
Balancing Fairness and Efficiency for Cache Sharing in
Semi-external Memory System

Shanjiang Tang
College of Intelligence and

Computing,Tianjin University
Tianjin, China

tashj@tju.edu.cn

Qifei Chai
College of Intelligence and

Computing,Tianjin University
Tianjin, China

chaiqifei@tju.edu.cn

Ce Yu
College of Intelligence and

Computing,Tianjin University
Tianjin, China

yuce@tju.edu.cn

Yusen Li
School of Computer Science, Nankai

University
Tianjin, China

liyusen@nbjl.nankai.edu.cn

Chao Sun
College of Intelligence and

Computing,Tianjin University
Tianjin, China
sch@tju.edu.cn

ABSTRACT
Data caching and sharing is an effective approach for achieving high
performance to many applications in shared platforms such as the
cloud. DRAM and SSD are two popular caching devices widely
used by many large-scale data application systems such Hadoop and
Spark. Due to the limited size of DRAM as well as the large access
latency of SSD (relative to DRAM), there is a trend of integrating
DRAM and SSD (called semi-external memory) together for large-
scale data caching.

In this paper, we focus on the semi-external memory cache sharing
for multiple users/applications. Two critical metrics, i.e., fairness and
efficiency, are considered for the semi-external memory with several
challenges. First, it should be sensitive to DRAM and SSD for the
semi-external memory in view of their different access latencies.
Second, it is crucial to have a policy that can balance fairness and
efficiency elastically since there tends to be a tradeoff between them.
Third, there is a cheating problem for efficiency cache allocation and
we should have a robust allocation policy to address it.

We propose a new policy called ElasticSEM for the semi-external
memory. It performs the fair allocation of cache resources as a whole
with the awareness of different access latencies between DRAM and
SSD. Moreover, it contains a knob that allows users to tune and
balance fairness and performance flexibly with a guarantee of θ -
relaxed fairness, where θ -relaxed fairness refers to as the maximum
difference of estimated cache resource allocations between any two
users in SEM. Finally, we implement ElasticSEM in an in-memory
storage system called Alluxio. The testbed experimental results show
that ElasticSEM can achieve high performance and fairness.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICPP’20, Aug 17–18, 2020, Edmonton, AB, Canada
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

CCS CONCEPTS
• Information systems → Information storage systems; • Com-
puter systems organization → Dependable and fault-tolerant sys-
tems and networks.

KEYWORDS
Semi-external Memory; Fairness; Efficiency; Cache Sharing; Elas-
ticSEM; Cheating

ACM Reference Format:
Shanjiang Tang, Qifei Chai, Ce Yu, Yusen Li, and Chao Sun. 2020. Balancing
Fairness and Efficiency for Cache Sharing in Semi-external Memory System.
In ICPP’20: 49th International Conference on Parallel Processing (ICPP).
ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/1122445.
1122456

1 INTRODUCTION
In the current era of big data, data caching is an efficient approach
for most large-scale data processing frameworks (e.g, Piccolo [28],
M3R [32], Spark [34, 44]) and storage systems (e.g., Redis [12],
Memcached [16], Tachyon [24]) to achieve high performance for
data analytics. Given the fact that the memory (DRAM) I/O is gener-
ally several orders of magnitude faster than that of hard disks (HDD),
in-memory caching solutions [16, 44] have been widely exploited as
the main toolchain for high-performance data caching [30].

However, the cost of DRAM is much expensive compared to
disks, increasing from a few thousand dollars to tens of thousands
of dollars when it exceeds 64 GB per machine [10]. It constrains
the capacity of DRAM severely subject to the limited budget. Com-
pared to DRAM, flash memory has a larger capacity and lower
cost. Due to these, Solid State Disks (SSD), an instance of NAND
flash memory and Non-volatile memory (NVM), has become in-
creasingly popular in recent years. It is filling the price/performance
gap between DRAM and HDD. Given these, there is a new popu-
lar memory model called Semi-External Memory (SEM) [10, 27]
that extends DRAM by integrating SSD together to overcome the
capacity limitation of DRAM. It has been widely used by many
applications [10, 27, 46, 47].

In this work, we consider the data caching for multiple users in
SEM under a shared environment such as cloud. Compared to the

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

ICPP’20, Aug 17–18, 2020, Edmonton, AB, Canada Shanjiang Tang, Qifei Chai, Ce Yu, Yusen Li, and Chao Sun

isolated cache allocation without sharing, cache sharing across users
can improve the efficiency of SEM cache significantly. First, it can
maximize the SEM utilization by allowing overloaded users to use
the idle SEM resources from underloaded users. Second, instead of
having multiple copies of the same data for multiple users in the
isolated allocation, cache sharing only needs to keep one copy of
the same data in SEM by enabling users to share the same data,
which can save space for caching more data [29]. Third, the cache
sharing provide opportunities to globally improve cache efficiency
by replacing cached data of low access frequencies with those of
high access frequencies.

Besides cache efficiency, fairness is another key factor concerned
by users in the shared SEM cache system. Max-min fairness is one
of the most prevalent fair allocation policies. It achieves fairness
by maximizing the minimum resource allocation for users in the
system [18, 36, 37]. It has been widely used for a variety of computer
resources, including CPU [11, 39], GPU [7, 22] and network link [15,
17]. When it comes to the storage system, despite a number of
fairness work available on DRAM [13, 23, 29] and SSD [31, 43],
all of them study the fair resource allocation for each storage device
separately. For SEM, a user’s caching data are stored on both DRAM
and SSD simultaneously. From a user’s viewpoint, it is most likely
that he/she only cares about the overall allocation and performance
result rather than the separate resource allocation from each storage
device. It indicates for SEM that we should take DRAM and SSD as
a whole in the cache resource allocation for users.

However, there are several challenges in this regard. First, the
SSD is multiple orders of magnitude slower than DRAM in data
access latency [47]. It means that we should be aware of this and
cannot simply treat DRAM as the same as SSD in resource allocation.
Second, there is often a tradeoff between the fairness and efficiency
in resource allocation according to prior work [21, 35]. Keeping
100% fairness strictly tends to result in low efficiency. Reversely,
pursuing for a high efficiency is often at the cost of compromised
fairness. It indicates that it is important to have a cache allocation
policy that can balance such a tradeoff. Third, as we will show in
Section 2, there can be a cheating problem for efficiency cache
allocation in SEM. It is thus necessary to have a robust allocation
policy that can disincentivize users to cheat.

