through dividing the makespan (or
total completion time) of originally unoptimized job order by
the one of optimized one with our job ordering algorithms
(MK_JR and MK_TCT_JR). Particularly, it is worth mention
that the job ordering optimization performed is still based on
the average task execution time.

The results of Figure 3 show that there is a small increase
for makespan (and total completion time) for both cases of
unoptimized job order and optimized one with our proposed
job ordering algorithms under different degrees of variation in
map/reduce task execution time, whereas the relative perfor-
mance improvement (i.e., makespan speedup, total completion
time speedup) is fine or even better under this case. It indicates
that we can take the average task execution time as input
for job ordering algorithms under the case of inaccuracy in
estimating map/reduce task time, assuming that the variation
percentage of task execution time follows uniform probability
distribution.

IEEE TRANSACTIONS ON SERVICES COMPUTING

5,800
5,600
5,400

< 5,200

Q
£ 5,000
c
§ 4,800

£ 4,600

[}

= 4,400
4,200
4,000
3,800

Makespan-speedup

0

6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96
Maximum variation percentage of task execution time (%)

(a) Makespan for the testbed workload of 100 jobs.

1.4

1.35

13

1.25

1.2

115

11

1.05

Makespan Speedup

64,000
< 59,000
54,000
49,000
44,000
39,000
34,000

Total Completion Time (se:

29,000
24,000

f enans ans= SSUVOOUEPON

4 - VM

s ToOtal completion time without job ordering optimization

== Total completion time optimized with MK_TCT_JR

Total completion time speedup

0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96
Maximum variation percentage of task execution time (%)

3.5

25

15

0.5

Total Completion Time Speedup

(b) Total completion time for the synthetic Facebook workload of 100 jobs.

Fig. 3: The performance impact of map/reduce task execution time variation for different variation percentages.

