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Abstract—MapReduce is a popular computing paradigm for large-scale data processing in cloud computing. However, the slot-based
MapReduce system (e.g., Hadoop MRv1) can suffer from poor performance due to its unoptimized resource allocation. To address it,
this paper identifies and optimizes the resource allocation from three key aspects. First, due to the pre-configuration of distinct map slots
and reduce slots which are not fungible, slots can be severely under-utilized. Because map slots might be fully utilized while reduce slots
are empty, and vice-versa. We propose an alternative technique called Dynamic Hadoop Slot Allocation by keeping the slot-based
model. It relaxes the slot allocation constraint to allow slots to be reallocated to either map or reduce tasks depending on their needs.
Second, the speculative execution can tackle the straggler problem, which has shown to improve the performance for a single job but at
the expense of the cluster efficiency. In view of this, we propose Speculative Execution Performance Balancing to balance the
performance tradeoff between a single job and a batch of jobs. Third, delay scheduling has shown to improve the data locality but at the
cost of fairness. Alternatively, we propose a technique called Slot PreScheduling that can improve the data locality but with no impact on
fairness. Finally, by combining these techniques together, we form a step-by-step slot allocation system calledDynamicMR that can
improve the performance of MapReduce workloads substantially. The experimental results show that our DynamicMR can improve the
performance of HadoopMRv1 significantly while maintaining the fairness, by up to 46 ! 115 percent for single jobs and 49! 112 percent
for multiple jobs. Moreover, we make a comparison with YARN experimentally, showing that DynamicMR outperforms YARN by about
2 ! 9percent for multiple jobs due to its ratio control mechanism of running map/reduce tasks.

Index Terms—MapReduce, Hadoop fair scheduler, slot preScheduling, delay scheduler, dynamicMR, slot allocation
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1 INTRODUCTION

IN recent years, MapReduce has become a popular high
performance computing paradigm for large-scale data

processing in clusters and data centers [6]. Hadoop [10], an
open source implementation of MapReduce, has been
deployed in large clusters containing thousands of machines
by companies such as Yahoo! and Facebook to support batch
processing for large jobs submitted from multiple users (i.e.,
MapReduce workloads).

Despite many studies in optimizing MapReduce/
Hadoop, there are several key challenges for the utilization
and performance improvement of a Hadoop cluster.

First, the compute resources (e.g., CPU cores) are
abstracted into map and reduce slots, which are basic com-
pute units and statically configured by administrator in
advance. A MapReduce job execution has two unique fea-
tures: 1) the slot allocation constraint assumption that map
slots can only be allocated to map tasks and reduce slots
can only be allocated to reduce tasks, and 2) the general
execution constraint that map tasks are executed before
reduce tasks. Due to these features, we have two observa-
tions: (I). there are significantly different performance and

system utilization for a MapReduce workload under differ-
ent slot configurations, and (II) even under the optimal
map/reduce slot configuration, there can be many idle
reduce (or map) slots, which adversely affects the system
utilization and performance.

Second, due to unavoidable runtime contention for pro-
cessor, memory, network bandwidth and other resources,
there can be straggled map or reduce tasks, causing signifi-
cant delay of the whole job [2].

Third, data locality maximization is very important for
slot utilization efficiency and performance improvement of
MapReduce workloads. However, there is often a conflict
between fairness and data locality optimization in a shared
Hadoop cluster among multiple users [37].

To address the above-mentioned challenges, we pres-
ent DynamicMR, a dynamic slot allocation framework to
improve the performance of a MapReduce cluster via
optimizing the slot utilization. Specifically, DynamicMR
focuses on Hadoop Fair Scheduler (HFS). This is because
the cluster utilization and performance for MapReduce
jobs under HFS are much poorer (or more serious) than
that under FIFO scheduler. But it is worth mentioning
that our DynamicMR can be used for FIFO scheduler as
well. DynamicMR consists of three optimization techni-
ques, namely, Dynamic Hadoop Slot Allocation (DHSA),
Speculative Execution Performance Balancing (SEPB) and
Slot PreScheduling from different key aspects:

Dynamic Hadoop slot allocation. In contrast to YARN
which proposes a new resource model of ‘container’ that
both map and reduce tasks can run on, DHSA keeps the
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slot-based resource model. The idea for DHSA is to break
the assumption of slot allocation constraint to allow that:

(I) Slots are generic and can be used by either map or
reduce tasks, although there is a pre-configuration for
the number of map and reduce slots. In other words,
when there are insufficient map slots, the map
tasks will use up all the map slots and then borrow
unused reduce slots. Similarly, reduce tasks can
use unallocated map slots if the number of reduce
tasks is greater than the number of reduce slots.

(II) Map tasks will prefer to use map slots and likewise
reduce tasks prefer to use reduce slots. The benefit is
that, the pre-configuration of map and reduce slots
per slave node can still work to control the ratio of
running map and reduce tasks during runtime,
better than YARN which has no control mecha-
nism for the ratio of running map and reduce
tasks. The reason is that, without control, it easily
occurs that there are too many reduce tasks run-
ning for data shuffling, causing the network to be
a bottleneck seriously (see Section 3.6).

Speculative execution performance balancing. Speculative
execution is an important technique to address the prob-
lem of slow-running task’s influence on a single job’s exe-
cution time by running a backup task on another
machine. However, it comes at the cost of cluster effi-
ciency for the whole jobs due to its resource competition
with other running tasks. We propose a dynamic slot allo-
cation technique called Speculative Execution Performance
Balancing for the speculative task. It can balance the per-
formance tradeoff between a single job’s execution time
and a batch of jobs’ execution time by determining
dynamically when it is time to schedule and allocate slots
for speculative tasks.

Slot PreScheduling. Delay scheduling has been shown to
be an effective approach for the data locality improvement
in MapReduce [37]. It achieves better data locality by delay-
ing slot assignments in jobs where there are no currently
local tasks available. However, it is at the cost of fairness. In
view of this, we propose an alternative technique named
Slot PreScheduling that can improve the data locality but has
no negative impact on fairness. It is achieved at the expense
of load balance between slave nodes. By observing that
there are often some idle slots which cannot be allocated
due to the load balancing constrain during runtime, we can
pre-allocate those slots of the node to jobs to maximize the
data locality.

We have integrated DynamicMR into Hadoop (partic-
ularly Apache Hadoop 1.2.1). We evaluate it using
testbed workloads. Experimental results show that, the
original Hadoop is very sensitive to the slot configura-
tion, whereas our DynamicMR does not. DynamicMR
can improve the utilization and performance of MapRe-
duce workloads significantly, with 46 ! 115 percent per-
formance improvement for single jobs and 49! 112
percent for multiple jobs. Moreover, we make a compari-
son with YARN. The experiments show that, Dynam-
icMR consistently outperforms YARN for batch jobs by
about 2 ! 9percent.

The main contributions of this paper are summarized as
follows:

" Propose a Dynamic Hadoop Slot Allocation tech-
nique to maximize the slot utilization for Hadoop.

" Propose a Speculative Execution Performance Bal-
ancing technique to balance the performance trade-
off between a single job and a batch of jobs.

" Propose a PreScheduling technique to improve the
data locality at the expense of load balance across
nodes, which has no negative influence on fairness.

" Develop a system called DynamicMR by combining
these three techniques in Hadoop MRv1.

" Perform extensive experiments to validate the effec-
tiveness of DynamicMR and its three step-by-step
techniques.

Organization. The remainder of this paper is organized as
follows. Section 2 introduces our DynamicMR framework,
starting with an overview and then the details on the three
techniques, namely, DHSA, SEPB, Slot PreScheduling. Sec-
tion 3 evaluates DynamicMR experimentally. Section 4
reviews related work. Finally, Section 5 concludes the paper
and gives the future work.