We propose ElasticSEM, an elastic knob-based fairness-efficiency
allocation policy, to concern with the tradeoff between fairness and
efficiency for SEM. It allows users to balance the fairness and cache
efficiency flexibly in SEM via a tunable knob argument in the range
of [0, 1]. With a user’s setting of knob value, ElasticSEM can maxi-
mize the cache efficiency while offering a QoS of θ -relaxed fairness
guarantee, where θ is the maximum difference of estimated cache
resource allocations between any two users in SEM. We particularly
show that it does not always have a strict tradeoff between fairness
and efficiency, and then present a mathmatical formula telling users
how to set the knob value under such a non-strict tradeoff scenario.
To the best of our knowledge, ElasticSEM is the first fair policy
that integrates DRAM and SSD as a whole in cache resource al-
location for SEM by having different weights to DRAM and SSD
based on their data access latencies. Moreover, ElasticSEM is robust
since it can automatically detect cheats and prevent cheating users
from getting benefits. We have implemented ElasticSEM in Alluxio,
a popular in-memory file sytem. The testbed experimental results

illustrate that ElasticSEM is highly elastic and can achieve high
efficiency and fairness in SEM.

The rest of the paper is organized as follows. Section 2 gives
the background and motivation of the paper. Section 3 presents the
semi-external memory cache model. Section 4 makes an introduc-
tion and analysis of ElasticSEM allocation policy, followed by the
experimental evaluation in Section 5. We review the related work in
Section 6. Finally, we conclude the paper in Section 7.

2 BACKGROUND AND MOTIVATION
Memory Cache. Memory cache is an essential and widely used sys-
tem in serving many big data applications for high performance.
Big companies like Google, Baidu and Alibaba have equipped thou-
sands of cache servers that run a number of cache systems such as
memcached [16], Redis [12] and Alluxio [24] for a wide variety
of interactive and batch applications. Small companies can exploit
caching services (e.g., ElasticCache [1], Redis Labs [3]) provided
by cloud providers such as Amazon EC2 and Redis cloud for their
big data applications.

In face of ‘big data’, the size of DRAM is however often limited
due to the high cost of DRAM as well as its high power consumption,
restricting large-scale data applications from getting high in-memory
hit-rates that is essential for high performance [10]. To resolve this
limitation, flash memory such as solid-state drive (SSD) can be
leveraged. Although SSD is multiple orders of magnitude slower in
latency than DRAM, it has a larger capacity, lower cost and lower
power requirement. It can be used as an extension of DRAM to form
a new hybrid memory system called Semi-external Memory(SEM)
for scaling the performance of large-scale data applications [6, 27,
46, 47].

Efficiency vs Fairness. We focus on SEM caching, which enables
users to cache their data on DRAM and SSD. It has been supported
by many existing in-memory caching systems such as fatcache [2]
and Alluxio [24]. Typically, most of the above cache systems focus
on the global system efficiency (i.e., maximize cache hit rates) and
are oblivious to the entities (users) that access data. For example,
web caches do not care about which user accesses a webpage. As a
consequence, users who access data at a higher rate (i.e., contributing
more to system efficiency improvement) would get more cache
resources than the other users, resulting in unfairness.

To illustrate these points, consider the following examples for
SEM allocation.

EXAMPLE 1. Consider a SEM consisting of 100 GB DRAM and
300 GB SSD, where the latency ratio of DRAM to SSD is 1/6. It
is shared by two users 1 and 2 equally. User 1 contains two data
d1,1 (size: 300 GB, access frequency: 60 times/sec) and d1,2 (size:
100 GB, access frequency: 100 times/sec). User 2 has two data d2,1
(size: 100 GB, access frequency: 15 times/sec) and d2,2 (size: 200
GB, access frequency: 18 times/sec).

Figure 1 (a) presents the SEM allocation result under the global
sharing policy (e.g., LFU), which is taken by existing cache sys-
tems for efficiency maximization. It always chooses data with larger
access frequencies and tries first to cache them in DRAM than
SSD (We will show in Lemma 1 of later section that putting data
with higher access frequencies in DRAM first can achieve better
allocation efficiency than in SSD). The final allocation turns to

Balancing Fairness and Efficiency for Cache Sharing in Semi-external Memory System ICPP’20, Aug 17–18, 2020, Edmonton, AB, Canada

DRAM SSD

300

Capacity
(GB)

100

Devices

Global Resource Sharing (e.g., LFU)

User1’s d1,1 :

User1’s d1,2 :

User2’s d2,1 :

User2’s d2,2 :

<100GB, 100 times/sec>

<100GB, 15 times/sec>

<200GB, 18 times/sec>

<300GB, 60 times/sec>

100

300

(a) Global resource sharing cache allocation.
The total allocation efficiency is 13000(= 100 ·

100/1 + 60 · 300/6).

DRAM SSD

300

Capacity
(GB)

100

Devices

Separate max-min fairness

User1’s d1,1 :

User1’s d1,2 :

User2’s d2,1 :

User2’s d2,2 :

<100GB, 100 times/sec>

<100GB, 15 times/sec>

<200GB, 18 times/sec>

<300GB, 60 times/sec>

50

50

50

100

150

(b) Separate max-min fairness cache allocation.
The total allocation efficiency is 8180(= 100 ·

50/1+18 ·50/1+100 ·50/6+60 ·100/6+18 ·150/6)

DRAM SSD

300

Capacity
(GB)

100

Devices

Global max-min fairness

User1’s d1,1 :

User1’s d1,2 :

User2’s d2,1 :

User2’s d2,2 :

<100GB, 100 times/sec>

<100GB, 15 times/sec>

<200GB, 18 times/sec>

<300GB, 60 times/sec>

70

30

30

100

170

(c) Global max-min fairness cache allocation.
The total allocation efficiency is 8800(= 100 ·

70/1+18 ·30/1+100 ·30/6+18 ·170/6+15 ·100/6).

