
Dynamic Job Ordering and Slot Configurations
for MapReduce Workloads

Shanjiang Tang, Bu-Sung Lee, and Bingsheng He

Abstract—MapReduce is a popular parallel computing paradigm for large-scale data processing in clusters and data centers. A

MapReduce workload generally contains a set of jobs, each of which consists of multiple map tasks followed by multiple reduce tasks.

Due to 1) that map tasks can only run in map slots and reduce tasks can only run in reduce slots, and 2) the general execution

constraints that map tasks are executed before reduce tasks, different job execution orders and map/reduce slot configurations for a

MapReduce workload have significantly different performance and system utilization. This paper proposes two classes of algorithms

to minimize themakespan and the total completion time for an offline MapReduce workload. Our first class of algorithms focuses on

the job ordering optimization for a MapReduce workload under a given map/reduce slot configuration. In contrast, our second class of

algorithms considers the scenario that we can perform optimization for map/reduce slot configuration for a MapReduce workload. We

perform simulations as well as experiments on Amazon EC2 and show that our proposed algorithms produce results that are up to

15 � 80 percent better than currently unoptimized Hadoop, leading to significant reductions in running time in practice.

Index Terms—MapReduce, Hadoop, flow-shops, scheduling algorithm, job ordering

Ç

1 INTRODUCTION

MAPREDUCE is a widely used computing model for
large scale data processing in cloud computing. A

MapReduce job consists of a set of map and reduce tasks,
where reduce tasks are performed after the map tasks.
Hadoop [2], an open source implementation of MapReduce,
has been deployed in large clusters containing thousands of
machines by companies such as Amazon and Facebook. In
those cluster and data center environments, MapReduce
and Hadoop are used to support batch processing for jobs
submitted from multiple users (i.e., MapReduce work-
loads). Despite many research efforts devoted to improve
the performance of a single MapReduce job (e.g., [3], [11]),
there is relatively little attention paid to the system perfor-
mance of MapReduce workloads. Therefore, this paper tries
to improve the performance of MapReduce workloads.

Makespan and total completion time (TCT) are two key per-
formance metrics. Generally, makespan is defined as the time
period since the start of the first job until the completion of
the last job for a set of jobs. It considers the computation
time of jobs and is often used to measure the performance
and utilization efficiency of a system. In contrast, total com-
pletion time is referred to as the sum of completed time peri-
ods for all jobs since the start of the first job. It is a
generalized makespan with queuing time (i.e., waiting
time) included. We can use it to measure the satisfaction to
the system from a single job’s perspective through dividing

the total completion time by the number of jobs (i.e., average
completion time). Therefore, in this paper, we aim to opti-
mize these two metrics.

We consider the production MapReduce workloads
whose jobs run periodically for processing new data. The
default FIFO scheduler is often adopted in order to
minimize the overall execution time [41]. The analysis is
generally performed offline to optimize the execution for
such production workloads. There are a surge amount of
optimization approaches on that. For example, Rasmussen
et al. [33] and Jiang et al. [21] considers the low-level I/O-
efficient optimization. Agrawal et al. [8] and Nykiel
et al. [27] share the operation by eliminating redundant
data access and computation.

In this paper, we target at one subset of production
MapReduce workloads that consist of a set of indepen-
dent jobs (e.g., each of jobs processes distinct data sets
with no dependency between each other) with different
approaches. For dependent jobs (i.e., MapReduce work-
flow), one MapReduce can only start only when its previ-
ous dependent jobs finish the computation subject to the
input-output data dependency. In contrast, for indepen-
dent jobs, there is an overlap computation between two
jobs, i.e., when the current job completes its map-phase
computation and starts its reduce-phase computation, the
next job can begin to perform its map-phase computation
in a pipeline processing mode by possessing the released
map slots from its previous job. Particularly, as shown in
Fig. 1b in Section 2.1, different job submission orders
result in varied computation overlaps, and in turn the dif-
ferent cluster utilizations and performance.

Moreover, in Hadoop MRv1, it abstracts the cluster
resources into slots (e.g., map slots and reduce slots). Due to
varied slot demands for map and reduce tasks, different
map/reduce slot configurations can also have significantly
different performance and system utilization. Particularly,

� S.J. Tang is with the School of Computer Science and Technology, Tianjin
University, China. E-mail: tashj@tju.edu.cn.

� B.-S. Lee and B.S. He are with the School of Computer Engineering,
Nanyang Technological University, Singapore.
E-mail: {ebslee, bshe}@ntu.edu.sg.

Manuscript received 31 Oct. 2014; revised 6 Apr. 2015; accepted 12 Apr.
2015. Date of publication 23 Apr. 2015; date of current version 10 Feb. 2016.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TSC.2015.2426186

4 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 9, NO. 1, JANUARY/FEBRUARY 2016

1939-1374� 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

the importance and challenges of map/reduce slot configu-
ration optimization are motivated in Section 2.2.

With these observations, we try to improve the perfor-
mance for MapReduce workloads with job ordering and
slot configuration optimization approaches.

Job ordering optimization. We start by describing the job
ordering algorithm MK_JR based on Johnson’s Rule [22]
for makespan optimization. It turns out to be equivalent
to the two-stage flow shop problem when there are one
map slot and one reduce slot only [41]. The Johnson’s
Rule [22] can produce the optimal job order for makespan
in this case. When it comes to the general case where
there are arbitrary number of map and reduce slots. Min-
imizing the makespan in this case is NP-hard. We show
that MK_JR produces a 1þ d approximation to the mini-
mum makespan, where d < 1 is the ratio of sum of the
maximum map and reduce task size, to the sum of all the
task sizes. Since the processing time of a single map/
reduce task is typically small in practice compared to the
overall execution time of a MapReduce workload, d is
usually a very small quantity [44]. Moreover, we see that
there is a significant trade-off between the makespans

and total completion times of the orderings, as explained
in Section 2.1. We then further propose a bi-criteria algo-
rithm MK_TCT_JR to optimize both makespan and total
completion time together.

Having proposed job ordering algorithms that optimize
the makespan and total completion time, we also show that
they are stable, i.e., the optimized orders produced by job
ordering algorithms do not change even if someMapReduce
servers fail at execution time (See Theorem 3 in Section 5.3).

Slot configuration optimization. Moreover, the slot configu-
ration can have a significant impact on performance for
MapReduce workloads. Our motivating experiments in
Section 2.2 show that there are 399 percent performance dif-
ference between the optimal and the worst-case slot config-
urations (See Fig. 2a). We propose several enumeration
algorithms for map/reduce slot configuration optimization
with regard to the makespan and total completion time of a
MapReduce workload.

Having proposed enumeration algorithms for map/
reduce slot configuration optimization, we also show that
there is a proportional relationship for the optimized map/
reduce slot configurations for any two different sizes of total
slots (See PCP in Section 6.3). It is important to address the
time efficiency problem of the proposed enumeration algo-
rithms for a large-size number of total slots.

Experimental results. We evaluate our algorithms using
both testbed workloads and synthetic Facebook workloads.
Experiments show that, 1). for the makespan, the job
ordering optimization algorithm achieve an approximately
14-36 percent improvement for testbed workloads, and
10-20 percent improvement for Facebook workloads. In con-
trast, with the map/reduce slot configuration algorithm,
there are about 50-60 percent improvement for testbed
workloads and 54-80 percent makespan improvement for
Facebook workloads; 2). for the total completion time, there
are nearly 5� improvement with the bi-criteria job ordering
algorithms and 4� improvement with the bi-criteria map/
reduce slot configuration algorithm, for Facebook work-
loads that contain many small-size jobs,

The main contributions of this paper are summarized as
follows:

� Have a theoretical study on the Johnson’s Rule-based
heuristic algorithm for makespan, including its
approximation ratio, upper bound and lower bound
makespan.

� Propose a bi-criteria heuristic algorithm to optimize
makespan and total completion time simultaneously,
observing that there is a tradeoff between makespan

Fig. 1. Performance comparison for a batch of jobs under different job
orders in FIFO scheduling.

Fig. 2. The motivating example of a MapReduce workload consisting of four jobs under FIFO scheduler with a total number of 80 slots.

TANG ET AL.: DYNAMIC JOB ORDERING AND SLOT CONFIGURATIONS FOR MAPREDUCE WORKLOADS 5

and total completion time from Fig. 1a. Moreover,
we show that the optimized job order produced by
the proposed orderings algorithms does not need to
change (i.e., stable) in the face of server failures via
theoretical analysis.

� Propose slot configuration algorithms for makespan
and total completion time. We also show that there is
a proportional feature for them, which is very impor-
tant and can be used to address the time efficiency
problem of proposed enumeration algorithms for a
large size of total slots.

� Perform extensive experiments to validate the effec-
tiveness of proposed algorithms and theoretical
results.

The rest of the paper is organized as follows. Section 2
motivates the importance and challenges of job ordering opti-
mization and slot configuration optimization for the perfor-
mance of MapReduce workloads. Section 3 reviews the
relatedwork. Section 4 formulates problems and gives perfor-
mance model for makespan and total completion time. We
present our job ordering algorithms in Section 5. Section 6
gives our map/reduce slot configuration optimization algo-
rithms. In Section 7, we give performance evaluation to vali-
date the optimization effectiveness of these algorithm
experimentally. Finally, Section 8 concludes the paper.