2 OVERVIEW OF DYNAMICMR

We improve the performance of a MapReduce cluster via
optimizing the slot utilization primarily from two perspec-
tives. First, we can classify the slots into two types, namely,
busy slots (i.e., with running tasks) and idle slots (i.e., no run-
ning tasks). Given the total number of map and reduce slots
configured by users, one optimization approach (i.e.,
macro-level optimization) is to improve the slot utilization
by maximizing the number of busy slots and reducing the
number of idle slots (Section 2.1). Second, it is worth noting
that not every busy slot can be efficiently utilized. Thus, our
optimization approach (i.e., micro-level optimization) is to
improve the utilization efficiency of busy slots after the
macro-level optimization (Sections 2.2 and 2.3). Particularly,
we identify two main affecting factors: (1). Speculative tasks
(detailed in Section 2.2); (2). Data locality (detailed in Sec-
tion 2.3). Based on these, we propose DynamicMR, a
dynamic utilization optimization framework for MapRe-
duce, to improve the performance of a shared Hadoop clus-
ter under a fair scheduling between users.

Fig. 1 gives an overview of DynamicMR. It consists of
three slot allocation techniques, i.e., Dynamic Hadoop Slot
Allocation (DHSA), Speculative Execution Performance Balanc-
ing (SEPB), and Slot PreScheduling.

Fig. 1. Overview of DynamicMR framework.
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Each technique considers the performance improvement
from different aspects. DHSA attempts to maximize slot uti-
lization while maintaining the fairness, when there are
pending tasks (e.g., map tasks or reduce tasks). SEPB identi-
fies the slot resource in-efficiency problem for a Hadoop
cluster, caused by speculative tasks. It works on top of the
Hadoop speculative scheduler to balance the performance
tradeoff between a single job and a batch of jobs. Slot Pre-
Scheduling improves the slot utilization efficiency and per-
formance by improving the data locality for map tasks
while keeping the fairness. It pre-schedules tasks when
there are pending map tasks with data on that node, but no
allowable idle map slots (see Definition 1 in Section 2.3.1).

By incorporating the three techniques, it enables Dynam-
icMR to optimize the utilization and performance of a
Hadoop cluster substantially with the following step-by-
step processes:

#1 Whenever there is an idle slot available, DynamicMR
will first attempt to improve the slot utilization with
DHSA. It decides dynamically whether to allocate it
or not, subject to the numerous constrains, e.g., fair-
ness, load balance.

#2 If the allocation is true, DynamicMR will further
optimize the performance by improving the effi-
ciency of slot utilization with SEPB. Since the specu-
lative execution can improve the performance of a
single job but at the expense of cluster efficiency,
SEPB acts as an efficiency balancer between a single
job and a batch of jobs. It works on top of Hadoop
speculative scheduler to determine dynamically
whether allocating the idle slot to the pending task
or speculative task.

#3 When to allocate the idle slots for pending/specula-
tive map tasks, DynamicMR will be able to further
improve the slot utilization efficiency from the data
locality optimization aspect with Slot PreScheduling.

Moreover, we want to mention that the three techniques
are at different levels, i.e., they can be applied together or
individually. The detailed description for each technique is
given as follows.

2.1 Dynamic Hadoop Slot Allocation (DHSA)
Current design of MapReduce suffers from a under-utiliza-
tion of the respective slots as the number of map and reduce
tasks varies over time, resulting in occasions where the
number of slots allocated for map/reduce is smaller than
the number of map/reduce tasks. Our dynamic slot alloca-
tion policy is based on the observation that at different
period of time there may be idle map (or reduce) slots, as
the job proceeds from map phase to reduce phase. We can
use the unused map slots for those overloaded reduce tasks
to improve the performance of the MapReduce workload,
and vice versa. For example, at the beginning of MapReduce
workload computation, there will be only computing map
tasks and no computing reduce tasks, i.e., all the computa-
tion workload lies in the map-side. In that case, we can
make use of idle reduce slots for running map tasks. That is,
we break the implicit assumption for current MapReduce
framework that the map tasks can only run on map slots
and reduce tasks can only run on reduce slots. Instead, we

modify it as follows: both map and reduce tasks can be run on
either map or reduce slots.

However, there are two challenges that should be consid-
ered as follows:

(C1) Fairness is an important metric in Hadoop Fair
Scheduler. We say it is fair when all pools have been
allocated with the same amount of resources. In
HFS, task slots are first allocated across the pools,
and then the slots are allocated to the jobs within the
pool [36]. Moreover, a MapReduce job computation
consists of two parts: map-phase task computation
and reduce-phase task computation. One question is
about how to define and ensure fairness under the
dynamic slot allocation policy.

(C2) The resource requirements between the map slot and
reduce slot are generally different. This is because the
map task and reduce task often exhibit completely
different execution patterns. Reduce task tends to
consume much more resources such as memory and
network bandwidth. Simply allowing reduce tasks to
use map slots requires configuring each map slot to
take more resources, which will consequently reduce
the effective number of slots on each node, causing
resource under-utilized during runtime. Thus, a care-
ful design of dynamic allocation policy is important
and needed to be aware of such difference.

With respect to (C1), we propose a Dynamic Hadoop Slot
Allocation (DHSA). It contains two alternatives, namely,
pool-independent DHSA (PI-DHSA) and pool-dependent
DHSA (PD-DHSA), each of which considers the fairness
from different aspects.

2.1.1 Pool-Independent (PI-DHSA)

HFS adopts max-min fairness [17] to allocate slots across
pools with minimum guarantees at the map-phase and
reduce-phase, respectively. Pool-Independent DHSA extends
the HFS by allocating slots from the cluster global level,
independent of pools. It considers fair when the numbers of
typed slots allocated across typed-pools within each phase
(i.e., map-phase, reduce-phase) are the same.

As shown in Fig. 2, it presents the slot allocation flow for
PI-DHSA. It is a typed phase-based dynamic slot allocation
policy. The allocation process consists of two parts, as
shown in Fig. 2:

(1) Intra-phase dynamic slot allocation. Each pool is split
into two sub-pools, i.e., map-phase pool and reduce-phase
pool. At each phase, each pool will receive its share of slots.
An overloaded pool, whose slot demand exceeds its share,

Fig. 2. Example of the fairness-based slot allocation flow for PI-DHSA.
The black arrow line and dash line show movement of slots between the
map-phase pools and the reduce-phase pools.
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can dynamically borrow unused slots from other pools of
the same phase. For example, an overloaded map-phase
Pool 1 can borrow map slots from map-phase Pools 2 or 3
when Pools 2 or 3 is under-utilized, and vice versa, based
on max-min fair policy.

(2). Inter-phase dynamic slot allocation. After the intra-
phase dynamic slot allocation for both the map-phase and
reduce-phase, we can now perform dynamic slot allocation
across typed phases. That is, when there are some unused
reduce slots at the reduce phase, and the number of map
slots at the map phase is insufficient for map tasks, it will
borrow some idle reduce slots for map tasks, to maximize
the cluster utilization, and vice versa.

Overall, there are four possible scenarios. LetNM andNR

be the total number of map tasks and reduce tasks respec-
tively, while SM and SR be the total number of map and
reduce slots configured by users respectively. The four sce-
narios are below:

Case 1. When NM $SM and NR $SR, the map tasks are
run on map slots and reduce tasks are run on reduce slots,
i.e., no borrowing of map and reduce slots.

Case 2. When NM > SM and NR < SR, we satisfy reduce
tasks for reduce slots first and then use those idle reduce
slots for running map tasks.

Case 3. When NM < SM and NR > SR, we can schedule
those unused map slots for running reduce tasks.

Case 4. When NM > SM and NR > SR, the system should
be in completely busy state, and similar to (1), there will be
no movement of map and reduce slots.

Thereby, the whole dynamic slot allocation flow is
that, whenever a heartbeat is received from a compute
node, we first compute the total demand for map slots
and reduce slots for the current MapReduce workload.
Next we determine dynamically the need to borrow map
(or reduce) slots for reduce (or map) tasks based on the
demand for map and reduce slots, in terms of the above
four scenarios. The specific number of map (or reduce)
slots to be borrowed is determined based on the number
of unused reduce (or map) slots and its map (or reduce)
slots required.

In practice, instead of borrowing all unused map (or
reduce) slots, we may often want to reserve some unused
slots at each phase to minimize the possible starvation of
slots for incoming MapReduce jobs. A question would be
how to control the number of reserved slots dynamically.

To achieve the reservation functionality, we provide two
variables percentageOfBorrowedMapSlots and percentageOf-
BorrowedReduceSlots, defined as the percentage of unused
map and reduce slots that can be borrowed, respectively.
We can thereby limit the number of unused map and reduce
slots that should be allocated for map and reduce tasks at
each heartbeat of that tasktracker.