Figure 1: Cache allocations for Example 1 under different allocation policies. The capacities of DRAM and SSD are 100 and 300, respectively. The
latency ratio of DRAM to SSD is 1/6.

be that all data of User 1 are cached in SEM and but there is no
data cached for User 2, resulting in unfairness problem for User
2 although it achieves the maximum overall cache efficiency (See
formal definition and estimation of cache efficiency in Section 3) of
13000(= 100 · 100/1 + 60 · 300/6).

Max-min fairness is one of the most popular fairness policy. It
achieves fairness by maximizing the minimum allocation across
all users. To address the unfairness problem above, one natural
solution is to perform max-min fairness separately for DRAM and
SSD among users in SEM (named as separate max-min fairness).
Figure 1 (b) illustrates the allocation result for Example 1 under
the separate max-min fairness policy. User 1 and 2 both receive the
same amount of DRAM and SSD cache resources in SEM while
achieving a maximum cache efficiency of 8180(= 100 · 50/1 + 18 ·

50/1 + 100 · 50/6 + 60 · 100/6 + 18 · 150/6).
Another fairness approach is to perform max-min fairness glob-

ally across users by taking DRAM and SSD as a whole (named as
global max-min fairness). In contrast to the separate max-min fair-
ness allocation, it allows users to trade some DRAM resources for
more SSD resources and vice versa across users for maximizing over-
all efficiency. Figure 1 (c) shows the allocation result of the global
max-min fairness for Example 1. It allows users to trade 1G DRAM
for 6G SSD according to the latency ratio of DRAM to SSD, and vice
vera. Compared to Figure 1 (b), User 2 trades 20GB DRAM with
User 1 for more 120GB SSD in Figure 1 (c) so that User 1 can cache
more data of d1,2 (with the most access frequency) in DRAM in order
for efficiency maximization (according to Lemma 1). After trading,
it keeps fairness for User 1 and 2 while getting an overall cache effi-
ciency of 8800(= 100·70/1+18·30/1+100·30/6+18·170/6+15·100/6,
larger than the separate max-min fairness in Figure 1 (b). It indicates
for SEM that the global max-min fairness outperforms the separate
max-min fairness in efficiency.

By comparing Figure 1 (a) with Figure 1 (b) (or Figure 1 (c)), it
shows that there is a tradeoff between fairness and efficiency in SEM
cache allocation. Moreover, although the global resource sharing
policy gains the highest cache efficiency, it can bring the cheating
problem for users compared with the separate max-min fairness and
global max-min fairness policies. Going back to Example 1 with
the global resource sharing policy (e.g., LFU), User 2 can cheat

the SEM system to reclaim some of its cache back by artificially
increasing its data access rate (e.g., increasing access rate of d2,2
from 18 to 120 times/sec). While lying can help User 2 improve
its cache efficiency, it decreases the overall cache efficiency (i.e.,
worse performance). Worse still, if every user does the same thing
of artificially increasing its data access frequencies, it will lead to
worse cache efficiency for every user than when acting truthfully.
Therefore, the global resource sharing policy is not robust to users’
cheating.

Summary. Through the examples above, we have made the fol-
lowing observations. 1) There is a tradeoff between fairness and
efficiency in SEM cache resource allocation for users; 2) Global
resource sharing policy such as LFU has a cheating problem; 3)
Global max-min fairness is superior to separate max-min fairness in
SEM allocation.

Thus, in this work, we seek to design a flexible and robust fairness-
efficiency I/O scheduler for SEM cache that can balance fairness
and efficiency while detecting and dealing with cheating problem by
itself.

3 SEMI-EXTERNAL MEMORY CACHE
MODEL

I/O
Scheduler

Semi-external Memory

User 1

User 2

User n
HDDs

DRAMs

Data Storage System

SSDs

Figure 2: The semi-external memory cache model.

As illustrated in Figure 2, the storage system of the semi-external
memory cache model consists of DRAMs, SSDs and HDDs ar-
rays. The DRAM and SSD are independent cache devices with-
out frequent data migrations among them. Let SDRAM , SSSD and

ICPP’20, Aug 17–18, 2020, Edmonton, AB, Canada Shanjiang Tang, Qifei Chai, Ce Yu, Yusen Li, and Chao Sun

SHDD (subject to SDRAM < SSSD < SHDD) denote the storage
capacities of DRAM, SSD and HDD respectively, and the data ac-
cess latencies are referred to as tDRAM , tSSD and tSSD (subject to
tDRAM < tSSD < tHDD) respectively.

A user makes a number of I/O requests to the SEM system. The
target of each request is either the DRAM, SSD or HDD, and is
known to the I/O scheduler. An access to the DRAM and SSD is
referred to as a cache hit and access to the HDD is a cache miss.
Let di = {di,1,di,2, · · ·,di, j , · · ·} denote the set of data currently
cached for user i, and l(di, j) and f (di, j) represent the length (or
size) and access frequency for User i’s data di, j , respectively. Let
L(di, j) ∈{DRAM, SSD, HDD} be the stored location for User’s data
di, j . The data access frequency and stored location for different
applications are generally different and can be varying at runtime.

Suppose there aren users with the shared weights of w = {w1,w2, ··
·,wn }. The I/O requests of each user are stored in a user-specific
queue from which they are dispatched to internal queues of the stor-
age array by the I/O scheduler. The I/O scheduler is aware of the
target device (DRAM, SSD or HDD) of a request, and dynamically
determines where to cache the requested data (e.g., in DRAM or in
SSD).

The cache model takes DRAM and SSD of SEM as a whole based
on their different access latencies. Typically, we define and estimate
the cache efficiency φ(di) for User i in SEM according to data access
frequency and data size as follows,

φ(di) =
∑

d∈dDRAMi

f (d) · l (d)
tDRAM

+
∑

d∈dSSDi

f (d) · l (d)
tSSD

, (1)

where dDRAMi = {d |d ∈ di ∧ L(d) = DRAM} and dSSDi = {d |d ∈ di
∧L(d) = SSD}.

4 ELASTIC SEMI-EXTERNAL MEMORY
ALLOCATION

This section describes an elastic fairness-efficiency resource allo-
cation model that can balance the tradeoff between fairness and
allocation efficiency flexibly as needed.