2 MOTIVATION

In this section, we show the importance and challenge of job
ordering optimization as well as map/reduce slot configu-
ration optimization by giving motivating examples
experimentally.

2.1 Motivation for Job Ordering Optimization

To motivate the importance of job ordering optimization for
MapReduce workloads on performance, we ran a testbed
workload consisting of four jobs (J1 � J4) from Table 2 of
Section 7.1 in a Amazon EC2 Hadoop cluster configured
with map slots of 57 and reduce slots of 19. We do so by
comparing the performance for all possible job submission
orders.

Fig. 1a shows the results for all 4! ¼ 24 job submission
orders, sorted by makespan. The x-axis shows the job order
id for all job orders. We observe that there is a 20 percent
(130 second) difference between the best and worst order-
ing. Depending on the characteristics of the workload, this
difference can be even greater. Fig. 1b shows another set of
jobs where the makespan can differ by nearly 100 percent.
This is due to the non-overlap computation constraint
between map and reduce tasks of a MapReduce job, result-
ing in different resource utilizations for map/reduce slots
under different job submission orders for batch jobs, as
illustrated in Fig. 1b. However, the job ordering optimiza-
tion for MapReduce workloads is important and challeng-
ing, due to the following facts: (i). There is a strong data
dependency between the map tasks and reduce tasks of a
job, i.e., reduce tasks can only perform after the map tasks,
(ii). map tasks have to be allocated with map slots and
reduce tasks have to be allocated with reduce slots,
(iii). Both map slots and reduce slots are limited
computing resources, configured by Hadoop administrator

in advance [26]. Because of these, different job submission
orders will result in different resource utilizations for map
and reduce slots and in turn different performance (i.e.,
makespan) for batch jobs. Moreover, it is worth mentioning
that the computation for each reduce task consists of three
sub-phases, namely, shuffle, sort and aggregation. The shuffle
phase computation of reduce tasks can start earlier before
all map tasks are completed, whereas other two sub-phases
cannot. It means that only sort and aggregation phases of
reduce tasks cannot overlap with all map tasks. Moreover, a
MapReduce job execution generally exhibits the multiple
waves in its map and reduce phase. Only the first wave of
reduce tasks can overlap their data shuffling with map task
computation. For other remaining reduce tasks, they can
only start shuffling after all map tasks are completed. In
summary, we cannot avoid the strict (or partial) non-over-
lap data dependency between map and reduce tasks. In our
testbed experiment above, we keep the default Hadoop con-
figuration, which enables reduce tasks to start running
when there are 5 percent of map tasks completed. The
different job ordering results are just to be an effective
validation for this point.

Moreover, in Fig. 1a, the curve running through the mid-
dle of the figure gives the corresponding total completion time
(i.e., the sum of the completion times of all the jobs) for dif-
ferent orders. We see that there is a significant trade-off
between the makespans and total completion times of the
orderings. In fact, job order 5 has a makespan which is close
to the optimal, but its total completion time is much better
than the total completion time of the minimum makespan
order. It indicates that there is a need to optimize both
makespan and total completion time together.

2.2 Motivation for Slot Configuration Optimization

To motivate the importance of optimization on map/reduce
slot configuration, we perform a simulation experiment
with a testbed MapReduce workload consisting of four jobs,
assuming that a cluster consisting of 10 slave nodes each
configured with eight slots, i.e., the total number of map
slots plus reduce slots for the cluster is 80, as shown in Fig. 2.

Our experiments are three folds. First, we examine the
influence of slot configuration to the overall performance by
running jobs in all possible map/reduce slot configurations
in practice (i.e., configure map slots from 1 to 7 per slave
node), under an arbitrary job submission order. The experi-
mental results are given in Fig. 2a. It can be noted that the
maximum performance difference between the worst-case
map/reduce slot configuration (e.g., 10=70) and the optimal

one (e.g., 60=20) is huge, up to 3;112�624
624 � 399%. Second, we

consider the influence of job orderings on the performance
by running jobs with all possible job orders, under an opti-
mal map/reduce slot configuration (e.g., 60/20). Fig. 2b
shows that the performance difference of the worst-case job
submission order and the optimal one can be large up to
768�578

578 � 33%, depending on the workload characteristic.

Third, we evaluate and compare the optimal(minimum)
makespan as well as its corresponding optimal map/reduce
slot configuration for all possible job submission orders.
Fig. 2c illustrates the optimal map/reduce slot configuration
(i.e., blue and green bar) as well as its corresponding

6 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 9, NO. 1, JANUARY/FEBRUARY 2016

optimal makespan (i.e., red curve) for all 4! ¼ 24 possible
job submission orders, sorted by makespan in non-decreas-
ing order. The results show that there are varied optimal
configurations of map/reduce slots for different job submis-
sion orders. Moreover, it’s worth noting that the maximum
performance difference between the worst-case job order
and the optimal job order each under its corresponding

optimal map/reduce slot configuration, is 744�578
578 � 28:7%.

In summary, the above motivating example poses three
key challenging issues: (1). Different map/reduce slot con-
figurations will have different performance under a given
job order (e.g., Fig. 2a); (2). Even under the optimal map/
reduce slot configuration, different job submission orders
will result in varied performance (e.g., Fig. 2b); (3). The opti-
mal configurations of map/reduce slots as well as its corre-
sponding optimal makespan are different under different
job submission orders (e.g., Fig. 2c).

3 RELATED WORK

In this section, we give an overview of related work from
two aspects. First, we review batch job ordering optimiza-
tion work in HPC literature. Second, we summarize the
MapReduce job optimization work proposed in recent
years.

3.1 Job Ordering Optimization

The batch job ordering problem has been extensively stud-
ied in the high performance computing literature [25]. Mini-
mizing the makespan has been shown to be NP-hard [25],
and a number of approximation and heuristic algorithms
(e.g., [14], [34]) have been proposed. In addition, there has
been work on bi-criteria optimization which aims to mini-
mize makespan and total completion time simultaneously,
such as [13].

The previous works all focused on the single-stage paral-
lelism, where each job only has a single stage. In contrast,
MapReduce is an interleaved parallel and sequential com-
putation model [23] which is related to the two-stage hybrid
flow shop (2HFS) problem [17]. Minimizing the makespan
for 2HFS is strongly NP-hard when at least one stage con-
tains multiple processors [16]. There has been a large body
of approximation and heuristic algorithms (e.g., [6], [24])
proposed for 2HFS. Additionally, there has been work (e.g.,
[31]) targeted at the bi-criteria optimization of both make-
span and total completion time.

The main difference between MapReduce and traditional
2HFS is that MapReduce jobs can run multiple map and
reduce tasks concurrently in each phase, whereas 2HFS
allows at most one task to be processed at a time. In this
way, MapReduce is more similar to the two-stage hybrid
flow shop with multiprocessor tasks (2HFSMT) [28], [29]
problem, which allows a task at each stage can be processed
on multiple processors simultaneously. However, there is a
requirement in 2HFSMT that a task at each stage can be
scheduled only when the number of processors it requires
is satisfied; otherwise the task needs to wait [28]. In contrast,
the number of running map/reduce tasks for a MapReduce
job can be dynamically scaled up and down as idle map/
reduce slots become available.

In summary, MapReduce is a new computation model
that is similar to but different from other models mentioned
above. The works that are most related to ours are [26],
[41]. In [26], Moseley et al. present an offline 12-approxima-
tion algorithm for minimizing the total flow time of the jobs;
this is the sum of the differences between the finishing and
arrival times of all the jobs. Verma et al. [41] propose two
algorithms for makespan optimization. One is a greedy
algorithm job ordering method based on Johnson’s Rule.
Another is a heuristic algorithm called BalancedPool. They
discuss and evaluate the algorithms experimentally. We fol-
low their job ordering approach (i.e., MK_JR algorithm in
our paper). But our main contributions go beyond it in a
number of significant aspects. First, we prove a 1þ d upper
bound on the approximation ratio of our MK_JR algorithm.
Second, we give the relationship between upper-bound
makespan, lower-bound makespan, and the corresponding
job orders. Additionally, our MK_TCT_JR algorithm
obtains a trade-off in the makespan and total completion
time, which produces very good results. Moreover,
for online workloads, we proposed a prototype named
MROrder [36] to perform online job ordering optimization
by incorporatingMK_JR algorithm.

3.2 MapReduce Job Optimization

There is a large body of researchwork that focuses on the opti-
mization for MapReduce jobs. One optimization policy
focuses on the architectural design and optimization issues.
Jiang et al. [21] proposed a set of general low-level optimiza-
tions including improving I/O speed, utilizing indexes, using
fingerprinting for faster key comparisons, and block size tun-
ing. Rasmussen et al. [33] presented an I/O-efficient MapRe-
duce system called Themis that improves the performance of
MapReduce by minimizing the number of I/O operations.
Likewise, Sailfish [32] improves MapReduce’s performance
through more efficient disk I/O. It mitigates partitioning
skew in MapReduce by choosing the number of reduce tasks
and intermediate data partitioning dynamically at runtime,
using an index constructed on intermediate data. There are
also methods that reduce I/O cost in MapReduce by using
indexing structures (e.g., Hadoop++ [12]), column-oriented
storage (e.g., [15]). Polo et al. [30] proposed a scheduling tech-
nique and implemented a prototype called Adaptive Sched-
uler that can adaptively manage the workload performance
with the awareness of hardware heterogeneity, distributed
storage to meet user’s deadline requirement. Wolf et al. [42]
propose a flexible scheduling allocation scheme called FLEX,
which can optimize any of a variety of standard scheduling
theory metrics, such as response time, stretch, makespan.
Tang et al. [35], [37] proposed a dynamic slot allocation sys-
tem called DynamicMR to improve the performance for the
slot-based Hadoop MRv1, by allowing map (or reduce) tasks
can be run onmap slots and reduce slots.