With these two parameters, users can flexibly balance
the tradeoff between the performance optimization and
the starvation minimization. If users are more prone to
performance improvement, they can configure these
parameters with large values, as discussed in Appendix F
of the supplemental material, which can be found on the
Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TCC.2014.2329299. On
the other hand, if users prefer to avoid starvation, they

can set these parameters with small values to reserve
some unused slots for incoming tasks, instead of using
them immediately.

Moreover, Challenge (C2) reminds us that we cannot
treat map and reduce slots the same, and simply borrow
unused slots for map and reduce tasks. Instead, we should
be aware of varied resource sizes of map and reduce slots.
A slot weight-based approach is thus proposed to address
the problem. We assign the map and reduce slots with dif-
ferent weight values, in terms of the resource configura-
tions. Based on the weights, we can dynamically determine
how much map and reduce tasks should be spawn during
runtime. For example, consider a tasktracker with the map/
reduce slot configuration of 8/4. According to varied
resource requirements, let’s assume that the weights for
map and reduce slots are 1 and 2, respectively. Thus, the
total resource weight is 8%1þ 4%2 ¼16. With slot
weight-based approach for dynamic borrowing, the maxi-
mum number of running map tasks can be 16 in that com-
pute node, whereas the number of running reduce tasks is
at most 8=2þ 4 ¼8 rather than 16.

Finally, the details of DHSA are shown in Algorithm 1 of
the supplemental material, available online.

2.1.2 Pool-Dependent (PD-DHSA)

In contrast to PI-DHSA that considers the fairness in its
dynamic slot allocation independent of pools, Pool-Depen-
dent DHSA considers another fairness for the dynamic slot
allocation across pools, as shown in Fig. 3. It assumes that
each pool, consisting of two parts: map-phase pool and
reduce-phase pool, is selfish. That is, it always tries to sat-
isfy its own shared map and reduce slots for its own needs
at the map-phase and reduce-phase as much as possible
before lending them to other pools. It considers fair when
total numbers of map and reduce slots allocated across
pools are the same with each other. PD-DHSA will be done
with the following two processes:

(1). Intra-pool dynamic slot allocation. First, each typed-
phase pool will receive its share of typed-slots based on
max-min fairness at each phase. There are four possible
relationships for each pool regarding its demand (denoted
as mapSlotsDemand, reduceSlotsDemand) and its share
(marked as mapShare, reduceShare) between two phases:

Case (a). mapSlotsDemand < mapShare, and reduceSlotsDe-
mand > reduceShare. We can borrow some unused map slots
for its overloaded reduce tasks from its reduce-phase pool
first before yielding to other pools.

Case (b). mapSlotsDemand > mapShare, and reduceSlotsDe-
mand < reduceShare. In contrast, we can satisfy some unused

Fig. 3. Example of the fairness-based slot allocation flow for PD-DHSA.
The black arrow line and dash line show the borrow flow for slots
across pools.
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reduce slots for its map tasks from its map-phase pool first
before giving to other pools.

Case (c). mapSlotsDemand $mapShare, and reduceSlots-
Demand $ reduceShare. Both map slots and reduce slots
are enough for its own use. It can lend some unused
map slots and reduce slots to other pools.

Case (d). mapSlotsDemand > mapShare, and reduceSlotsDe-
mand > reduceShare. Both map slots and reduce slots for a
pool are insufficient. It might need to borrow some unused
map or reduce slots from other pools through inter-Pool
dynamic slot allocation below.

(2). Inter-pool dynamic slot allocation. It is obvious that, (i).
for a pool, when its mapSlotsDemand + reduceSlotsDemand $
mapShare + reduceShare. The slots are enough for the pool
and there is no need to borrow some map or reduce slots
from other pools. It is possible for the cases: (a), (b), and (c)
mentioned above. (ii). On the contrary, when mapSlotsDe-
mand + reduceSlotsDemand > mapShare + reduceShare, the
slots are not enough even after Intra-pool dynamic slot alloca-
tion. It will need to borrow some unused map and reduce
slots from other pools, i.e., Inter-pool dynamic slot allocation,
to maximize its own need if possible. It can occurs for pools
in the following cases: (a), (b), and (d) above.

The overall slot allocation process for PD-DHSA is as
follows:

When a tasktracker receives a heartbeat, instead of allo-
cating map and reduce slots separately, it treats them as a
whole during the allocation for pools. It first computes the
maximum number of free slots that can be allocated at each
round of heartbeat for the tasktracker. Next it starts the slot
allocation for pools. For each pool, there are four possible
slot allocations as illustrated in Fig. 4 below (The number
labeled in the graph denotes the corresponding case):

Case (1). We first try the map tasks allocation if there are
idle map slots for the tasktracker, and there are pending
map tasks for the pool.

Case (2). If the attempt of Case (1) fails since the condition
does not hold or it cannot find amap task satisfying the valid
data-locality level, we continue to try reduce tasks allocation
when there are pending reduce tasks and idle reduce slots.

Case (3). If Case (2) fails due to the required condition
does not hold, we try for map task allocation again. Case (1)
fails might be that there are no idle map slots available. In
contrast, Case (2) fails might be due to no pending reduce
tasks. In this case, we can try reduce slots for map tasks of
the pool.

Case (4). If Case (3) fails, we try for reduce task allocation
again. Cases (1) and (3) fail might be due to no valid local-
ity-level pending map tasks available, whereas there are
idle map slots. In contrast, Case (2) might be that there are
no idle reduce slots available. In that case, we can allocate
map slots for reduce tasks of the pool.

Moreover, there is a special scenario that needs to be par-
ticularly considered. Note it is possible that all the above
four possible slot allocation attempts fail for all pools, due
to the data locality consideration for map tasks. For exam-
ple, it is possible that there is a new compute node added to
the Hadoop cluster. It may be empty and does not contain
any data. Thus, the data locality for all map tasks might not
be satisfied and all pending map tasks cannot be issued.
The failures of both Cases (2) and (4) indicate that there are
no pending reduce tasks available for all pools. However,
there might be some pending map tasks available. There-
fore, there is a need to run some map tasks by ignoring the
data locality consideration on that new compute node to
maximize the system utilization. To implement this, we
make a mark visitedForMap for each job visited for map
tasks. The data locality will be considered when visitedFor-
Map does not contain scanned job. Otherwise, it will relax
the data locality constrain for map tasks.

Finally, The detailed implementation for PD-DHSA is
given in Algorithm 2 of the supplemental material, avail-
able online. Moreover, some discussions on DHSA are pre-
sented in Appendix C of the supplemental material,
available online.

2.2 Speculative Execution Performance Balancing
(SEPB)

MapReduce job’s execution time is very sensitive to slow-
running tasks (namely straggler) [34]. There are various rea-
sons that cause stragglers, including faulty hardware and
software mis-configuration [35]. We classify the stragglers
into two types, namely, Hard Straggler and Soft Straggler,
defined as follows:

" Hard Straggler: A task that goes into a deadlock status
due to the endless waiting for certain resources. It
cannot stop and complete unless we kill it.

" Soft Straggler: A task that can complete its computa-
tion successfully, but will take much longer time
than the common tasks.

For the hard straggler, we should kill it and run another
equivalent task, or called a backup task, immediately once it
was detected. In contrast, there are two possibilities
between the soft straggler and its backup task:

(S1) Soft straggler completes first or the same as its
backup task. For this case, there is no need to run a
backup task.

(S2) Soft straggler finishes later than the backup task. We
should kill it and run a backup task immediately.

To deal with the straggler problem, speculative execu-
tion is used in Hadoop. Instead of diagnosing and fixing
straggling tasks, it detects the straggling task dynami-
cally using heuristic algorithms such as Longest Approx-
imate Time to End (LATE) [35]. Once detected, however,
it cannot simply kill the straggler immediately due to
the following facts:

Fig. 4. The slot allocation flow for each pool under PD-DHSA. The num-
bers labeled in the graph corresponds to Cases (1), (2), (3), and (4) in
Section 2.1.2, respectively.
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" Hadoop does not have a mechanism to distinguish
between the hard straggler and the soft straggler;

" Moreover, for the soft straggler, it’s also difficult to
judge whether it belongs to (S1) or (S2) before run-
ning. Simply killing the straggler will harm the case
of (S1).