4.1 Allocation Model
We first define some terms used in the allocation model. The fair
share of a user is referred to as the cache resources it obtains when
each of the resources is split among all users equally. Let si represent
the weighted fair share of User i. The total amount of DRAM and
SSD cache resources for User i after equal partition are SDRAM ·

wi∑
1≤j≤n w j

and SSSD ·
wi∑

1≤j≤n w j
, respectively. Due to the significant

gap of data access latency between DRAM and SSD, we cannot
simply treat DRAM and SSD the same. One fairness approach is
to perform the max-min fairness for DRAM and SSD across users
separately. However, we have shown in Section 2 that the separate
max-min fairness is not efficient in performance. Alternatively, we
can improve its performance via the global max-min fairness that
combines DRAM and SSD as a whole in resource allocation for
users (See Section 2). That is, we make 1/tSSD DRAM resources
trade for 1/tDRAM SSD resources and vice versa according to their
different access latencies. Then, we can compute the fair share si as

si =
wi∑

1≤j≤n wj
·
SDRAM
tDRAM

+
wi∑

1≤j≤n wj
·
SSSD
tSSD

. (2)

Let HDRAM
i and HSSD

i denote the total amount of estimated al-
locations for user i from DRAM and SSD devices of the shared
SEM, respectively. An allocation is called fair when the total esti-
mated resources Hi (i.e., Hi = HDRAM

i +HSSD
i) obtained by every

user i ∈ [i,n] in the shared SEM system is proportional to its own
fair share. That is, the fairness is achieved for the global max-min
fairness when the following holds,

Hi
si
=

Hj
sj

, ∀i, j ∈ [1, n]. (3)

However, the global max-min fairness only targets at 100% fair-
ness, which is at the expense of the global cache efficiency sig-
nificantly. As we have illustrated in Figure 1 (c), the allocation
efficiency for the global max-min fairness is 8800, which is only
8800/13000 = 67.7% of the global resource sharing policy as shown
in Figure 1 (a). Reversely, seeking for the maximum allocation ef-
ficiency can result in poor fairness. In Figure 1 (a), it achieves the
maximum allocation efficiency by making user 1 possess all SEM
resources and no resources for User 2, which is however quite unfair
for User 2. It indicates that there tends to have a tradeoff between
fairness and allocation efficiency.

Moreover, for any cache allocation policy in SEM, we have a
general guideline for its data caching as follows,

LEMMA 1. It is more efficient to cache data of higher access
frequency in DRAM than in SSD for any allocation policy.

PROOF. Assume by the contradiction that the best cache effi-
ciency occurs when there exists a data d1 in SSD with a higher access
frequency than a data d2 in DRAM, i.e., L(d1) =SSD, L(d2) =DRAM
and f (d1) > f (d2). Consider two data d

′

1 and d
′

2 of the same size,
where d

′

1 and d
′

2 are sub-data of d1 and d2 (i.e., d
′

1 ⊆ d1 and d
′

2 ⊆ d2),
respectively. It then holds f (d

′

1) = f (d1), f (d
′

2) = f (d2), and
l(d

′

1) = l(d
′

2). The cache efficiency contributed by d
′

1 and d
′

2 can
be estimated as

φ(d
′

1
⋃

d
′

2 |L(d
′

1) = SSD ∧ L(d
′

2) = DRAM) = f (d
′

1) ·
l (d

′

1)

tSSD
+ f (d

′

2) ·
l (d

′

2)

tDRAM
. (4)

If we switch the locations of data d
′

1 and d
′

2 so that d
′

1 is located in
DRAM and d

′

2 is in SSD while other data keep unchanged, then the
cache efficiency contributed by d

′

1 and d
′

2 is

φ(d
′

1
⋃

d
′

2 |L(d
′

1) = DRAM ∧ L(d
′

2) = SSD) = f (d
′

1) ·
l (d

′

1)

tDRAM
+ f (d

′

2) ·
l (d

′

2)

tSSD
. (5)

We can get that the value of Formula (5) is larger than Formula (4),
violating the assumption and our proof completes. □

4.2 ElasticSEM Allocation Policy
We propose an elastic fairness-efficiency policy named ElasticSEM
that enables users to balance the fairness and efficiency flexibly.
Instead of pursuing for 100% fairness strictly as the global max-min
fairness policy does in SEM cache, we compromise fairness for
increased allocation efficiency by tolerating some degree of fairness
loss. Typically, we categorize the fairness into two types, namely,
strict fairness and relaxed fairness. The strict fairness means that
the normalized allocation shares of all users should be equal (i.e.,
Formula (3) should be guaranteed). In contrast, the relaxed fairness

Balancing Fairness and Efficiency for Cache Sharing in Semi-external Memory System ICPP’20, Aug 17–18, 2020, Edmonton, AB, Canada

tolerates some degree (marked by θ) of unfairness between users.
Formally, we define θ -relaxed fairness by changing Formula (3) as

max
1≤i, j≤n

{
Hi
si

−
Hj
sj

} ≤ θ . (6)

The global max-min fairness focuses on the strict fairness across
users, which is at the expense of the allocation efficiency dramati-
cally. In contrast, ElasticSEM, as a fairness-efficiency tradeoff allo-
cation policy, is interested in the relaxed fairness, which can leave
some space for efficiency improvement.

4.2.1 ElasticSEM Design. The fairness-efficiency tradeoff al-
location can be achieved with a mix of two phases allocations:
fairness-stage allocation (i.e., purely for fairness optimization) and
efficiency-stage allocation (i.e., purely for efficiency optimization).
ElasticSEM first guarantees the relaxed fairness by performing the
fairness-stage allocation with the global max-min fairness policy.
Next, it performs the efficiency-stage allocation for efficiency max-
imization using the global resource sharing policy. To allow users
to control and tune the tradeoff flexibly, ElasticSEM provides users
with a knob σ ∈ [0, 1] to balance the two phases allocations flexibly.
Let H̄i and H

′

i be the resulting allocations for ElasticSEM in the
fairness-stage allocation and efficiency-stage allocation, respectively.
Then, we have

Hi = H̄i + H
′

i . (7)

In the phase of fairness-stage allocation, instead of guaranteeing
the strict fairness of si for each user, ElasticSEM focuses on the
relaxed fairness of si · σ (i.e., H̄i = si · σ). Rewriting Formula (7), it
holds

Hi = si · σ + H
′

i . (8)

According to Formula (2) and (8), the system then can leave (SDRAMtDRAM +
SSSD
tSSD)(1 − σ) resources for efficiency-stage allocation. The small
value of σ favors the efficiency optimization. In contrast, the large
value of σ benefits for the fairness-stage allocation. Particularly,
ElasticSEM reduces to the global max-min fairness when σ = 1, and
to the global resource sharing policy when σ = 0.