Adjusting Hadoop configuration is another optimization
policy, including [7], [18], [19]. For example, Starfish [19] is a
self-tuning framework that can adjust the Hadoop’s configu-
ration automatically for a MapReduce job such that the
utilization of Hadoop cluster can be maximized, based on
the cost-based model and sampling technique. Herodotou
and Babu [18] propose a system named Elastisizer for

TANG ET AL.: DYNAMIC JOB ORDERING AND SLOT CONFIGURATIONS FOR MAPREDUCE WORKLOADS 7

cluster-sizing optimization andMapReduce job-level param-
eter configurations optimization, on the cloud platform, to
meet desired requirements on execution time and cost for a
given workload, based on a careful mix of job profiling, esti-
mation using black-box and white-box models and simula-
tion. In contrast, Agarwal et al. [7] present a systemRoPE that
can re-optimize data parallel jobs by adapting execution
plans based on estimates of code and data properties.

Another optimization policy is to sharework and eliminate
redundant data access and computation. Agrawal et al. [8]
provide a method to maximize scan sharing by grouping
MapReduce jobs into batches so that sequential scans of large
files are shared among many simultaneous jobs as possible.
MRShare [27] is a sharing framework that provides three pos-
sible work-sharing opportunities, including scan sharing,
mapped outputs sharing, and Map function sharing across
multiple MapReduce jobs, to avoid performing redundant
work and thereby save processing time.

There is also an optimization policy of pipelining. MapRe-
duce Online [10] is such a modified MapReduce system to
support online aggregation for MapReduce jobs that run con-
tinuously by pipelining datawithin a job and between jobs.

In contrast, we improve the performance for a MapRe-
duce workload by maximizing the cluster utilization as
much as possible, through optimizing the map/reduce slot
configuration and the job submission order. All these stud-
ies are complementary to our study and our approach can
be incorporated into these modified MapReduce frame-
works (e.g., MRShare [27], MapReduce Online [10]) for fur-
ther performance improvement.

Moreover, there are a number of optimization works for
MapReduce on the cloud, which primarily consider the
deadline and budget, such as [20], [38], [39]. They optimize
the task scheduling and resource allocation for MapReduce
workloads by proposing algorithms and cost models for
each metric. However, their work are atop of Hadoop sys-
tem. We can combine these works and our approach to fur-
ther optimize the deadline and budget for cloud computing.

4 PROBLEM FORMULATION AND

PERFORMANCE MODEL

In this section, we give a formal model for MapReduce and
formalize its associated optimization problems.

4.1 Problem Formulation

A MapReduce job Ji computation consists of two phases, a
map phaseM and reduce phase R. Each phase consists of a

number of tasks. We write jJMi j and jJRi j for the number of
tasks in Ji’s map phase and reduce phase, respectively. Let

tMi;j and tRi;j denote the execution time of Ji’s jth map task and

jth reduce task, respectively. We consider a MapReduce
workloadwith a set of independent jobs J ¼ {J1; J2; . . . Jn}, for
some n. These jobs can be executed in any order. The work-
load is executed on a MapReduce cluster under FIFO sched-
uling, consisting of a set of (map and reduce) slots, denoted

as S. Let SM and SR denote the set of map slots and reduce
slots configured by MapReduce administrator (i.e.,

S ¼ SM [SR), so that the number of map slots and reduce

slots are jSMj and jSRj, correspondingly.

Let f denote the job submission order for a MapReduce
workload. We focus on the offline situation in which all the
jobs are available at time 0. Let ci denote the completion
time of Ji (i.e., the time when Ji’s reduce tasks all finish).
The makespan for the workload J1; . . . ; Jn is defined as
Cmax ¼ maxi2½n�fcig. The total completion time for the work-

load is defined as Ctct ¼
P

i2½n� ci.
In our work, we consider four optimization problems,

defined as follows:

Problem 1. Find an ordering f to execute the jobs J1; . . . ; Jn in a
MapReduce workload such that Cmax is minimized, under a

given slot configuration ðSM;SRÞ?
Problem 2. Find an ordering f to execute the jobs J1; . . . ; Jn in a

MapReduce workload that can optimize (minimize) Cmax

and Ctct simultaneously, under a given slot configuration

ðSM;SRÞ?
Moreover, if we are MapReduce cluster administrators,

we can perform the following optimization work:

Problem 3. Find a map/reduce slot configuration ðSM;SRÞ and
ordering f to execute the jobs J1; . . . ; Jn in a MapReduce
workload such that Cmax is minimized, under a given value of
total slots S?

Problem 4. Find a map/reduce slot configuration ðSM;SRÞ and
ordering f to execute the jobs J1; . . . ; Jn in a MapReduce
workload that can optimize (minimize) Cmax and Ctct simulta-
neously, under a given value of total slots S?

4.2 Performance Model for Makespan
and Total Completion Time

In this section, we aim to deduce the mathematical per-
formance model for makespan and total completion
time. We start by considering a simplified case where
we can give a close-form formula for makespan and total
completion time. Next, we consider the general case
in which it is complex and difficult to get the exact
mathematical formula. Instead, we deduce an upper
bound for it.

We first consider a simplified case where jSMj ¼ 1 and

jSRj ¼ 1. It turns out to be a perfect two-machine flow-shop
problem [41]. Fig. 3 gives an example of an execution for

this case. For each job Ji, let T
M
i be the total processing time

of map tasks and TRi be the total processing time for
the reduce tasks. LetXi be the idle period of time for reduce
machines before the reduce tasks of job Ji start running.

Then we have TMi ¼
PjJM

i
j

j¼1 tM
i;j

jSMj and TRi ¼
PjJR

i
j

j¼1 tR
i;j

jSRj . Based on

the Johnson’s work [22], the makespan and total completion
time for the simplified case can therefore be calculated as
follows:

Fig. 3. MapReduce tasks execution flow for the simplified case.

8 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 9, NO. 1, JANUARY/FEBRUARY 2016

Xk ¼ max
Xk
i¼1

TMi �
Xk�1
i¼1
ðTRi þXiÞ; 0

()
: (1)

Xn
i¼1

Xi ¼ max
1�k�n

Xk
i¼1

TMi �
Xk�1
i¼1

TRi

()
: (2)

Cmax ¼
Xn
i¼1
ðXi þ TRi Þ ¼ max

1�k�n

Xk
i¼1

TMi þ
Xn
i¼k

TRi

()
: (3)

Ctct ¼
Xn
u¼1

Xu
i¼1
ðXi þ TRi Þ ¼

Xn
u¼1

max
1�k�u

Xk
i¼1

TMi þ
Xu
i¼k

TRi

()
:

(4)

According to Johnson’s work [22], there is a useful prop-
erty about the k which maximizes the quantity above for
makespan as stated by the following lemma below,

Lemma 1. For Cmax in Formula (3), (1). if Cmax ¼Pk0
i¼1 T

M
i þ

Pn
i¼k0 T

R
i , ð1 � k0 � nÞ, there must be Xk

0 ¼ 0

for all k0 < k
0 � n; (2). Conversely, if Xk0 > 0 and Xk

0 ¼ 0

for all k0 < k
0 � n, there must be Cmax ¼

Pk0
i¼1

TMi þ
Pn

i¼k0 T
R
i , ð1 � k0 � nÞ.

The detailed proof of Lemma 1 is given in Appendix A of
the supplemental file, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TSC.2015.2426186. It shows us an important
implication for makespan estimation. When it comes to a
Hadoop environment for a set of ordered n jobs, k0 is an

indicator for the kth0 job in the order from which all reduce
slots will be fully utilized till the end of batch computation.
We use it later for the proof of Lemma 2.

Next, we consider the general case where the number of
map and reduce slots are arbitrary, as illustrated in Fig. 4. In
this case, it is difficult to give a closed-form formula for the
makespan and total completion time. Instead, we can com-
pute the makespan and total completion time using a simple
program we call MREstimator, which simulates the execu-
tion of a set of jobs under an ordering. Given a job ordering,
MREstimator executes jobs in the way described in Section
4.1 to derive the makespan and total completion time. We
use MREstimator to determine the empirical performance of
algorithmsMK_JR andMK_TCT_JR in Section 7. In addition
to this evaluation, we need an analytical formula for the
makespan in order to derive the approximation ratio of
MK_JR in Lemma 3. As giving an exact formula for general
workloads is difficult, we instead give the following upper
bound on the makespan of a certain job ordering.

Lemma 2. Given a job order f, there is a upper bound makespan

denoted by bCmax (i.e. Cmax � bCmax) for the generalized case as
follows:

bCmax ¼ max
1�k�n

Xk
i¼1

TMi þ max
1�i�k

fbtMi g
(

þ
Xn
i¼k

TRi þ max
1�i�n

fbtRi g
)
:

(5)

where

TMi ¼
PjJM

i
j

j¼1 tMi;j
jSMj ; TRi ¼

PjJR
i
j

j¼1 tMi;j
jSRj ; btMi ¼ max

1�j�jJM
i
j
btMi;j

and btRi ¼ max1�j�jJR
i
jbtRi;j.