Instead, it spawns a backup task and allows it to run con-
currently with the straggler, i.e., there is a computation
overlap between the straggler and the backup task. The task
killing operation will occurs when either of the two tasks
completed. It is worth mentioning that, although the specu-
lative execution can reduce a single job’s execution time,
but it comes at the cost of cluster efficiency [34]. Speculative
tasks are not free, i.e., they compete for certain resources,
including map slots, reduce slots and network, with other
running tasks of jobs, which could have a negative impact
for the performance of a batch of jobs. Therefore, it arises a
challenge issue for speculative tasks on how to mitigate its
negative impact for the performance of a batch of jobs.

To maximize the performance for a batch of jobs, an intu-
itive solution is that, given available task slots, we should
satisfy pending tasks first before considering speculative
tasks. That is, when a node has an idle map slot, we should
choose pending map tasks first before looking for specula-
tive map tasks for a batch of jobs. Moreover, recall that in
our dynamic scheduler, the map slot is no longer restricted
to map task, it can serve reduce task. It means that, for an
empty map slot, we should consider choosing tasks in the
following order: pending map task, pending reduce task,
speculative map task, and speculative reduce task if we
want to further maximize the performance for a batch of
jobs. We do likewise for reduce slots.

We propose a dynamic task allocation mechanism called
Speculative Execution Performance Balancing for a batch of
jobs with speculative execution tasks on top of Hadoop’s
current task selection policy. Hadoop chooses a task from a
job based on the following priority: first, any failed task is
given the highest priority. Second, the pending tasks are
considered. For map, tasks with data local to the compute
node are chosen first. Finally, Hadoop looks for a straggling
task to execute speculatively. In our task scheduling mecha-
nism, we define a variable percentageOfJobsCheckedForPen-
dingTasks with value domain between 0.0 and 1.0,
configurable by users, to control maxNumOfJobsCheckedFor-
PendingTasks, which is the maximum number of jobs that
are checked for pending map and reduce tasks for a batch
of jobs, as shown in Fig. 5. Users can balance the tradeoff
between the performance for a batch of jobs and a single
job’s response time, with speculative task execution. Better
performance for the whole job is obtained when percenta-
geOfJobsCheckedForPendingTasks is large, Otherwise it will

be better for a single job’s response time. The detail of our
mechanism is that, when there is an idle map slot, we first
check jobs fJ1; J2; J3; . . . ; g for map tasks. For each job Ji,
we compute the total number of pending map and
reduce tasks by scanning all jobs between Ji and Jj, where
i ¼1; 2; 3; . . . ; j ¼iþ maxNumOfJobsCheckedForPendingTasks
(1. Next, we check each job Ji for the following conditions:

(1). No failed map tasks and pending map tasks for
job Ji;

(2). The total number of pending map tasks is larger than
zero;

(3). The total number of pending reduce tasks is larger
than zero, and percentageOfBorrowedMapSlots is larger
than zero.

The job Ji will be skipped for looking for speculative
map tasks when either Conditions (1) and (2), or Conditions
(1) and (3) is satisfied. Otherwise, we will scan it for possible
speculative map tasks, with Hadoop’s speculative task
mechanism [34], or LATE [35].

However, delaying the scheduling of speculative task
will bring another challenging problem. For the hard strag-
gler or the soft straggler of (S2) that occupies a slot for a
really long time, if we do not solve it as early as possible,
then the resource allocated to the slot are being used ineffi-
ciently, hence reducing the efficiency of the cluster.

To address this problem, we currently use a simple heu-
ristic algorithm: We estimate the execution time for each
task. When it took twice longer than the average execution
time of tasks, we kill it directly to yield the slot. Since
failed/killed tasks have the highest priority to run in
Hadoop, a backup task will be created to replace it quickly,
improving the performance of a single job and mitigating
the negative impact on the cluster efficiency.

Finally, speculative reduce tasks are handled similarly.
The detailed implementation of SEPB is given in Algorithm
3 of the supplemental material, available online.

2.2.1 Discussion on SEPB versus LATE

The benefit of SEPB over LATE lies in its policy for slot allo-
cation to speculative tasks. For LATE, whenever there is a
straggled task for a job, it will create a backup task and allo-
cate a slot to run it immediately from an individual job’s
view if the total number of speculative tasks is less than the
threshold SpeculativeCap, a parameter for capping the num-
ber of running speculative tasks. In contrast, SEPB performs
the resource allocation for speculative tasks from a global
view by considering multiple jobs (determined by the argu-
ment maxNumOfJobsCheckedForPendingTasks). It will delay
the slot allocation to speculative tasks whenever there are
pending tasks for the multiple jobs. Consider an example
with 6 jobs as shown in Fig. 5. The maxNumOfJobsChecked-
ForPendingTasks is 4 and SpeculativeCap for LATE is 4.
Assume at a moment that total number of idle slots is 4, the
numbers of straggled tasks for J1; J2; J3; J4; J5; J6 are
5; 4; 3; 2; 1; 0, nd the numbers of pending tasks for
J1; J2; J3; J4; J5; J6 are 0; 0; 10; 10; 15; 20, respectively. With
LATE, it will spawn four speculative tasks for J1 to possess
all idle slots. However, with SEPB, it will allocate all 4 idle
slots to the pending tasks of J3; J4 to improve the slot utili-
zation efficiency, instead of speculative tasks of J1. The

Fig. 5. The computation policy for the totalNumOfPendingMapTasks and
totalNumOfPendingReduceTasks.
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relationship between SEPB and LATE is that, SEPB works
on top of LATE and is an enhancement of LATE in schedul-
ing speculative tasks. When LATE detects a straggled task
and an idle slot, it first checks the number of running specu-
lative tasks. When it is smaller than SpeculativeCap, instead
of creating speculative tasks for straggled tasks immedi-
ately, LATE will inform SEPB. The SEPB then determines
whether to create a speculative task to re-compute data or
not from a global view by checking multiple jobs. If SEPB
finds pending tasks, it will allocate the idle slot to a pending
task. If not, a new speculative task will then be created to
possess the idle slot.

2.3 Slot PreScheduling
Keeping the task computation at the computing nodewith the
local data (i.e., Data locality) is an efficient and important
approach to improve the efficiency of slot utilization and per-
formance. Delay Scheduler has been proposed to improve the
data locality in MapReduce by [37]. It delays the scheduling
for a job by a small amount of time, when it detects there are
no localmap tasks from that job on a nodewhere its input data
reside. However, it is at the expense of fairness. There is a
tradeoff between the data locality and fairness optimization
with delay scheduler. It means that, in HFS, delay scheduling
is not enough and there is still optimization space for data
locality improvement. A challenging question will be: Are
there any solutions that can further improve the data locality
while have no impact on fairness?

To answer this question, we propose a Slot PreScheduling
technique that can improve the data locality while having
no negative impact on the fairness of MapReduce jobs. In
contrast to delay scheduler, it is achieved at the expense of
load balance across slave nodes. The basic idea is that, in
light of the fact that there are often some idle slots which
cannot be allocated due to the load balancing constrain dur-
ing runtime, we can pre-allocate those slots of the node to
jobs to maximize the data locality.

2.3.1 Preliminary

In Hadoop task scheduling, there is a load manager that
attempts to balance the workload across slave nodes, mak-
ing the ratios of used resources close to each other among
slave nodes (i.e., load balancing). Prior to presenting Slot
PreScheduling, we start with two definitions:

Definition 1. The allowable idle map (or reduce) slots refer
to the maximum number of idle map (or reduce) slots that can
be allocated for a tasktracker, considering the load balancing
between machines.

Definition 2. The extra idle map (or reduce) slots refer to the
remaining idle map (or reduce) slots by subtracting the maxi-
mum value of used map (or reduce) slots and allowable idle
map (or reduce) slots from the total number of map slots
for a tasktracker, considering the load balancing between
machines.