After the minimum allocation of si · σ is guaranteed for each user
i, the system moves to the phase of efficiency-stage allocation. In
this phase, the global resource sharing policy (e.g., LRU, LFU) can
be taken for efficiency optimization.

THEOREM 1. ElasticSEM is a θ -relaxed fairness policy where
θ =

max1≤i≤n
(1−σ)·

∑n
j=1 w j

wi
.

PROOF. According to the relaxed fairness definition, our proof
is equivalent to finding a θ such that max1≤i≤n {

Hi
si −

Hj
sj } ≤ θ . For

any two users ∀i, j ∈ [1,n],

max
1≤i≤n

{
Hi
si

−
Hj
sj

} = max
1≤i, j≤n

{
si · σ + H

′

i
si

−
sj · σ + H

′

j

sj
}

= max
1≤i, j≤n

{
H
′

i
si

−
H
′

j

sj
} ≤ max

1≤i≤n

H
′

i
si

. (9)

Moreover, it holds
n∑
i=1

si =
SDRAM
tDRAM

+
SSSD
tSSD

.

and

0 ≤

n∑
i=1

Hi ≤
SDRAM
tDRAM

+
SSSD
tSSD

⇒ 0 ≤

n∑
i=1

{si · σ + H
′

i } ≤
SDRAM
tDRAM

+
SSSD
tSSD

⇒ 0 ≤

n∑
i=1

H
′

i ≤ (1 − σ) ·
n∑
j=1

sj ⇒ 0 ≤ max
1≤i≤n

H
′

i
si

≤ max
1≤i≤n

(1 − σ) ·
∑n
j=1 sj

si

⇒ 0 ≤ max
1≤i≤n

H
′

i
si

≤
(1 − σ) ·

∑n
j=1 wj

wi

⇒ max
1≤i≤n

{
Hi
si

−
Hj
sj

} ≤ max
1≤i≤n

(1 − σ) ·
∑n
j=1 wj

wi
.

Therefore, ElasticSEM is a θ -relaxed fairness policy by letting

θ = max1≤i≤n
(1−σ)·

∑n
j=1 w j

wi
. □

In summary, ElasticSEM is a knob-based hybrid of the global
max-min fairness and global resource sharing policies, aiming at
a θ -relaxed fairness guarantee determined by the configured knob
σ . In the following, we describe the cache allocation procedure for
ElasticSEM policy in detail.

ElasticSEM Allocation. Algorithm 1 shows the implementation
of ElasticSEM. It maintains two user lists called FairnessGuaran-
teedUserSet and FairnessNOTGuaranteedUserSet (Line 2-3). The
relaxed fairness of each user (determined by the knob σ) in the Fair-
nessGuaranteedUserSet is guaranteed, whereas not for users in the
FairnessNOTGuaranteedUserSet. When a user u accesses a data d,
the system checks whether there is sufficient space to cache it. If
not, it repeatedly evicts the data of users from SEM so that there is
enough room for data d (Line 4-14). Every time, it chooses a user u

′

with the cached data d
′

of the lowest priority in SEM (Line 5) as an
eviction candidate. There are two cases for not caching data d. The
first case occurs when the relaxed fairness of user u has been satis-
fied and the priority of its data d is not larger than the cached data
d
′

(Line 6-7). The second case can be that the candidate user u
′

is just
the user u and it is possible for data d to not be actually cached when
the priority of d is lower than that of candidate data d

′

(Line 8-9).
The caching priority depends on the eviction policy. For example,
the priority in LFU represents the access frequency of data, whereas
priority in LRU denotes the inverse of the time interval since it has
been accessed. Similarly, in the max-min fairness policy, the priority
refers to as the decreasing order of their resource allocation. The
eviction process actually starts when the user u’s relaxed fairness is
not guaranteed yet (for fairness-stage allocation) or the data d has a
higher priority than that of the candidate data d

′

(for efficiency-stage
allocation) (Line 10-14). Finally, the cache allocation of Algorithm 2
works when there are enough idle resources in SEM (Line 15).

Analysis of ElasticSEM. ElasticSEM allows users to balance the
tradeoff between fairness and efficiency flexibly by tuning the knob
value. In practice, different applications may have different tradeoff
degrees. Due to this, we show in the following that there can be
a value range of knob under which the allocation results keep the
same, which we called Knob Ineffective Range (KIR) (denoted by
ρ ∈ [0, 1]).

The KIR ρ can be retrieved by analyzing the allocations results
of pure efficiency-stage allocation for which a certain degree of
relaxed fairness has already been guaranteed. Let H0

i be the resulting
allocation for User i when knob σ = 0 (i.e., pure efficiency-stage
allocation). The value of H0

i depends on many factors including the
distribution of data access frequencies and data sizes. We can see

ICPP’20, Aug 17–18, 2020, Edmonton, AB, Canada Shanjiang Tang, Qifei Chai, Ce Yu, Yusen Li, and Chao Sun

Algorithm 1 Elastic Semi-external Memory Allocation (ElasticSEM).

1: function ELASTICSEM(u, d)
2: FairnessNOTGuaranteedU serSet = {i ∈ [1, n] |Hi < si · σ }.
3: FairnessGuaranteedU serSet = {i ∈ [1, n] |Hi ≥ si · σ }.
4: while DRAM .availableSize + SSD .availableSize < d .size do
5: Choose User u

′
from FairnessGuaranteedUserSet containing a cached data d

′
of the

lowest priority in SEM.

6: if u ∈ FairnessGuaranteedUserSet AND d .pr ior ity ≤ d
′
.pr ior ity then

7: return CACHE_ABORT.
8: else if u = u

′
and d

′
.pr ior ity > d .pr ior ity then

9: return CACHE_ABORT.
10: else if u ∈ FairnessNOTGuaranteedUserSet OR d .pr ior ity > d

′
.pr ior ity then

11: if d
′
.location = DRAM then

12: DRAM .availableSize+= d
′
.size, dDRAMi -= d

′
.