The detailed proof of Lemma 2 is given in Appendix B of
the supplemental file, available online.

5 JOB ORDERING OPTIMIZATION FOR

MAPREDUCE WORKLOAD

This section attempts to address Problem 1 and Problem 2.
We first focus on makespan optimization. We describe the
MK_JR algorithm that produces the optimized job order
and also prove its approximation ratio. We also describe the
job order which gives the worst, i.e., longest makespan,
which is used for derivation of the upper bound makespan
of a workload. Next, we describe the MK_TCT_JR algo-
rithm, which optimizes both makespan and total comple-
tion time. Finally, Section 5.3 shows that the orderings
produced byMK_JR and MK_TCT_JR are stable, even when
MapReduce servers fail.

5.1 Makespan Optimization

Recall the simplified case described in the previous section,
where the number of map and reduce tasks of all the jobs
were divisible by the number of map and reduce slots. The
optimal job order for the simplified case can be obtained by
using Johnson’s Rule [22], which is an efficient Oðn lognÞ job
ordering algorithm for the minimum makespan Copt

max for
the two-stage flow shop with one processor per stage.
Johnson’s rule works as follows. Divide the jobs set J into
two disjoint sub-sets JA and JB. Set JA consists of those

jobs Ji for which TMi < TRi . Set JB contains the remaining
jobs (i.e. J n JA). Sequence jobs in JA in non-decreasing

order of TMi and those in JB in non-increasing order of

TRi . The optimal job order is obtained by appending the
sorted set JB to the end of sorted set JA. When the num-
ber of tasks is not divisible by the number of slots, the
makespan minimization problem becomes NP-hard.
Verma et al. [41] first noted it and proposed an algorithm
based on Johnson’s rule. as we re-format in the following
algorithm MK_JR. Its time complexity is Oðn lognÞ. To
well study the makespan result on it, in the rest part,
we give a theoretical analysis based on our previous
performance model in Section 4.2.

Fig. 4. MapReduce tasks execution flow for an example of four jobs
under the generalized case, where jSMj ¼ 8, jSRj ¼ 4. The job
submission order is J1 ! J2 ! J3 ! J4.

TANG ET AL.: DYNAMIC JOB ORDERING AND SLOT CONFIGURATIONS FOR MAPREDUCE WORKLOADS 9

Theorem 1. MK_JR is an (1þ d)-approximation algorithm for
makespan optimization in the generalized case, where

d ¼ max1�i�nfbtMi gþmax1�i�nfbtRi g
max1�k�nf

Pk

i¼1 T
M
i
þ
Pn

i¼k T
R
i
g
; ð0 � d � 1Þ.

To prove Theorem 1, we need to compute an upper bound
and a lower bound on themakespan of all job orderings.

Lemma 3. Let �f	 denote the job order produced by MK_JR. Let bf	
be the reversing order of �f	. Then there is a lower bound make-

span denoted by �C	max, as well as a upper bound makespan

denoted by bC	max, for all job orders F. Particularly, �C	max is

estimated with regard to �f	 by using Formula (3). bC	max is esti-

mated with regard to bf	 with the Formula:

bC	max ¼ max
1�k�n

Xk
i¼1

TMi þ max
1�i�n

btMi� �(

þ
Xn
i¼k

TRi þ max
1�i�n

btRi� �)
:

(6)

Algorithm 1. Greedy Algorithm Based on Johnson’s Rule
(MK_JR)

Input:
J : the MapReduce workload.
jSMj: the given number of map slots.
jSRj: the given number of reduce slots.

Output:
f : the optimized job submission order.

1: For each job Ji, we first estimate its map-phase processing

time TMi and reduce-phase processing time TRi by using the
following formula:

TMi ; TRi
� � ¼ PjJM

i
j

j¼1 tMi;j
jSMj ;

PjJR
i
j

j¼1 tRi;j
jSRj
 t

R
i

0@ 1A:

2. We order jobs in J based on the following principles:
a). Partition jobs set J into two disjoint sub-sets JA and JB:

JA ¼ fJijðJi 2 JÞ ^ ðTMi � TRi Þg;
JB ¼ fJijðJi 2 JÞ ^ ðTMi > TRi Þg:

b). Order all jobs in JA from left to right by non-decreas-

ing TMi . Order all jobs in JB from left to right by non-

increasing TRi .
c). Make an ordered jobs set J

0
by joining all jobs in JA

first and then JB in order, i.e., f1 : J
0 ¼ fðJAÞ; ðJBÞg.

To prove Lemma 3, we need to find a worst-case job
order for a batch of jobs in the simplified case of MapReduce
such that its makespan, denoted as Cwst

max, is maximized. We
find the following interesting relationship optimal job order
and the least optimal job order, for the simplified case
where the number of (map or reduce) tasks divides the
number of (map or reduce) slots.

Theorem 2. Suppose f is the optimal job order whose makespan is
Copt

max, based on Johnson’s Rule for the two-stage flow shop with
one processor per stage. The worst-case job order f	, whose
makespan is Cwst

max, can be obtained by simply reversing f.

The proof of Theorem 2 is given in Appendix C of the
supplemental file, available online. We now can prove
Lemma 3 based on Theorem 2 and Lemma 2. The detailed
proof of Lemma 3 is given in Appendix D of the supplemen-
tal file, available online.

Finally, the main Theorem 1 can be proved based on
Lemma 2 and Lemma 3, as given in Appendix E of the
supplemental file, available online.

Note that in general the execution time for a single map/
reduce task is much smaller compared with the total execu-
tion time (i.e., d is very small). It means that MK_JR has a
good approximation in the generalized case.

5.2 Bi-Criteria Optimization of Makespan
and Total Completion Time

Makespan and total completion time are two key performance
metrics. Generally,makespan refers to the maximum comple-
tion time for a batch of jobs. It considers the computation
time of jobs and is often used to measure the performance
and utilization efficiency of a system. In contrast, total com-
pletion time is the sum of completion time of all jobs. It is a
generalized makespan with queuing time (i.e., waiting
time) included. It can be used to measure the satisfaction to
the system from a single job’s perspective. So far, we focus
only on the optimization of makespan. Note that the total
completion time that can be poor subject to obtaining opti-
mal makespan, as illustrated in Fig. 1a. Therefore, there is a
need for bi-criteria optimization on both makespan and
total completion time. Intuitively, the makespan is affected
primarily by the positions of large-size jobs. In contrast, the
total completion time is mainly influenced by the positions
of small-size jobs. The algorithm shortest processing time
first (SPTF) is optimal for the total completion time on a sin-
gle machine where there is one task per job and no prece-
dence constrains [5]. However, MK_JR is not aware of
varying job sizes. Indeed, the job order produced by MK_JR
can have adverse effect on the total completion time if we
follow Johnson’s Rule strictly in some scenarios. For example,
there can be a job Ji whose processing time (e.g., TMi þ TRi)

is very small but TMi > TRi . We should schedule Ji early if
we want to minimize the total completion time, whereas
MK_JR might put it in the middle or later part of the order
list according to Johnson’s Rule. We therefore design a new
greedy algorithm MK_TCT_JR on top of MK_JR by combin-
ing SPTF and Johnson’s Rule. The time complexity of
MK_TCT_JR is Oðn lognÞ.

In MK_TCT_JR, we first divide job set J into two sub-

sets, J
0
A and J

0
B. Let J

0
A contain small-size jobs and J

0
B con-

tain large-size jobs. We schedule jobs in J
0
A first and then

J
0
B. Within each set, we use MK_JR to minimize its make-

span. We estimate the processing time for each job by add-
ing its map-phase running time and reduce-phase running
time, given the whole map/reduce slots of the Hadoop clus-
ter. Particularly, our classification of small-/large-size jobs
is based on the geometric mean of processing time of all
jobs, considering that unlike the arithmetic mean that favors
large-size jobs, geometric mean has a good unbiased prop-
erty for all jobs [9]. Note that moving small-size jobs for-
ward benefits the total completion time but will hurt the
makespan. Geometric mean is a tradeoff choice based on

10 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 9, NO. 1, JANUARY/FEBRUARY 2016

the reason that we want to improve the performance of total
completion time while not hurt the makespan seriously.

5.3 Analysis of Job Ordering Algorithms

In a MapReduce cluster, auto-scaling allows us to add or
remove some slave nodes from the cluster during the com-
putation dynamically. It has been supported by the current
implementation of Hadoop. Moreover, the failure of a
machine is unavoidable, which can cause a node removed
from the MapReduce cluster dynamically. Therefore, an
issue arises about its influence on the optimized job orders
produced byMK_JR andMK_TCT_JR.

For job ordering algorithms, we observe an interesting
finding regarding this issue as follows. Given a homoge-
neous environment where the Hadoop configurations of
slave nodes are identical, there is an important feature
for the optimized job orders produced by MK_JR and
MK_TCT_JR as follows:

Theorem 3. Given a homogeneous environment where the
Hadoop configurations of slave nodes are identical, the job
orders f1 produced by MK_JR and f2 produced by
MK_TCT_JR for a batch of jobs are independent of the number
of slave nodes, but rather depend on the number of map/reduce
slots configured within a slave node.