As illustrated in Fig. 6, the workload balancing line
shows the current number of map slots that can be used
under an ideally balanced case. The allowable idle map slots
are illustrated by the white area below the workload balanc-
ing line. We can note that Tasktrackers 1 and 3 have some
allowable idle map slots, whereas there are no allowable idle
map slots available for Tasktrackers 2 and 4. In contrast, all
tasktrackers have extra idle map slots (see Definition 2),
which are illustrated with the white area above the work-
load balancing line.

There is a tradeoff between data locality and load balanc-
ing. It occurs that, when a job has a local data on a slave
node (e.g., J1 in TaskTracker 2). The slave node has some
idle slots but the load manager do not allow it to use (i.e.,
no allowable idle slots) considering the load balancing
issue. Improving the data locality in this scenario will hurt
the load balancing. Reversely, achieving load balance will
negative affect data locality.

2.3.2 Observation and Optimization

In practice, for a MapReduce cluster, the computing work-
loads of running map (or reduce) tasks between tasktrack-
ers (i.e., machines) are generally varied, because of the
following facts.

1) Lots of MapReduce clusters in real world consist of
heterogeneous machines (i.e., different computing
powers between machines),

2) There are often varied computing loads (i.e., execu-
tion time) for map and reduce tasks from different
jobs, due to the varied input data sizes as well as
applications,

3) Even for a single job under the homogenous environ-
ment, the execution time for map (or reduce) tasks
may still not be the same, due to the skew caused by
an uneven distribution of input data to tasks and
some portions of the input data might take longer
time to process than others [16],

For example, Fig. 6 illustrates an unbalanced workload
distribution of running map tasks in a Hadoop cluster,
consisting of two racks each with two machines. To bal-
ance the workload, Hadoop provides a mechanism to
dynamically control the number of allowable idle map (or
reduce) slots (see Definition 1) for a tasktracker in a heart-
beat as the following three steps.

Step 1#. Compute the load factor mapSlotsLoadFactor as
the sum of pending map tasks and running map tasks from
all jobs divided by the cluster map slot capacity.

Step 2#. Compute the current maximum number of
usable map slots by multiplying min{mapSlotsLoadFactor,1}
with the number of map slots in a tasktracker.

Step 3#. Finally, we can compute the current allowable idle
map (or reduce) slots for a tasktracker, by subtracting the cur-
rent number of used map (or reduce) slots from the current
maximum number of usable map slots.

Fig. 6. An example of unbalanced workload distribution of running map
tasks in a Hadoop cluster. We assume the current priority order of fair-
share allocation is J1 ! J2 ! J3 ! J4.
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Let’s suppose that there are four running jobs and two
replicas for each block data in Fig. 6. Let’s assume the pri-
ority order of fairness allocation is J1 ! J2 ! J3 ! J4.
Under the current load distribution, we can see that there
are no allowable idle map slots for all those tasktrackers (e.g.,
Tasktrackers 2 and 4) with local block data of J1. It means
that, based on the delay scheduling, J1 will be delayed to
schedule within a time limit, at the expense of fairness, no
matter which tasktracker connects to the jobTracker in a
heartbeat (See more explanations on it in Appendix D of
the supplemental material, available online). However, we
can see that there are idle map slots for each tasktracker. If
we relax the strict load balancing constrain when Task-
trackers 2 or 4 connects to the Jobtracker, we can proac-
tively allocate the extra idle map slots to J1, satisfying both
the data locality and fairness requirements. Based on this
observation, we propose a scheduler named Slot PreSched-
uling to proactively allocate slots to those jobs with local
map tasks, aiming to achieve both the data locality maxi-
mization and fairness requirement.

There are two cases for using Slot PreScheduling. The
first case considers a tasktracker tts on which there are
extra idle map slots available, but no allowable idle map
slots. For a headed job following the fair-share priority
order, when it has local map tasks with block data on
the tts, instead of skipping it by the default Hadoop
scheduler, we can proactively allocate extra map slots to
the job.

The second case is for DHSA. When there are no idle
map slots but some idle reduce slots available, for a con-
nected tasktracker tts in a heartbeat, we can proactively
borrow idle reduce slots for local pending map tasks
and restore them later, in order to maximize the data
locality.

2.3.3 Comparison with Delay Scheduler

In this section, we make a comparison and discussion
between Delay Scheduler and Slot PreScheduling. First,
they consider completely opposite scenarios. That is, Slot
PreScheduling works for the case when there are pending
map tasks for the current job with local block data on the
tasktracker tts, whereas Delay Scheduler considers the case
without local pending map tasks. Based on this fact, in our
work, we combine them together to improve the data local-
ity. For example, in Fig. 6, when the current connected task-
tracker in a heartbeat is Tasktrackers 1 or 3, the Delay
Schedulerwill work to delay the scheduling of J1, to improve
the data locality. In contrast, when either Tasktrackers 2 or 4
connects to the jobTracker, the Slot PreScheduling will work
by allocating the extra idle map slots to J1, improving the
data locality and guaranteeing fairness.

Table 1 lists the benefits and costs for Slot PreScheduling
and Delay Scheduler under different metrics, including
Fairness, Data Locality and Load Balance. We can see that,
the Slot PreScheduling can benefits (or improves) both fair-
ness and data locality metrics, but at the expense of load bal-
ance, since it uses the extra idle map slots. However, for
Delay Scheduler, it is favorable for data locality and load
balance, whereas at the cost of fairness.

2.4 Discussion
The goal of our work is to improve the performance for
MapReduce workloads while maintaining the fairness
across pools when HFS is adopted. To achieve it, we pro-
pose a framework called DynamicMR (See Appendix B of
the supplemental material, available online, for details
on how to implement DynamicMR into Hadoop system.)
consisting of three different dynamic slot allocation policies,
i.e., DHSA, SEPB, Slot PreScheduling.

Table 2 summarizes the comparison results for the three
policies with respect to different metrics (e.g., fairness, slot
utilization, and performance). First, all the three polices are
favorable for the performance improvement of MapReduce
workloads, due to the benefits from slot utilization optimi-
zation. Specifically, DHSA improves the performance by
increasing the slot utilization. In contrast, rather than
attempting to improve the slot utilization, SEPB and Slot
PreScheduling achieve the performance improvement by
maximizing the efficiency of slot utilization, under a given
slot utilization. For fairness metric, both DHSA and DS (i.e.,
Delay Scheduler) have an impact on it, whereas SEPB does
not. Specifically, DHSA and SPS (i.e., Slot PreScheduling)
can benefit fair sharing, whereas DS has a negative impact
on fairness.

3 EXPERIMENTAL EVALUATION

In this section, we experimentally evaluate the perfor-
mance benefit of DynamicMR. We first evaluate the
individual impact of each optimization technique of
DynamicMR (i.e., DHSA, SEPB, Slot PreScheduling in Sec-
tions 3.2, 3.3 and 3.4, separately). Next, we present the
combined performance improvement achieved by Dynam-
icMR in Section 3.5. Later we compare our DynamicMR
with YARN in performance.

3.1 Experimental Setup
We ran our experiments in a cluster consisting of 10 com-
pute nodes, each with two Intel X5675 CPUs (4 CPU cores

TABLE 1
Benefit and Cost Comparison between Slot PreScheduling

and Delay Scheduler

Fairness Data Locality Load Balance

Slot PreScheduling þ þ (
Delay Scheduler ( þ þ

‘þ’ denotes the benefit, while ‘(’ represents the cost (or expense).

TABLE 2
Benefit and Cost Comparison for Allocation

Techniques Regarding Each Metric

Techniques Fairness Slots
Utilization

Performance

DHSA þ þ þ
SEPB %ðþÞ þ
DS ( %ðþÞ þ
SPS þ

‘DS’ is an abbreviation for Delay Scheduler, while ‘SPS’ is short for Slot
PreScheduling. ‘þ’ denotes the benefit. ‘(’ represents the cost (or expense).
‘%’ denotes the efficiency.
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per CPU with 3.07 GHz), 24 GB memory and 56 GB hard
disks. We configure one node as master and namenode, and
the other nine nodes as slaves and datanodes. The latest ver-
sion of Hadoop 1.2.1 is chosen in our experiment. We gener-
ate our testbed workloads by choosing nine benchmarks
arbitrarily from Purdue MapReduce Benchmarks Suite [1]
and using their provided data sets as show in Table 3,
where the input data sizes are chosen according to the proc-
essing capability of our cluster.