13: else if d
′
.location = SSD then

14: SSD .availableSize+= d
′
.size, dSSDi -= d

′
.

15: CACHEALLOCATION(u, d). ▷ Cache data d for user u .

Algorithm 2 Cache allocation function.

1: function CACHEALLOCATION(u, d)
2: A = DRAM .availableSize, Di = dDRAMi .

3: A
′
= SSD .availableSize, D

′

i = dSSDi .
4: if A ≥ d .size then ▷ Cache data d in DRAM of SEM.
5: A− = d .size, Di+ = d .size .
6: else if A < d .size then ▷ Cache data d in both DRAM and SSD of SEM.
7: Split d into two parts d = {d1, d2 } satisfying that d1 .size = d .size − A, d2 =

d − d1 .
8: A− = d1 .size, A

′
− = d2 .size, Di+ = d1, D

′

i+ = d2 .

that every user can get at least a normalized share ofmin1≤i≤n
H 0
i

si
resources, implying that the pure efficiency-stage allocation can guar-

antee the relaxed fairness when 0 ≤ σ ≤ min1≤i≤n
H 0
i

si . According
to KIS definition, we have

ρ =min1≤i≤n
H 0
i

si
. (10)

The allocation result of KIR is the same as that of pure efficiency-
stage allocation, i.e.,

Hi = H 0
i , (0 ≤ σ ≤ ρ). (11)

If ρ = 0, there is no KIR, meaning that it has a strict 100% tradeoff
between fairness and efficiency. In contrast, there is no tradeoff
between fairness and efficiency if ρ = 1. Typically, when there are
two users, we have:

THEOREM 2. Let H0
1 and H0

2 be the resulting allocation for User
1 and User 2 when knob σ = 0 under ElasticSEM, respectively. Then
it holds.

H1 = H 0
1 , H2 = H 0

2 , (0 ≤ σ ≤ min{H 0
1 /s1, H 0

2 /s2 })

H1 = s1 · σ , H2 = S − s1 · σ , (H 0
1 /s1 ≤ H 0

2 /s2&&H 0
1 /s1 < σ ≤ 1) (12)

H1 = S − s1 · σ , H2 = s2 · σ , (H 0
1 /s1 > H 0

2 /s2&&H 0
2 /s2 < σ ≤ 1)

4.2.2 Cheating Problem for ElasticSEM. So far, we have im-
plicitly assumed for ElasticSEM that users are honest toward their
data access frequency in SEM cache. However, in practice, users
might game/cheat the system by spuriously increasing their data ac-
cess frequency for caching more data in the phase of efficiency-stage
allocation. In Section 2, we have shown that such a cheating behavior
can make users get benefits under the global resource sharing policy.
Similarly, for the ElasticSEM policy, we show in the following that
the cheating problem does also exist.

Let revisit Example 1 to consider the cache allocation under the
ElasticSEM policy, where the knob is σ = 0.5. Figure 3 presents the

allocation results for ElasticSEM in two cases, namely, no cheating
and cheating. When all users are honest, it achieves a global cache
efficiency of 100 · 100/1+60 · 75/6+15 · 25/6+18 · 200/6 = 11412.5
while guaranteeing a relaxed fairness of | 100/1+75/6

50/1+150/6−
25/6+200/6
50/1+150/6 | = 1

as illustrated in Figure 3 (a). In contrast, if for example User 2 cheats
by spuriously increasing its access rate of data d2,2 to 101, the
allocation result then turns to be Figure 3 (b). The global cache
efficiency in this case reduces to 18 · 100/1 + 60 · 125/6 + 100 ·

100/6+ 18 · 75/6 = 4941.67 while guaranteeing a relaxed fairness of
|
100/1+75/6
50/1+150/6 −

125/6+100/6
50/1+150/6 | = 1 compared with Figure 3 (a). Moreover,

through cheating, User 2 gets more resources in Figure 3 (b)(e.g.,
100/1+75/6=112.5) than that in Figure 3 (a) (e.g., 25/6+200/6=37.5).
Thus, ElasticSEM is not robust and cheating can harm its global
cache efficiency.

DRAM SSD

300

Capacity
(GB)

100

Devices

100 75

User1’s d1,1 :

User1’s d1,2 :

User2’s d2,1 :

User2’s d2,2 :<100GB, 100 times/sec>

<100GB, 15 times/sec>

<200GB, 18 times/sec>

<300GB, 60 times/sec>

DRAM SSD

300

Capacity
(GB)

100

Devices

100

75

200

(a) ElasticSEM with no cheating (b) ElasticSEM with cheating

With cheating vs without cheating

25

100

125

Figure 3: ElasticSEM allocation for Example 1 with and without cheat-
ing, where the knob σ = 0.5. In (b), user 2 makes spurious access to
d2,2 such that its access frequency exceeds d1,2, which makes it obtain
more resources in Figure 3 (b)(e.g., 100/1+75/6=112.5) than that in Fig-
ure 3 (a) (e.g., 25/6+200/6=37.5).

4.2.3 Cheating Detection and Punishment. In Figure 3 (b), ly-
ing can help User 2 cache more data without any penalty. Intuitively,
if there is a mechanism that can detect the cheating behavior of User
2 and penalize him at runtime, he will be disincentivized to cheat.

Typically, we consider two kinds of cheats for data caching. One
cheat occurs when the data is located at the HDD (named HDD-side
Cheating). A user might increase its access frequency spuriously so
as to cache it on the SEM. An example of HDD-side Cheating is
illustrated in Figure 3 (b). In contrast, another cheat can take place
for cached data in SEM (named SEM-side Cheating). In order to
prevent other users from replacing its cached data, a user can cheat
by artificially increasing its access frequency. Both of cheats are
harmful for cache efficiency and should be avoided.

Cheating Detection. We first need a mechanism that can dynami-
cally differentiate a cheating and a well-behaved user. Due to the fact
that the access frequencies of users’ data in practice are often varying
over time, it makes cheating detection become a challenging task.
This is because apart from cheating users, the data access frequency
of well-behaved users might also increase at runtime, making it hard
for us to judge whether it is a cheating or well-behaved user.