The proof of Theorem 3 is shown in Appendix F of the
supplemental file, available online. It gives us an important
implication that the optimized job orders produced by
MK_JR and MK_TCT_JR are stable (unchanged) when we
dynamically add or remove slave nodes to the Hadoop clus-
ter. Particularly, it’s worth mentioning that Theorem 3 does
not mean the optimal job orders are unchanged under varied
number of nodes.

Algorithm 2. Greedy algorithm based on Shortest Process-
ing Time First and Johnson’s Rule (MK_TCT_JR)

Input:
J : the MapReduce workload.
jSMj: the given number of map slots.
jSRj: the given number of reduce slots.

Output:
f : the optimized job submission order.

1. For each job Ji, we first compute its processing time Ti by
using the formula below:

Ti ¼
PjJM

i
j

j¼1 tMi;j
jSMj þ

PjJR
i
j

j¼1 tRi;j
jSRj :

2. Let T ¼ Q
1�i�n Ti

� �1
n. We divide jobs set J into two disjoint

sub-sets J
0
A and J

0
B:

J
0
A ¼ fJijðJi 2 JÞ ^ ðTi � T Þg; J

0
B ¼ fJijðJi 2 JÞ ^ ðTi > T Þg

3. Order all jobs in J
0
A and J

0
B usingMK_JR respectively.

4. Make a ordered jobs set J
0
by joining all jobs in the

ordered set J
0
A first and then the ordered set J

0
B , i.e.,

f2 : J
0 ¼ ffJ 0Ag; fJ

0
Bgg.

For example, Let us consider a Hadoop cluster with five
nodes, each configured with two map and two reduce slots.
Let J1 be defined as follows: Map stage duration is 9 and
requires 10 map slots. Reduce stage duration is 10 and
requires one reduce slot. Let J2 be defined as follows: Map
stage duration is 11 and requires eight map slots and reduce
stage duration is 15 and requires one reduce slot. In this
case, the optimal job scheduling order is J1 ! J2, with the
makespan of 35. The optimized job order produced by
MK_JR is also J1 ! J2.

Now, if one node fails, then there are only four nodes left
with eightmap and eight reduce tasks available in the cluster.
In this case, the optimized job order generated byMK_JR keeps
the same, i.e., J1 !J2, with themakespan of 44.However, the
optimal job scheduling is J2 ! J1 with themakespan of 39.

6 SLOT CONFIGURATION OPTIMIZATION

FOR MAPREDUCE WORKLOAD

In this section, we attempt to solve Problem 3 and Problem 4.
We first propose some map/reduce slot configuration algo-
rithms to optimize makespan. Then, the bi-criteria algorithm
MK_TCT_SF_JR is described to optimize the makespan and
total completion time together. Finally, we give a discussion
and analysis for slot configuration optimization algorithms.

6.1 Makespan Optimization

Given a MapReduce workload and the total number of
slots, an intuitive method is to search and compare all com-
binations of job submission orders and map/reduce slot
configurations exhaustively, as shown in Algorithm 3. It can
produce the optimal execution plan for makespan optimiza-
tion. However, its time complexity is Oðn!� jSj � nÞ, which
is exponential and thus unacceptable for large-size number
of jobs in practice.

Algorithm 3. Brute-force Search algorithm for the opti-
mal map/reduce slot configurations and job submission
orders. (EX_MK_SF_JR)

Input:
J : the MapReduce workload.
jSj: the total number of slots.

Output:
f: the optimized job submission order.
jSMj: the optimized number of map slots.
jSRj: the optimized number of reduce slots.
Mini Makespan: the minimized makespan.

1: Mini Makespan 1, f null.
2: for each f0 2 F do //F denotes the set of all job submis-

sion orders.
3: for jSM0 j from 1 to jSj � 1 do
4: jSR0 j jSj � jSM0 j.
5: Makespan MREstimator (J , f0, jSM0 j, jSR0 j).
6: ifMini Makespan > Makespan then
7: Mini Makespan Makespan.
8: ðjSMj; jSRjÞ ðjSM0 j; jSR0 jÞ.
9: f f0.
10: end if
11: end for
12: end for
13: return (f, jSMj, jSRj,Mini Makespan).

TANG ET AL.: DYNAMIC JOB ORDERING AND SLOT CONFIGURATIONS FOR MAPREDUCE WORKLOADS 11

It is worth noting in Algorithm EX_MK_SF_JR that, the
exhaustive search of all possible job submission orders
has time complexity of Oðn!Þ, which is a serious bottle-
neck on performance. To alleviate the performance bottle-
neck, instead, we can include efficient job ordering
optimization algorithms, such as the previously proposed
Algorithm MK_JR, as shown in Algorithm 4. It is an
OðnlognÞ ð1þ dÞ-approximation algorithm for makespan
under a given map/reduce slot configuration, where
d < 1 is the ratio of sum of the maximum map and
reduce task size, to the sum of all the task sizes.

Algorithm 4. Search algorithm for optimized slot config-
uration and job submission order. (MK_SF_JR)

Input:
J : the MapReduce workload.
jSj: the total number of slots.

Output:
f: the optimized job submission order.
jSMj: the optimized number of map slots.
jSRj: the optimized number of reduce slots.
Mini Makespan: the minimized makespan.

1: Mini Makespan 1, f null.
2: for jSM0 j from 1 to jSj � 1 do
3: jSR0 j jSj � jSM0 j.
4: f0 MK_JR(J , jSM0 j, jSR0 j).
5: Makespan MREstimator (J , f0, jSM0 j, jSR0 j).
6: ifMini Makespan > Makespan then
7: Mini Makespan Makespan.
8: ðjSMj; jSRjÞ ðjSM0 j; jSR0 jÞ.
9: f f0.
10: end if
11: end for
12: return (f, jSMj, jSRj,Mini Makespan).

Theorem 4. Algorithm MK_SF_JR is an ð1þ dÞ-approximation
algorithm for makespan optimization, where d ¼
max1�i�nfbtMi gþmax1�i�nfbtRi g

max1�k�nf
Pk

i¼1 T
M
i
þ
Pn

i¼k T
R
i
g
; ð0 � d � 1Þ, under the optimal

map/reduce slot configuration.

The proof of Theorem 4 is simple and we omit it here.

6.2 Bi-Criteria Optimization of Makespan
and Total Completion Time

Recall in Section 5.2, we have shown that the total comple-
tion time can be poor subject to obtaining the optimal make-
span. Likewise, there is also a need to optimize them
together when we do the slot configuration optimization.
As illustrated in Algorithm 5, it is a bi-criteria optimization
algorithm for makespan and total completion time with
regard to slot configuration optimization. It is a search
algorithm that incorporates the bi-criteria job ordering
algorithmMK_TCT_JR.

6.3 Discussion and Analysis of Slot
Configuration Algorithms

It is worth noting that, for the above slot allocation
algorithms (i.e., Algorithm EX_MK_SF_JR, Algorithm
MK_SF_JR, and Algorithm MK_TCT_SF_JR), we obtain the

optimized map/reduce slot configuration by enumerating
and validating all of their possible combinations from 1 to
jSj � 1. However, there might be an efficiency problem for
these search algorithms when the total number of slots jSj is
very large (e.g., jSj ¼ 1;000;000). To address such an
issue, interestingly, we find a very important ‘proportional
configuration’ property that can overcome the efficiency
problem for very large value of jSj as follows:

Algorithm 5. Search algorithm for optimized slot config-
uration and job submission order. (MK_TCT_SF_JR)

Input:
J : the MapReduce workload.
jSj: the total number of slots.

Output:
f: the optimized job submission order.
jSMj: the optimized number of map slots.
jSRj: the optimized number of reduce slots.
Mini Makespan: the optimized makespan.
Mini TCT : the optimized total completion time.

1: Mini Makespan 1, f null.
2: for jSM0 j from 1 to jSj � 1 do
3: jSR0 j jSj � jSM0 j.
4: f0 MK_TCT_JR(J , jSM0 j, jSR0 j).
5: ðMakespan; TCT Þ MREstimator (J , f0, jSM0 j, jSR0 j).
6: ifMini Makespan > Makespan then
7: Mini Makespan Makespan.
8: Mini TCT TCT .
9: ðjSMj; jSRjÞ ðjSM0 j; jSR0 jÞ.
10: f f0.
11: end if
12: end for
13: return (f, jSMj, jSRj,Mini Makespan,Mini TCT).

Proportional Configuration Property (PCP). Instead of
searching the space for all combinations of map/reduce
slots when the total number of slots jSj is very large, the

optimal result ðjSMj; jSRjÞ of its map/reduce slot config-
uration can be estimated based on the optimal result

ðjSM0 j; jSR0 jÞ of a small-size total number of slots

jS0jðjS0j < jSjÞ, with ðjSMj ¼ jSj
S
M
0

jS0j ; jSRj ¼ jSj
S
R
0

jS0j Þ. More-

over, the optimized job submission order for the case of
large number of slots jSj is the same as that of small-size
number of slots jS0j.