3.2 Performance Evaluation for DHSA
In this section, we first show the dynamic tasks execution
processes for PI-DHSA and PD-DHSA. Then we evaluate
and compare the performance improvement by PI-DHSA
and PD-DHSA under different slot configuration. Third, we
make a discussion on the performance influence of the argu-
ments of the percentage of map and reduce slots that can be
borrowed for our DHSA in Appendix F of the supplemental
material, available online.

3.2.1 Dynamic Tasks Execution Processes
for PI-DHSA and PD-DHSA

To show different levels of fairness for the dynamic tasks
allocation algorithms, PI-DHSA and PD-DHSA, we perform
an experiment by considering three pools, each with one job
submitted. Fig. 7 shows the execution flow for the two
DHSAs, with 10 sec per time step. The number of running
map and reduce tasks for each pool at each time step is
recorded. For PI-DHSA, as illustrated in Fig. 7a, we can see
that, at the beginning, there are only map tasks, with all
slots used by map tasks under PI-DHSA. Each pool shares 1

3
of the total slots (i.e., 36 slots out of 108 slots), until the 5th
time step. The map slot demand for Pool 1 begins to shrink
and the unused map slots of its share are yielded to Pools 2
and 3 from the 6th time step. Next from 6th to 10th time
step, the map tasks from Pools 2 and 3 equally share all
map slots and the reduce tasks from Pool 1 possess all
reduce slots, based on the typed-phase level fairness policy
of PI-DHSA (i.e., intra-phase dynamic slot allocation). From

11th to 18th time step, there are some unused map slots
from Pool 2 and they are possessed by map tasks from Pool
3 (i.e., intra-phase dynamic slot allocation). Later, there are
some unused map slots from Pool 3 and they are used by
reduce tasks from Pools 1 and 2 from 22rd to 25th time step
(i.e., inter-phase dynamic slot allocation).

For PD-DHSA, similar to PI-DHSA at the beginning,
each pool obtains 1

3 of the total slots from the 1st to 5th
time step, as shown in Fig. 7b. Some unused map slots
from Pool 1 are yielded to Pool 2 and Pool 3 from 6th to
the 7th time step. However, from the 8th to 12th, the map
tasks from Pools 2 and 3 and the reduce tasks from Pool 1
takes 1

3 of the total slots, subject to the pool-level fairness
policy of PD-DHSA (i.e., intra-pool dynamic slot alloca-
tion). Finally, the unused slots from Pool 1 begins to yield
to Pools 2 and 3 since 13th time step (i.e., inter-pool
dynamic slot allocation).

3.2.2 Performance Improvement Comparison

Fig. 8 presents the performance improvement results in
comparison with original Hadoop under various slot con-
figurations, for our proposed DHSA (see Fig. 2 in the sup-
plemental material, available online, for more results of
other benchmarks). Note that there are 12 CPU cores per
slave node and we assume that one MapReduce slot corre-
sponds to a CPU core. Thereby, we vary the number of map
slots per slave node from 1 to 11. Particularly, we define
the speedup here as the ratio of the execution time of the

Fig. 7. The execution flow for the two DHSAs. There are three pools, with
one running job each.

TABLE 3
The Job Information for Purdue MapReduce Benchmarks and Data Sets

Benchmark Input Data

Name Description Data Source Data Size (GB)

WordCount computes the occurrence frequency of each word in
a document.

wikipedia [29] 10

Sort sorts the data in the input files in a dictionary order. wikipedia [29] 20
Grep finds the matches of a regex in the input files. wikipedia [29] 30
InvertedIndex takes a list of documents as input and generates

word-to-document indexing.
wikipedia [29] 40

Classification classifies the input into one of k pre-determined
clusters.

movie ratings dataset [29] 20

HistogramMovies generates a histogram of input data and is a generic
tool used in many data analyses.

movie ratings dataset [29] 20

HistogramRatings generates a histogram of the ratings as opposed to
that of the movies based on their average ratings.

movie ratings dataset [29] 20

SequenceCount generates a count of all unique sets of three
consecutive words per document in the input data.

wikipedia [29] 30

SelfJoin generates association among k+1 fields given the set
of k-field associations.

synthetic data [29] 40

TANG ET AL.: DYNAMICMR: A DYNAMIC SLOT ALLOCATION OPTIMIZATION FRAMEWORK FOR MAPREDUCE CLUSTERS 341

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on May 30,2020 at 05:01:04 UTC from IEEE Xplore.  Restrictions apply. 



original Hadoop under 1/11 map/reduce slot configuration
per slave node, to the current execution time.

We have the following three observations.
First, the original Hadoop is very sensitive to the map/

reduce slot configuration, whereas there is little impact for
the map/reduce slot configuration on our DHSA (i.e., the
speedup keeps stable under different map/reduce slot con-
figurations). For example, there are about 1:8%performance
differences for Sort benchmark in Fig. 8 between the optimal
and worst-case map/reduce slot configurations for the orig-
inal Hadoop.

To explain the reason behind it, let’s take a single job for
example. Let NM and NR denote the number of map tasks
and reduce tasks. Let tM and tR denote the execution time
for a single map task and reduce task. Let SM and SR denote
the number of map slots and reduce slots. Moreover, we
assume that there is one slot per CPU core and thus the sum

of map slots and reduce slots is fixed for a given cluster.
Then for the traditional Hadoop cluster, the execution time
will be dNM

SM
e + tM þ dNR

SR
e + tR. In contrast, it will be

d NM
SMþSR

e + tM þ d NR
SMþSR

e + tR for our DHSA. Based on the for-
mula, we can see varied performance from the traditional

Hadoop under different slot configurations. However, there
is little impact on the performance for different slot configu-
rations under DHSA.

Second, compared with the original Hadoop, both PI-
DHSA and PD-DHSA can improve the performance of
MapReduce jobs significantly, especially under the worst-
case map/reduce slot configuration. For example, there are
about 2% performance improvement for Sort benchmnark
under the worst-case configuration (e.g., the x-axis point
1/11 in Fig. 8), with our proposed DHSA.

Third, the performance improvement is stable and very
close to each other for both PI-DHSA and PD-DHSA. The
reason is that, although PI-DHSA and PD-DHSA have dif-
ferent fairness concepts (see Section 2.1), they follow strictly
the same principle of slot utilization maximization, by
switching the allocation of the map/reduce slots for map/
reduce tasks dynamically.

3.3 Speculative Execution Control for Performance
Recall in Section 2.2, we stated that speculative task exe-
cution can overcome the problem of straggler (i.e., the
slow-running task) for a job, but it is at the cost of clus-
ter utilization. We define a user’s configurable variable
percentageOfJobsCheckedForPendingTasks to determine

the time to schedule speculative tasks. To validate the
effectiveness of our dynamic speculative execution con-
trol policy, we perform an experiment with five jobs,
10 jobs and 20 jobs by varying the values of
percentageOfJobsCheckedForPendingTasks.

Note that LATE [35] has been implemented in Hadoop
1.2.1. Fig. 9 presents the performance results with SEPB in
comparison to LATE. All speedups are computed with
respect to the case that percentageOfJobsCheckedForPending-
Tasks is equal to zero. We have the following findings:

First, SEPB can improve the performance of Hadoop
from 3 ! 10 percent, shown in Fig. 9a. As the value of per-
centageOfJobsCheckedForPendingTasks increases, the trend
of performance improvement tends to be large and the
optimal configurations could be distinct for different
workloads. For example, the optimal configuration for
five jobs is 80 percent, but for 10 jobs is 100 percent. The
reason is that, large value of percentageOfJobsCheckedFor-
PendingTasks will let more numbers of jobs be checked for
pending tasks before considering speculative execution
for each slot allocation, i.e., It is more likely to allocate a
slot to a pending task first, rather than a speculative task,
which benefits more for the whole jobs. However, large
value of percentageOfJobsCheckedForPendingTasks will delay
the speculative execution for straggled jobs, hurting their
performance. For some workloads, too large value of per-
centageOfJobsCheckedForPendingTasks will degrade the per-
formance for straggled jobs a lot and in turn affect the
overall jobs, explaining why the optimal configuration is
not always 100 percent. We recommend users to config-
ure percentageOfJobsCheckedForPendingTasks at 60 ! 100
percent for their workloads.