To address it, we propose a delay-based cheating detector by
assuming that users have no knowledge or information (e.g., the

Balancing Fairness and Efficiency for Cache Sharing in Semi-external Memory System ICPP’20, Aug 17–18, 2020, Edmonton, AB, Canada

owner of the data, data access frequency) about cached data in the
SEM system. This assumption is reasonable in practice since caches
in real-world systems are often transparent to end users/applications,
and automatically maintained and managed by the (e.g., OS) sys-
tems. It monitors the access frequency of each data and then finds
out cheating behavior based on recorded historical data access fre-
quencies dynamically. Two cheating cases should be considered as
follows.

The first case can be that in order to have its non-cached data
to be cached into SEM as soon as possible, a cheating user might
artificially increase its access frequency quickly. Then, there will be
a big jump for its data access frequency increment. In this case, we
can make cheating detection by searching such a ‘jump’.

The second cheating case is more complex and harder to detect.
In order to escape from being detected, a cheating user might try to
mimic a honest user by increasing its data access frequency smoothly
until its data is being cached. In this case, there is no ‘jump’ point
for its data access frequency. To tackle it, we propose a delay-based
detection approach based on previous assumption. Since users have
no knowledge on the status of the SEM caching system, it is most
likely that a cheating user would continuously increase its data access
frequency in order for caching its data. However, it is not sufficient
for us to judge whether such a user is cheating or not, since such
an increasingly data access frequency does also exist for a well-
behaved user in a short period of time (but not for a long time).
In order to further check it, we delay to cache the data for a while
(e.g., delay_interval). During this interval, if we observe that its
data access frequency continues to become increasingly larger, it
is assumed to be abnormal and treated as a cheating user. Through
such a relative long period checking, we believe it can be effective to
distinguish cheating and honest users (See experimental validation
in Section 5).

Comparatively, the HDD-side cheating can be available in both
cheating cases, whereas the SEM-side cheating is most likely to
occur in the second cheating case.

Cheating Punishment. Penalization is an effective way to prevent
users from cheating. However, penalization itself is often at the cost
of the performance efficiency. Minimizing penalization cost is thus
non-trivial in cheating prevention.

We change ElasticSEM policy by adding cheating detection and
punishment, as shown in Figure 4. When a user i makes a data access
request on di, j (Arrow 1), we first check whether it has been cached
or not. A cache hit returns if it has been cached (Arrow 2). Otherwise,
it takes ElasticSEM policy depicted in Algorithm 1 to see whether
di, j should be cached or not (Arrow 3,4). If No, a cache miss will
be given (Arrow 5). Otherwise, we move further to see whether its
data caching occurs in the fairness-stage allocation or not (Arrow 6).
If Yes, a cache hit returns directly and the data di, j is cached with
no cheating detection (Arrow 7). It is because in the fairness-stage
allocation, lying does not bring any benefit for a cheating user, i.e.,
there is no incentiveness for a user to cheat in the fairness-stage
allocation. Otherwise, it belongs to the efficiency-stage allocation
(Arrow 8). Notably, if the replacing data d

′

and data di, j are from the
same user, there is no benefit for the cheating user. Worse yet, lying
can even harm the cheating user himself when the access frequency
of d

′

is larger than the true access frequency of data di, j . That is,

User i

Yes

No

cache hit

No YesDelay time <
Delay_Interval

accesses
data di,j(1)

(2)

(3)

(12) (11)
True

(13)

ElasticSEM

cache miss
No

Yes

Yes

Fairness-purpose
Allocation?

ElasticSEM

Cheating
Detected

False

(4)

(5)
(6)

(10) No(14)

Cache di,j ?

di,j Cached

The same
user?

(7)

(8) No

(9)

Yes

Figure 4: ElasticSEM policy with cheating detection and punishment
mechanism.

it is disincentive for a user to cheat in this case. Thus, we make a
cache hit by caching the data di, j with no need of cheating detection
(Arrow 9). Otherwise, lying can make a user get benefit and thus a
cheating detection and punishment mechanism is needed in this case
(Arrow 10).

We propose an adaptive delay-based punishment approach. It
defines a term called User Cheating Degree (denoted asψi) for each
user i based on the number of data cheating it has made (denoted
asmi) over a monitoring time window Tw configured by users, i.e.,
ψi = mi . Typically, a user i is honest when ψi = 0 and the larger
value of ψi indicates the cheating user i is more likely to make
cheat for its data caching request. Using it, we can make different
punishments among cheating users by giving more penalties to those
users with larger User Cheating Degree, which can be effective to
stop users from cheating.

Specifically, there is an argument Delay_Interval (denoted as
tdeli) for each user i, which is proportional to User Cheating Degree,
i.e.,

tdeli = ∆tdel · (ψi + 1), (13)

where ∆tdel is a minimum delay time configured by users. In our
experiment below, we initialize ∆tdel to be the disk bandwidth,
which is estimated by running a file of unit size. When a user’s
data satisfies the caching condition in the efficiency-stage allocation,
we will delay it for Delay_Interval for two purposes (Arrow 11).
One is to act as a punishment for a user based on his cheating
history by giving it a cache miss without caching the data before
its delay time exceeds the Delay_Interval (Arrow 11). The other
is for cheating detection by delaying it using previous delay-based
cheating detector. It analyzes whether it is a cheating data or not after
Delay_Interval (Arrow 12). If cheating detection is true, it returns

ICPP’20, Aug 17–18, 2020, Edmonton, AB, Canada Shanjiang Tang, Qifei Chai, Ce Yu, Yusen Li, and Chao Sun

a cache miss without caching the data (Arrow 13). Moreover, the
system maintains a data cheating blocklist by putting all cheating
data detected during a time windowTw into it. As a punishment, any
cheating data in the data cheating blocklist will not be considered
in the later data caching. Otherwise, the data will be cached by
returning a cache hit (Arrow 14).

5 EXPERIMENTAL EVALUATION
We have implemented ElasticSEM in Alluxio-1.4.0, and evaluated
ElasticSEM policy using both micro- and macro- benchmarks in an
Alluxio cluster.

5.1 Experimental Setup
Alluxio Cluster. We deploy the Alluxio framework in a cluster
consisting of 11 computing nodes each with 8 CPU cores and 16 GB
memory. For each node, we configure 4GB memory as DRAM cache
and use 8GB memory to emulate SSD cache. We set one machine as
the master and the remaining 10 machines as slaves.