Given jSj ¼ 1;000;000, for example, it might be time-con-
suming to compute its optimized map/reduce slot configu-
ration using the above algorithms directly. Instead, we can
compute the optimized slot configuration directly with the
above algorithms at a small-scale (e.g., jS0j ¼ 1;000) with
the above algorithms first. Then in terms of PCP, we can
estimate the optimized map/reduce slot configuration
based on the result of jS0j. Particularly, PCP is based
Theorem 3 and Lemma 4 as follows:

Lemma 4. Let r be the ratio of map slots to reduce slots, i.e.,

r ¼ jSMjjSRj . The optimal configuration of r in the simplified case

for makespan Cmax and total completion time Ctct are all inde-

pendent of the total number of slots jSjðjSj ¼ jSMj þ jSRjÞ,
but rather depends on the MapReduce workload as well as its
job submission order f.

12 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 9, NO. 1, JANUARY/FEBRUARY 2016

The proof of Lemma 4 is given in Appendix G of the
supplemental material, available online. It gives us an
important insight that, the configuration ratio r of map
slots to reduce slots for makespan and total completion
time for a MapReduce workload under a given job sub-
mission order in the simplified case, are independent of
the total number of slots jSj. We then have that PCP holds
for Algorithm EX_MK_SF_JR. Because the optimal value
of r keeps unchanged for varied sizes of the total number
of slots, which instead depends on the optimal job order
for Algorithm EX_MK_SF_JR. Moreover, Theorem 3 also
indicates that, the optimized job orders produced by job
ordering algorithms MK_JR and MK_TCT_JR keep
unchanged when varying the total number of slots, given
that the configuration ratio r of map slots to reduce slots
is fixed. All of these indicate that the optimal configura-
tion ratio r and optimized job orders produced by
Algorithm MK_SF_JR and Algorithm MK_TCT_SF_JR for
makespan and total completion time are all independent
of the total number of slots jSj. In other words, optimal
configuration ratio r and optimized job orders remain the
same under varied values of jSj for the makespan and
total completion time in the simplified case. Hence we
have that PCP also holds for Algorithm MK_SF_JR and

Algorithm MK_TCT_SF_JR. In summary, we can con-
clude that PCP can be used to address the efficiency
problem in the case that jSj is very large for
Algorithms EX_MK_SF_JR, MK_SF_JR, MK_TCT_SF_JR.

7 EVALUATION

In this section, we evaluate our proposed algorithms using
two different kinds of workloads, i.e., testbed workload and
synthetic Facebook workload. Our evaluation methodology
is that, we first ran experiments in Amazon’s elastic com-
pute cloud (EC2) [1] with a testbed workload consisting of
multiple jobs, as listed in Tables 1 and 2. Our EC2 Hadoop
cluster consists of 20 nodes each belonging to an “Extra
Large” VM. We configure one node as master and name-
node, and the other 19 nodes as slaves and datanodes. Each
“Extra Large” instance has four virtual cores with 2 EC2
compute units each, 15 GB RAM and four 420 GB hard
disks [1]. Second, we consider a real workload case by gen-
erating a synthetic Facebook workload and develop a pro-
gram called MREstimator to compute the makespan and
total completion time. We perform experiments with the
Facebook workload in Section 7.2. Third, we make a sensi-
tive analysis for the impact of the inaccurate estimation of
task execution time on proposed algorithms in Appendix K
of the supplemental material, available online, showing that
the impact is minor and it is fine to take the average execu-
tion time for map/reduce tasks as input. Moreover, we eval-
uate the tightness of proposed lower bound makespan as
well as upper bound makespan with Facebook workloads
experimentally in Appendix H of the supplemental mate-
rial, available online. We show the accuracy and efficiency
of PCP proposed in Section 6.3 in Appendix I of the supple-
mental material, available online. Finally, we validate the
accuracy ofMREstimatorwith the testbed workload through
real experiments in Appendix J of the supplemental
material, available online.

7.1 Experiment Result with Testbed Workload

To well reflect practical workloads, we generate our testbed
workloads by choosing nine benchmarks arbitrarily fromPur-
dueMapReduce Benchmarks Suite1 and using their provided
datasets. The detailed benchmarks are described as follows.

TABLE 1
The Job Information for Purdue MapReduce Benchmarks

Benchmark
of

map tasks
of

reduce tasks
Execution time for map tasks (sec) Execution time for reduce tasks (sec)

Average Time (sec) Standard deviation Average Time (sec) Standard deviation

Wordcount 160 100 22 2.09 11 0.67
Sort 320 200 9 3.07 24 2.63
Grep 480 120 9 0.8 11 0.47
Inverted-Index 640 100 32 3.0 23 2.6
Classification 160 120 6 0.55 13 1.03
Histogram-Movies 160 150 6 0.54 13 1.3
Histogram-Ratings 160 100 18 1.18 15 1.76
Sequence-Count 320 150 38 4.5 21 2.4
Tera-Sort 160 100 10 2.7 26 3.8

TABLE 2
The Batch Jobs Information

Job ID Benchmark Job ID Benchmark

J1 WordCount J16 Sort
J2 Sort J17 HistogramRatings
J3 Grep J18 Grep
J4 InvertedIndex J19 InvertedIndex
J5 Classification J20 HistogramRatings
J6 HistogramMovies J21 Classification
J7 HistogramRatings J22 TeraSort
J8 SequenceCount J23 Grep
J9 TeraSort J24 InvertedIndex
J10 Classification J25 SequenceCount
J11 WordCount J26 Sort
J12 InvertedIndex J27 WordCount
J13 SequenceCount J28 HistogramRatings
J14 TeraSort J29 Classification
J15 HistogramMovies J30 SequenceCount

The detailed information for each job is given by Table 1. Our testbed experi-
ments consider three workloads: 10 jobs (J1 � J10), 20 jobs (J1 � J20), 30 jobs
(J1 � J30). 1. http://web.ics.purdue.edu/ fahmad/benchmarks.htm

TANG ET AL.: DYNAMIC JOB ORDERING AND SLOT CONFIGURATIONS FOR MAPREDUCE WORKLOADS 13

� WordCount. Computes the occurrence frequency of
each word in a document.

� Sort. Sorts the data in the input files in a dictionary
order.

� Grep. Finds the matches of a regex in the input files.
� InvertedIndex. Takes a list of documents as input and

generates word-to-document indexing.
� Classfication. Classifies the input into one of k pre-

determined clusters.
� HistogramMovies. Generates a histogram of input

data and is a generic tool used in many data
analyses.

� HistogramRatings. Generates a histogram of the rat-
ings as opposed to that of the movies based on their
average ratings.

� SequenceCount. Generates a count of all unique sets of
three consecutive words per document in the input
data.

� TeraSort. Sorts 100-byte <key,value> tuples on the
keys where key is a 10-byte field and the rest of the
bytes as value (payload).

We evaluate our algorithms with the average execution
time for map and reduce tasks. Particularly, we validate
that it is suitable for using average execution time in our
algorithms by showing that the impact of varying task exe-
cution time is minor in Appendix K of the supplemental
material experimentally, available online. Table 1 lists the
job information for our testbed workloads. It is a mix of
nine benchmarks together with different sizes of input data.
For each job Ji, we estimate its average task execution time
~tMi and ~tRi as shown in Table 1. Three different sizes of
testbed workloads are generated, i.e., 10 jobs (J1 � J10), 20
jobs (J1 � J20), 30 jobs (J1 � J30), with these 9 benchmarks
as described in Table 2.

7.1.1 Job Ordering Optimization Algorithms

Let’s begin with the evaluation of job ordering optimization
algorithms MK_JR and MK_TCT_JR first. Fig. 5 presents the
normalized performance results for testbed workloads
under three different job orders, i.e., an unoptimized job
order based on Theorem 2, the job order based on MK_JR
and the job order based on MK_TCT_JR, in a Hadoop clus-
ter, where we configure three map and one reduce slots per
slave node. Therefore, we have jSMj ¼ 57 and jSRj ¼ 19.
For makespan (or total completion time), we normalize it by
using makespan speedup (or total completion time speedup),

defined as the ratio of makespan (or total completion time)
from the unoptimized case to that from the designated job
order.

Therefore, the larger speedup indicates the better perfor-
mance it is for the designated job order. As shown in
Fig. 5a, the (optimized) job order based on MK_JR has a sig-
nificant makespan improvement in comparison with an
unoptimized job order. For example, there is about 24 per-
cent performance improvement of makespan for the testbed
workload with 20 jobs.

Moreover, there is a slight drop in makespan speedup for
MK_TCT_JR in comparison to MK_JR, sacrificing a bit per-
formance improvement in makespan for a good total com-
pletion time. It can be noted in Fig. 5b that MK_TCT_JR has
a good total completion time speedup. Note that the total com-
pletion time is dominated by the position of small jobs. In
our testbed workloads, since most jobs are large-size (rela-
tive to the number of map/reduce slots in our Hadoop clus-
ter), MK_JR does not show much negative impact in total
completion time. But for Facebook workloads which have
lots of small-size jobs, we will show in Section 7.2.1 (i.e.,
Fig. 7b) that there is a very seriously negative impact in total
completion time forMK_JR.