Second, there is a performance tradeoff between an indi-
vidual jobs and the whole jobs with SEPB. We show a case
for the workload of five jobs when setting percentageOfJob-
sCheckedForPendingTasks to be 0 and 100 percent, respec-
tively. As results shown in Fig. 9b, Jobs 2 and 4 are negative
affected due to the constrain on speculative execution from
SEPB, whereas it favors the performance for whole jobs (i.e.,
the maximum execution time of jobs).

3.4 Data Locality Improvement Evaluation for Slot
PreScheduling

To test the effect of Slot PreScheduling on data locality
improvement, we ran MapReduce jobs with 16, 32, and 160
map tasks on the Hadoop cluster. We compare fair sharing
results with and without Slot PreScheduling under the
default HFS. It is worth mentioning that Delay Scheduler
has been added to the default HFS for the traditional

Fig. 8. The performance improvement by DHSA under various slot con-
figuration for Sort benchmark.

Fig. 9. The performance results with SEPB.
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Hadoop and keeps working always. Therefore, our work
turns to be the comparison between the case with Delay
Scheduler only and the case with Delay Scheduler plus Slot
PreScheduling.

Fig. 10 shows the data locality resultswith andwithout Slot
PreScheduling for Sort benchmark (See Fig. 2 in the supple-
mental material, available online, for more results) With Slot
PreScheduling, there are about 2 ! 25 percent locality
improvement on top of Delay Scheduler for Sort benchmark.

Fig. 11 presents the corresponding performance results
benefiting from the data locality improvement made by Slot
PreScheduling. There are about 1 ! 9percent performance
improvement with respect to the original Hadoop for the
aforementioned nine benchmarks respectively.

Moreover, we measure and compare the load unbal-
anced degree and unfairness degree for Hadoop cluster
with and without Slot PreScheduling in Appendix E of the
supplemental material, available online.

3.5 Performance Improvement for DynamicMR
In this section, we evaluate DynamicMR system in overall
by enabling all its three sub-schedulers so that they can
work corporately to maximize the performance as much as
possible. For DHSA part, we arbitrarily choose PI-DHSA,
noting that PI-DHSA and PD-DHSA have very similar per-
formance improvement (see Section 3.2.2). For the original
Hadoop, we choose the optimal slot configuration for
MapReduce jobs by enumerating all the possible slot con-
figurations. We aim to compare the performance for
DynamicMR with the original Hadoop under the optimal
map/reduce slot configuration for MapReduce jobs.
Fig. 12 presents the evaluation results for a single MapRe-
duce job as well as MapReduce workloads consisting of

multiple jobs. Particularly, for multiple jobs, we consider
five jobs, 10 jobs, 20 jobs, and 30 jobs (see detailed infor-
mation for multiple jobs in Table 3 of the supplemental
material, available online) under a batch submission, i.e.,
all jobs submitted at the same time. All speedups are cal-
culated with respect to the original Hadoop. We can see
that, even under the optimized map/reduce slot configura-
tion for the original Hadoop, our DynamicMR system can
still further improve the performance of MapReduce jobs
significantly, i.e., there are about 46 ! 115 percent for a
single job and 49! 112 percent for MapReduce workloads
with multiple jobs.

Moreover, we also implement our DynamicMR for
Hadoop FIFO scheduler. To validate the effectiveness of our
DynamicMR, we perform experiments with the aforemen-
tioned MapReduce workloads. The results are shown in
Fig. 13. It illustrates that, our DynamicMR system can
improve the performance of Hadoop jobs significantly
under FIFO scheduler as well.

3.6 Performance Comparison With YARN
In YARN, there is no more concept of ‘slot’. Instead, it pro-
poses a concept of ‘container’ consisting of a certain amount
of resources (e.g., memory) that both map and reduce tasks
can run on. It is claimed that it can overcome the utilization
problem of static slot-based approach. In this section, we
perform an experimental comparison between YARN and
our DynamicMR.

To make it comparable, in our argument settings of
YARN, we configure the allocated memory resources for

Fig. 10. The data locality improvement by Slot PreScheduling for Sort
benchmark.

Fig. 11. The performance improvement under Slot PreScheduling.

Fig. 12. The performance improvement with our DynamicMR system for
MapReduce workloads.
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each container carefully so that the number of containers in
each slave node is equal to the number of ‘slot’ in Hadoop
MRv1. We also check other same arguments (e.g.,mapreduce.
job.reduce.slowstart.completedmaps) to ensure that they have
the same configured value for YARN andHadoopMRv1.

Fig. 14 shows the compared performance results of
speedupwith respect to YARN. For singleMapReduce jobs in
Fig. 14a, we can not claim that which one is better than the
other absolutely. For example, Our DynamicMR outperforms
YARN for benchmarks Sort, SelfJoin and Classification,
whereas YARN is better than DynamicMR for other remain-
ing benchmarks. This is because with a single job, there is no
difference in resource utilization optimization mechanism
between YARN and DynamicMR (i.e., both of them use all
resources formap tasks at themap-phase first and then utilize
all resources for reduce tasks at the reduce-phase).

However, for multiple jobs, we can see in Fig. 14b that
our DynamicMR is better than YARN by about 2 ! 9per-
cent, especially when the number of jobs is large. The rea-
son is due to the network contention mainly from reduce
tasks caused in their shuffle phase. Given a certain num-
ber of resources, it is obvious that the performance for the
case with a ratio control of concurrently running map
and reduce tasks is better than without control. Because
without control, it easily occurs that there are too many
reduce tasks running, causing the network to be a bottle-
neck seriously.

For YARN, both map and reduce tasks can run on any
idle container. There is no control mechanism for the ratio
of resource allocation between map and reduce tasks. It
means that when there are pending reduce tasks, the idle
container will be most likely possessed by them. In contrast,
our DynamicMR follows the traditional slot-based model.
In contrast to the ‘hard’ constrain of slot allocation that map
slots have to be allocated to map tasks and reduce tasks
should be dispatched to reduce tasks, we propose a ‘soft’
constrain of slot allocation to allow that map slot can be allo-
cated to reduce task and vice versa. But whenever there are
pending map tasks, the map slot should be given to map
tasks first, and the rule is similar for reduce tasks. It means
that, the traditional way of static map/reduce slot configu-
ration for the ratio control of running map/reduce tasks still
works for DynamicMR. In comparison to YARN which
maximizes the resource utilization only, our DynamicMR
can maximize the slot resource utilization and meanwhile
dynamically control the ratio of running map/reduce tasks
via map/reduce slot configuration.

To validate our explanation, we make a throughput test
for data shuffling of reduce tasks over time by running a
MapReduce workloads of five jobs. Fig. 15 illustrates the
shuffle data throughput for YARN and DynamicMR. The
larger throughput indicates that there are more reduce tasks
performing data shuffling. We can see that the data
throughput for YARN fluctuates greatly over time and its
peak value is much higher than DynamicMR, demonstrat-
ing the correctness of our clarification.

4 RELATED WORK

There is a large body of research work on the performance
optimization for MapReduce jobs. We summarize and cate-
gorize the closely related work to ours as follows.

" Scheduling and resource allocation optimization. There are
some computation scheduling and resource allocation

Fig. 13. The performance improvement with our DynamicMR system for
MapReduce workloads under Hadoop FIFO scheduler.

Fig. 14. The comparison results between YARN and DynamicMR for
MapReduce workloads.

Fig. 15. The network throughput comparison between YARN and
DynamicMR for data shuffling over time. Each time step are 2 seconds.
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optimization work for MapReduce jobs. [18], [24], [25], [31],
[32] consider job ordering optimization for MapReduce
workloads. They model the MapReduce as a two-stage
hybrid flow shop with multiprocessor tasks [19], where dif-
ferent job submission orders will result in varied cluster uti-
lization and system performance. However, there is an
assumption that the execution time for map and reduce
tasks for each job should be known in advance, which may
not be available in many real-world applications. Moreover,
it is only suitable for independent jobs, but fails to consider
those jobs with dependency, e.g., MapReduce workflow. In
comparison, our DHSA is not constrained by such assump-
tion and can be used for any types of MapReduce work-
loads (i.e., independent and dependent jobs).

Hadoop configuration optimization is another approach,
including [13], [14]. For example, Starfish [13] is a self-tun-
ing framework that can adjust the Hadoop’s configuration
automatically for a MapReduce job such that the utilization
of Hadoop cluster can be maximized, based on the cost-
based model and sampling technique. However, even
under an optimal Hadoop configuration, e.g., Hadoop
map/reduce slot configuration, there is still room for per-
formance improvement of a MapReduce job or workload,
by maximizing the utilization of map and reduce slots (see
results shown in Section 3.2.2).

Guo et al. [7] propose a resource stealing method to
enable running tasks to steal resources reserved for idle
slots and give them back proportionally whenever new
tasks are assigned, by adopting multithreading technique
for running tasks on multiple CPU cores. However, it can-
not work for the utilization improvement of those purely
idle slave nodes without any running tasks. Polo et al. [21]
present a resource-aware scheduling technique for MapRe-
duce multi-job workloads that aims at improving resource
utilization by extending the abstraction of traditional ‘task
slot’ of Hadoop to ‘job slot’, which is an execution slot that
is bound to a particular job, and a particular task type
(map or reduce) within that job. In contrast, in our pro-
posed DHSA, we keep the traditional task slot model and
maximize the system utilization by dynamically allocating
unused map (or reduce) slots to overloaded reduce (or
map) tasks.

YARN [3] is a new version ofHadoopwith totally different
architecture. In contrast to our DynamicMR, it overcomes the
inefficiency problem of the Hadoop MRv1 from the resource
management perspective. There is no more concept of slot.
Instead, it manages resources into containers consisting of a
amount of resources (e.g., memory). Both map and reduce
tasks can run on any container. Our experimental results in
Section 3.6 show that when in a single job, we cannot claim
which one is better than the other; However, formultiple jobs,
our DynamicMR outperformsYARN.

" Speculative execution optimization. Speculative execution
is an important task scheduling strategy in MapReduce for
dealing with straggler problem for a single job, including
LATE [35], BASE [7], Mantri [2], MCP [5]. Longest Approxi-
mate Time to End [35] is a speculative execution algorithm
that focuses on heterogeneous environments by prioritizing
tasks to speculate, selecting fast nodes to run on, and cap-
ping speculative tasks. Guo et al. [7] further improve the
performance for LATE by proposing a Benefit Aware

Speculative Execution (BASE) algorithm that can evaluate
the potential benefit of speculative tasks and eliminate
unnecessary runs. Ananthanarayanan et al. [2] provided a
speculative execution strategy that focuses more on saving
culster computing resource, i.e., task slots, by monitoring
tasks and culling outliers based on their causes. Chen et al.
[5] proposed a new speculative execution algorithm called
Maximum Cost Performance (MCP) to overcome the prob-
lems that affect the performance for previous speculative
execution strategies, e.g., data skew, task that start asyn-
chronously, improper configuration of phase percentage.
However, it is worth mentioning that all speculative execu-
tions mentioned above are not free. They come at the cost of
cluster efficiency [34], which could have a negative impact
for the performance of a batch of jobs. We thereby proposed
SEPB to balance the performance tradeoff between a single
job and a batch of jobs for all speculative executions men-
tioned above.

" Data locality optimization. Data locality optimization
has been shown to be a critical method for the perfor-
mance and efficiency improvement of the cluster utiliza-
tion by previous works (e.g., [8], [9], [11], [12], [20], [23],
[26], [37]). For MapReduce, there are map-side and reduce-
side data locality. The map-side data locality optimization
considers moving the map tasks computation close to the
input data blocks (e.g., [8], [9], [20], [37]). For example,
when there are lots of small-size jobs in a environment,
Delay Scheduler can improve the data locality by delay-
ing the scheduling of map tasks whose data locality can-
not be satisfied for a short period of time, at the expense
of fairness [37]. Purlieus classifies the MapReduce jobs
into three types, map-input heavy, map-and-reduce-input
heavy and reduce-input heavy, and proposes data and
virtual machine locality-awareness placement strategies
accordingly in a cloud environment to improve the run-
time performance [20]. Guo et al. [8], [9] propose a mathe-
matical model and theoretically analyze the relationship
between system factors and data locality. Moreover, they
also provide an algorithm for users to adjust the tradeoff
between fairness and data locality. In contrast, the reduce-
side data locality optimization considers placing reduce
tasks to the machines that are closest to the majority of
the already generated intermediate data by map tasks,
either by proposing some greedy algorithms (e.g., [11],
[12], [20]) or by formulating the reduce task assignment
problem as a stochastic optimization problem theoreti-
cally (e.g., [22], [23]).

Slot PreScheduling belongs to the map-side data locality
optimization. In contrast to Delay Scheduler, Slot PreSched-
uling, as its complementary part, considers a different sce-
nario that there are local map tasks for a job on a node, but
no allowable idle map slots (see Definition 1 in Section 2.3)
available on that node due to the load balancing constrain.
It pre-schedules local map tasks using extra idle slots (see
Definition 2 in Section 2.3) to maximize the data locality
while maintaining the fairness. Importantly, in comparison
to those map-side optimization methods aforementioned,
we argue that both Delay Scheduler and Slot PreScheduling
are simple (i.e., easy to implement in practise), generic and
much effective for fairness and data locality maximization
(see Section 3.4).
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Our preliminary study [26] has presented our initial stud-
ies on DHSA in improving the slot utilization ofMapReduce.
This paper goes beyond the preliminary study in the follow-
ing major aspects. First, we further develop two types of slot
optimizers including SEPB and Slot PreScheduling, which
contribute to the accumulative performance improvement of
DHSA. Second, putting them all together, we have devel-
oped a holistic and dynamic slot allocation and scheduling
framework and performedmore extensive experiments.

" MapReduce optimization on cloud computing. There are
lots of optimization works for MapReduce on cloud com-
puting. The main works focus on the optimization for dead-
line and budget, such as [15], [27], [28], [30], [33], [38]. They
proposed algorithms and cost models to optimize the task
scheduling and manage the resource allocation for MapRe-
duce workloads (e.g., workflows) for each metric. However,
their works (i.e., workflow scheduling) are on top of
Hadoop framework, belonging to the coarse-grained opti-
mizations. In contrast, DynamicMR is a fine-grained optimi-
zation for Hadoop, optimizing Hadoop itself. Thus, we can
combine existing work and DynamicMR together to further
optimize the deadline and budget in cloud computing.

5 CONCLUSION AND FUTURE WORK

This paper proposes a DynamicMR framework aiming to
improve the performance of MapReduce workloads while
maintaining the fairness. It consists of three techniques,
namely, DHSA, SEPB, and Slot PreScheduling, all of which
focus on the slot utilization optimization for MapReduce
cluster from different perspectives. DHSA focuses on the
slot utilization maximization by allocating map (or reduce)
slots to map and reduce tasks dynamically. Particularly,
it does not have any assumption or require any prior-
knowledge and can be used for any kinds of MapReduce
jobs (e.g., independent or dependent ones). Two types of
DHSA are presented, namely, PI-DHSA and PD-DHSA,
based on different levels of fairness. User can choose either
of them accordingly. In contrast to DHSA, SEPB and Slot
PreScheduling consider the efficiency optimization for a
given slot utilization. SEPB identifies the slot inefficiency
problem of speculative execution. It can balance the perfor-
mance tradeoff between a single job and a batch of jobs
dynamically. Slot PreScheduling improves the efficiency of
slot utilization by maximizing its data locality. By enabling
the above three techniques to work cooperatively, the exper-
imental results show that our proposed DynamicMR can
improve the performance of the Hadoop system signifi-
cantly (i.e., 46 ! 115 percent for single jobs and 49! 112
percent for multiple jobs). Moreover, we also have a com-
parison with YARN. The experiments show that, 1) for sin-
gle jobs, the result is inconclusive, 2) for multiple jobs,
DynamicMR consistently outperforms YARN by about
2 ! 9percent.

In future, we plan to consider implementing Dynam-
icMR for cloud computing environment with more metrics
(e.g., budget, deadline) considered and different platforms
by reviewing some existing works such as [30], [33], [38].

Finally, the DynamicMR source code is publicly avail-
able for downloading at http://sourceforge.net/projects/
dynamicmr/.
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