7.1.2 Slot Configuration Optimization Algorithms

In this section, let’s come to evaluate map/reduce slot con-
figuration optimization algorithms, namely, Algorithm
MK_SF_JR and Algorithm MK_TCT_SF_JR. Fig. 6 illustrates
experimental results for testbed workloads under various
slot configuration optimization algorithms. Particularly, we
take the Hadoop default configuration which sets each
slave node with two map slots and two reduce slots as the
unoptimized case. Then for 19 slave nodes, it holds

jSMj ¼ 38 and jSRj ¼ 38. Fig. 6a shows that, there is about
24 � 41 percent performance improvement from
Algorithm MK_SF_JR. For Algorithm MK_TCT_SF_JR, in
contrast, it is a bi-criteria optimization algorithm for make-
span and total completion time. Figs. 6a and 6b illustrate
that there is a significant performance improvement
(112 � 132) percent for total completion time, at the expense
of a small drop in makespan improvement in comparison to
Algorithm MK_SF_JR. Likewise, we will show for Facebook
workloads that there can also be a very seriously negative
impact in total completion time for Algorithm MK_SF_JR,
whereas Algorithm MK_TCT_SF_JR can overcome and
improve it significantly.

Fig. 5. Normalized experimental results for testbed workloads under different job submission orders in a Hadoop cluster with jSMj ¼ 57 and jSRj ¼ 19.

14 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 9, NO. 1, JANUARY/FEBRUARY 2016

7.2 Simulation Result with Synthetic
Facebook Workload

Table 3 gives a description of MapReduce jobs in produc-
tion at Facebook in October 2009, provided by Zaharia
et al. [43]. They are classified into nine bins based on job
sizes (numbers of maps). We make our synthetic work-
loads (SW for short) by picking representative sizes and
number of jobs from each bin based on the percentage of
the total number of jobs as well as the size of SW. For
example, Table 3 shows a detailed job distribution for
SW of 50 jobs (last two columns). For each job, we set the
number of reduce tasks to 5 and 25 percent of the num-
ber of map tasks, in consistent with [43]. We estimate the
running time of map and reduce tasks per job based on
the map and reduce durations in Fig. 1 of [44]. More
precisely, we follow the LogNormal distribution [4] with

LN(9.9511,1.6764) for map task duration and LN
(12.375,1.6262) for reduce task duration that fits best the
Facebook task duration, given and demonstrated by [40].
Moreover, two other synthetic workloads of 100 and 150
jobs are generated by doubling and tripling the number
of jobs in each bin (#Jobs in SW) in Table 3 accordingly.

7.2.1 Job Ordering Optimization Algorithms

To evaluate job ordering algorithms with respect to the
synthetic Facebook workload, we use MREstimator to
compute the makespan as well as total completion time.
Fig. 7 presents the simulation results for synthetic
Facebook workloads under the job ordering optimization
algorithms MK_JR and MK_TCT_JR. There are about
15 � 19 percent makespan improvement for MK_JR and
10 � 15 percent for MK_TCT_JR. It is worth noting that
the total completion time speedup in Fig. 7b for MK_JR is
very bad, since there is a large number of small-size jobs
that are put in the middle or at tail of the job list based
on the rule of MK_JR, resulting in a big contribution to
the total completion time. Compared with MK_JR, we
can improve the total completion time significantly
(about 5�) at the expense of a bit drop of makespan
improvement for MK_TCT_JR.

7.2.2 Slot Configuration Optimization Algorithms

Fig. 8 shows the simulation results for synthetic Facebook
workloads under varied map/reduce slot configuration
optimization algorithms. There are about 55 � 85 percent
for Algorithm MK_SF_JR, and 54 � 80 percent for
Algorithm MK_TCT_SF_JR, respectively. However, Fig. 8b

Fig. 6. Normalized experimental results for testbed workloads under different map/reduce slot configurations and job submission orders.

Fig. 7. Normalized simulation results for synthetic Facebook workloads under different job submission orders in a Hadoop cluster with jSMj ¼ 57

and jSRj ¼ 19.

TABLE 3
The Job Size Distribution at Facebook (from Table 2 in [43])
and Sizes and Number of Jobs Chosen for Each Bin in Our

Synthetic Workload (SW for Short) of 50 Jobs

Bin #Maps % at
Facebook

Size in SW #Jobs in SW

0 1-25 58% 1-25 29
1 25-50 9.6% 25, 30, 35, 40, 50 5
2 50-100 8.6% 60, 80, 90, 100 4
3 100-200 8.4% 120, 150, 180, 200 4
4 200-400 5.6% 250, 320, 400 3
5 400-800 4.3% 600, 800 2
6 800-1600 2.5% 1,200 1
7 1,600-3,200 1.3% 2,400 1
8 > 3,200 1.7% 4,800 1

TANG ET AL.: DYNAMIC JOB ORDERING AND SLOT CONFIGURATIONS FOR MAPREDUCE WORKLOADS 15

illustrates that the total completion time speedup for
Algorithm MK_SF_JR can be very poor when optimizing
the makespan only. In comparison, there is a significant per-
formance improvement (about 4�) for the total completion
time at the expense of a big drop of makespan improvement
for Algorithm MK_TCT_SF_JR, in comparison to
Algorithm MK_SF_JR, demonstrating the importance of
Algorithm MK_TCT_SF_JR that optimizes two metrics
simultaneously for those workloads which contains lots of
small jobs like Facebook workloads.

8 CONCLUSION

This paper focuses on the job ordering and map/reduce slot
configuration issues for MapReduce production workloads
that run periodically in a data warehouse, where the aver-
age execution time of map/reduce tasks for a MapReduce
job can be profiled from the history run, under the FIFO
scheduling in a Hadoop cluster. Two performance metrics
are considered, i.e., makespan and total completion time.
We first focus on the makespan. We propose job ordering
optimization algorithm and map/reduce slot configuration
optimization algorithm. We observe that the total comple-
tion time can be poor subject to getting the optimal make-
span, therefore, we further propose a new greedy job
ordering algorithm and a map/reduce slot configuration
algorithm to minimize the makespan and total completion
time together. The theoretical analysis is also given for our
proposed heuristic algorithms, including approximation
ratio, upper and lower bounds on makespan. Finally, we
conduct extensive experiments to validate the effectiveness
of our proposed algorithms and their theoretical results.

ACKNOWLEDGEMENTS

The authors thank the anonymous reviewers for their con-
structive comments. They acknowledge the support from
the Singapore National Research Foundation under its Envi-
ronmental & Water Technologies Strategic Research Pro-
gramme and administered by the Environment & Water
Industry Programme Office (EWI) of the PUB, under project
1002-IRIS-09.

REFERENCES

[1] Amazon ec2 [Online]. Available: http://aws.amazon.com/ec2,
2015.

[2] Apache hadoop [Online]. Available: http://hadoop.apache.org,
2015.

[3] Howmanymapsandreduces [Online]. Available: http://wiki.
apache.org/hadoop/HowManyMapsAndReduces, 2014.

[4] Lognormal distribution [Online]. Available: http://en.wikipedia.
org/wiki/Log-normal_distribution, 2015.

[5] The scheduling problem [Online]. Available: http://riot.ieor.
berkeley.edu/Applications/Scheduling/algorithms.html, 1999.

[6] S. R. Hejazi and S. Saghafian, “Flowshop-scheduling problems
with makespan criterion: A review,” Int. J. Production Res., vol. 43,
no. 14, pp. 2895–2929, 2005.

[7] S. Agarwal, S. Kandula, N. Bruno, M.-C. Wu, I. Stoica, and J.
Zhou, “Re-optimizing data-parallel computing,” in Proc. 9th USE-
NIX Conf. Netw. Syst. Design Implementation, 2012, p. 21.

[8] P. Agrawal, D. Kifer, and C. Olston, “Scheduling shared scans of
large data files,” Proc. VLDB Endow., vol. 1, no. 1, pp. 958–969,
Aug. 2008.

[9] W. Cirne and F. Berman, “When the herd is smart: Aggregate
behavior in the selection of job request,” IEEE Trans. Parallel Dis-
trib. Syst., vol. 14, no. 2, pp. 181–192, Feb. 2003.

[10] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, K. Elmeleegy,
and R. Sears, “Mapreduce online,” in Proc. 7th USENIX Conf.
Netw. Syst. Design Implementation, 2010, p. 21.

[11] J. Dean and S. Ghemawat, “Mapreduce: Simplified data process-
ing on large clusters,” in Proc. 6th Conf. Symp. Oper. Syst. Design
Implementation, 2004, vol. 6, p. 10.

[12] J. Dittrich, J.-A.-Quian�e Ruiz, A. Jindal, Y. Kargin, V. Setty, and J.
Schad, “adoop++: Making a yellow elephant run like a cheetah
(without it even noticing),” Proc. VLDB Endowment, vol. 3,
nos. 1–2, pp. 515–529, Sep. 2010.

[13] P.-F. Dutot, L. Eyraud, G. Mouni�e, and D. Trystram, “Bi-criteria
algorithm for scheduling jobs on cluster platforms,” in Proc. 16th
Annu. ACM Symp. Parallelism Algorithms Archit., 2004, pp. 125–132.

[14] P.-F. Dutot, G.Mouni�e, and D. Trystram,“Scheduling parallel
tasks: Approximation algorithms,” in Handbo ok of Scheduling:
Algorithms, Models, and Performance Analysis, J. T. Leung, Ed. Boca
Raton, FL, USA: CRC Press, ch. 26, pp. 26-1–26-24.

[15] A. Floratou, J. M. Patel, E. J. Shekita, and S. Tata, “Column-
oriented storage techniques for mapreduce,” Proc. VLDB Endow-
ment, vol. 4, no. 7, pp. 419–429, Apr. 2011.

[16] J. Gupta, A. Hariri, and C. Potts, “Scheduling a two-stage hybrid
flow shop with parallel machines at the first stage,” Ann. Oper.
Res., vol. 69, pp. 171–191, 1997.

[17] J. N. D. Gupta, “Two-stage, hybrid flowshop scheduling prob-
lem,” J. Oper. Res. Soc., vol. 39, no. 4, pp. 359–364, 1988.

[18] H. Herodotou and S. Babu, “Profiling, what-if analysis, and cost-
based optimization of mapreduce programs,” Proc. VLDB Endow-
ment, vol. 4, no. 11, pp. 1111–1122, 2011.

[19] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F. B. Cetin,
and S. Babu, “Starfish: A self-tuning system for big data analy-
tics,” in Proc. 5th Conf. Innovative Data Syst. Res., 2011, pp. 261–272.

[20] S. Ibrahim, H. Jin, L. Lu, B. He, and S. Wu, “Adaptive disk I/O
scheduling for mapreduce in virtualized environment,” in Proc.
Int. Conf. Parallel Process., Sep. 2011, pp. 335–344.

[21] D. Jiang, B. C. Ooi, L. Shi, and S. Wu, “The performance of mapre-
duce: An in-depth study,” Proc. VLDB Endowment, vol. 3, nos. 1–2,
pp. 472–483, Sep. 2010.

[22] S. M. Johnson, “Optimal two- and three-stage production sched-
ules with setup times included,” Naval Res. Logistics Quart., vol. 1,
no. 1, pp. 61–68, 1954.

Fig. 8. Normalized simulation results for synthetic Facebook workloads under different map/reduce slot configurations and job submission orders.

16 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 9, NO. 1, JANUARY/FEBRUARY 2016

[23] H. Karloff, S. Suri, and S. Vassilvitskii, “A model of computation
for mapreduce,” in Proc. 21st Annu. ACM-SIAM Symp. Discrete
Algorithms, 2010, pp. 938–948.

[24] G. J. Kyparisis and C. Koulamas, “A note on makespan minimiza-
tion in two-stage flexible flow shops with uniform machines,”
Eur. J. Oper. Res., vol. 175, no. 2, pp. 1321–1327, 2006.

[25] J. Leung, L. Kelly, and J. H. Anderson, Handbook of Scheduling:
Algorithms, Models, and Performance Analysis. Boca Raton, FL, USA:
CRC Press, 2004.

[26] B. Moseley, A. Dasgupta, R. Kumar, and T.Sarl�os, “On scheduling
in map-reduce and flow-shops,” in Proc. 23rd Annu. ACM Symp.
Parallelism Algorithms Archit., 2011, pp. 289–298.

[27] T. Nykiel, M. Potamias, C. Mishra, G. Kollios, and N. Koudas,
“Mrshare: Sharing across multiple queries in mapreduce,” Proc.
VLDB Endowment, vol. 3, nos. 1/2, pp. 494–505, Sep. 2010.

[28] C. O�guz, and M. F. Ercan, “Scheduling multiprocessor tasks in a
two-stage flow-shop environment,” Comput. Ind. Eng., vol. 33,
nos. 3/4, pp. 269–272, Dec. 1997.

[29] C. Ouz, M. F. Ercan, T. E. Cheng, and Y. Fung, “Heuristic algo-
rithms for multiprocessor task scheduling in a two-stage hybrid
flow-shop,” Eur. J. Oper. Res., vol. 149, no. 2, pp. 390–403, 2003.

[30] J. Polo, Y. Becerra, D. Carrera, M. Steinder, I. Whalley, J. Torres,
and E. Ayguade, “Deadline-based mapreduce workload man-
agement,” IEEE Trans. Netw. Service Manage., vol. 10, no. 2,
pp. 231–244, Jun. 2013.

[31] C. Rajendran, “Two-stage flowshop scheduling problem with
bicriteria,” J. Oper. Res. Soc., vol. 43, no. 9, pp. 871–884, 1992.

[32] S. Rao, R. Ramakrishnan, A. Silberstein, M. Ovsiannikov, and D.
Reeves, “Sailfish: A framework for large scale data processing,” in
Proc. 3rd ACM Symp. Cloud Comput., 2012, pp. 4:1–4:14.

[33] A. Rasmussen, V. T. Lam, M. Conley, G. Porter, R. Kapoor, and A.
Vahdat, “Themis: An I/O-efficient mapreduce,” in Proc. 3rd ACM
Symp. Cloud Comput., 2012, pp. 13:1–13:14.

[34] P. Sanders and J. Speck, “Efficient parallel scheduling of malleable
tasks,” in Proc. IEEE Int. Parallel Distrib. Process. Symp., 2011,
pp. 1156–1166.

[35] S. Tang, B.-S. Lee, and B. He, “Dynamic slot allocation technique
for mapreduce clusters,” in Proc. IEEE Int. Conf. Cluster Comput.,
Sep. 2013, pp. 1–8.

[36] S. Tang, B.-S. Lee, and B. He,, “Mrorder: Flexible job ordering opti-
mization for online mapreduce workloads,” in Proc. 19th Int. Conf.
Parallel Process., 2013, pp. 291–304.

[37] S. Tang, B.-S. Lee, and B. He, “Dynamicmr: A dynamic slot alloca-
tion optimization framework for mapreduce clusters,” IEEE Trans.
Cloud Comput., vol. 2, no. 3, pp. 333–347, Jul. 2014.

[38] S. Tang, B.-S. Lee, and B. He, “Towards economic fairness for big
data processing in pay-as-you-go cloud computing,” in Proc. IEEE
6th Int. Conf. Cloud Comput. Technol. Sci., Dec. 2014, pp. 638–643.

[39] S. Tang, B.-S. Lee, B. He, and H. Liu, “Long-term resource fairness:
Towards economic fairness on pay-as-you-use computing sys-
tems,” in Proc. 28th ACM Int. Conf. Supercomput., 2014,
pp. 251–260.

[40] A. Verma, L. Cherkasova, and R. H. Campbell, “Play it again,
simmr!” in Proc. IEEE Int. Conf. Cluster Comput., 2011, pp. 253–261.

[41] A. Verma, L. Cherkasova, and R. H. Campbell, “Two sides of a
coin: Optimizing the schedule of mapreduce jobs to minimize
their makespan and improve cluster performance,” in Proc. IEEE
20th Int. Symp. Model., Anal. Simul. Comput. Telecommun. Syst.,
2012, pp. 11–18.

[42] J. Wolf, D. Rajan, K. Hildrum, R. Khandekar, V. Kumar, S. Parekh,
K.-L. Wu, and A. balmin, “Flex: A slot allocation scheduling opti-
mizer for mapreduce workloads,” in Proc. ACM/IFIP/USENIX
11th Int. Conf. Middleware, 2010, pp. 1–20.

[43] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker,
and I. Stoica, “Job scheduling for multi-user mapreduce clusters,”
EECS Dept., Univ. California, Berkeley, CA, USA, Tech. Rep.
UCB/EECS-2009-55, Apr. 2009.

[44] M. Zaharia, D. Borthakur, J. S. Sarma, K. Elmeleegy, S. Shenker,
and I. Stoica, “Delay scheduling: A simple technique for achieving
locality and fairness in cluster scheduling,” in Proc. 5th Eur. Conf.
Comput. Syst., 2010, pp. 265–278.

Shanjiang Tang received the PhD degree from
School of Computer Engineering, Nanyang Tech-
nological University, Singapore in 2015, and the
MS and BS degrees from Tianjin University
(TJU), China, in Jan 2011 and July 2008, respec-
tively. He is currently an assistant professor in
School of Computer Science and Technology,
Tianjin University, China. In 2006, he won the
‘Golden Prize’ in the 31th ACM/ICPC Asia Tour-
nament of National College Students. He was
awarded the ‘Talents Science Award’ from Tianjin

University in 2007. He was with the IBM China Research Lab (CRL) in
the area of performance analysis of multi-core oriented Java multi-
threaded program as an intern for four months in 2009. His research
interests include parallel computing, cloud computing, big data analysis,
and computational biology.

Bu-Sung Lee received the BSc (Honors) and
PhD degrees from the Electrical and Electronics
Department, Loughborough University of Tech-
nology, United Kingdom, in 1982 and 1987,
respectively. He is currently an associate
professor with the School of Computer Engi-
neering, Nanyang Technological University,
Singapore. He was elected the inaugural presi-
dent of Singapore Research and Education
Networks (SingAREN), 2003-2007, and has
been an active member of several national

standards organizations, such as Board member of Asia Pacific
Advanced Networks (APAN) Ltd. His research interests include com-
puter networks protocols, distributed computing, network manage-
ment, and Grid/Cloud computing.

Bingsheng He received the bachelor’s degree in
computer science from Shanghai Jiao Tong Uni-
versity (1999-2003), and the PhD degree in com-
puter science from the Hong Kong University of
Science and Technology (2003-2008). He is an
assistant professor in the Division of Networks
and Distributed Systems, School of Computer
Engineering, Nanyang Technological University,
Singapore. His research interests are high perfor-
mance computing, distributed and parallel sys-
tems, and database systems.

TANG ET AL.: DYNAMIC JOB ORDERING AND SLOT CONFIGURATIONS FOR MAPREDUCE WORKLOADS 17