Macro-benchmark. We evaluate ElasticSEM by running three
workloads:

• Synthetic Facebook Workload. We synthsize Facebook work-
load according to the distribution of job submission time,
input data bytes and input data access frequency derived from
SWIM’s Facebook workload traces (e.g., FB-2010_samples_24_
times_1hr_withInputPaths_0.tsv) [5]. We found that the data
access of Facebook workload trace complies with Zipf dis-
tribution. The jobs are from Hive benchmark [4], consisting
of four applications, i.e., uservisits aggregation, grep search
(selection), rankings-uservisits join and rankings selection.

• Purdue Workload. We have generated over 30 datasets, each
of 1 GB based on Wikipedia data. Five benchmarks (e.g.,
WordCount, Grep, Inverted-index, Term-Vector and Multi-
wordcount) are randomly chosen from Purdue benchmarks
suite [8] to access these data for computation.

• TPC-H Workload. The TPC-H benchmark contains a set of
analytic queries for users’ decision support. We have gener-
ated over 300 TPC-H datasets, each of 200 MB. Each dataset
consists of eight separate and individual tables, ranging from
10KB to 80MB.

Micro-benchmark. We assume there are two users with equal
share of SEM cache resources. Each user accesses 40 files in the
system. We assume that users knew a priori which files are currently
cached in the system, and could game the sytem by making excessive
accesses those files they want to cache.

In the following, we use the macro-benchmarks to evaluate the
performance of ElasticSEM policy (Section 5.2.3), while evaluat-
ing the cheating problem as well as fairness (Section 5.2.1) and
efficiency tradeoff with micro-benchmarks (Section 5.2.2).

5.2 Experimental Results
5.2.1 Cheating and Punishment. In this section, we start with
micro-benchmarks to illustrate that ElasticSEM can dis-incentivize
users to cheat, whereas the global resource allocation policy cannot.
The LFU is adopted as the cache replacement policy for this exper-
iment. We configure the knob of ElasticSEM to be zero for pure
efficiency resource allocation.

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10 100 190 280 370 460 550 640 730 820 910 1000

Av
g	
re
sp
on

se
	�

m
S)

Access		#

User	1.avg_time User	2.avg_time

User	1	cheats
User	2	cheats

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10 60 11
0

16
0

21
0

26
0

31
0

36
0

41
0

46
0

51
0

56
0

61
0

66
0

71
0

76
0

81
0

86
0

91
0

96
0

Av
g	
re
sp
on

se
	(m

s�

Access	#

User1.avg_time User2.avg_time

User	1	cheats
User	2	cheats

(a) Global resource sharing allocation
with LRU.

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

10 60 11
0

16
0

21
0

26
0

31
0

36
0

41
0

46
0

51
0

56
0

61
0

66
0

71
0

76
0

81
0

86
0

91
0

96
0

Av
g	
re
sp
on

se
	(m

s�

Access	#

User1.avg_time User2.avg_time

User	1	cheats

User	2	cheats

(b) ElasticSEM allocation with Knob
ρ = 0.

Figure 5: The average response time measured for two users under
different allocation policies. User 1 starts cheating at the 400th acess.
User 2 started cheating at the 700th access.

Figure 5 illustrates the experimental results for global resource
allocation and ElasticSEM. The two allocation policies achieve a
close average response time (2790ms under the global resource allo-
cation, 2860ms under the ElasticSEM) before the 400th data access.
However, for global resource allocation as shown in Figure 5 (a),
User 1 can manange to reduce its average response time by about
1100ms when he (or she) cheats at the 400th access, degrading the
performance of User 2 about 1500ms. Likewise, User 2 can also
improve its cache hit (by about 1000ms) at the expense of User 1’s
performance by cheating the system at the 700th access. It indicates
that cheating users can get benefits under the global resource allo-
cation at the expense of honest users. The reason is that there is a
lack of cheating detection and punishment mechanism for global
resource allocation, making cheating users be able to cache more
data (i.e., more benefits) than they should have.

In comparison, ElasticSEM can prevent cheating users from get-
ting benefits. Figure 5 (b) presents the allocation results for Elas-
ticSEM. When User 1 starts to cheat at the 400th access, it gets
worse performance than no cheating period (i.e., < 400th access).
Similarly, User 2 gets degraded performance at the 700th access
when it cheats. This is because ElasticSEM is equipped with a cheat-
ing detection and punishment mechanism, under which cheating
behavior can be detected and will be punished by delaying its data
access (See Section 4.2.3).

5.2.2 Fairness vs Efficiency under Different Knobs. Recall in
Section 4.2.1 that ElasticSEM is an elastic knob-based cache alloca-
tion policy that can flexibly balance fairness and efficiency across
users. In this section, we show the impact of knob configuration
on the system efficiency and fairness. Particularly, as we will show
below, the tradeoff balance of knob configuration is sensitive to the
file size distribution and access pattern distribution of users’ data.

We consider two users with two kinds of distributions on the file
size as well as file access pattern, i.e., skewed and non-skewed dis-
tributions. Given that many data in practice follows Zipf distribution
in production cluster [9, 30], we assume for skewed distribution that
it follows Zipf distribution with an exponent parameter of 0.9. For
non-skewed distribution, we assume that it follows the uniform distri-
bution. Assume that there are 40 files for each user, and one user has
a larger number of data accesses than another user. The cache sizes
for DRAM and SSD are set to be 10 GB and 30GB, respectively. We
consider four possible workloads with different file access patterns

Balancing Fairness and Efficiency for Cache Sharing in Semi-external Memory System ICPP’20, Aug 17–18, 2020, Edmonton, AB, Canada

0

0.2

0.4

0.6

0.8

1

0

1000

2000

3000

4000

5000

6000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

H
it

 r
at

io

A
vg

 r
e

sp
o

n
se

 (
m

s）

Knob

user1.avg_time user2.avg_time
user1.hit_ratio user2.hit_ratio

(a) User 1 has 40 files of 1 GB each.
It has 5000 data accesses in total and
the data access complies with uni-
form distribution. User 2 has 40 files
of 1 GB each. It has 1000 data ac-
cesses in total and the data access
complies with Zipf distribution.

0

0.2

0.4

0.6

0.8

1

1.2

0

1000

2000

3000

4000

5000

6000

7000

8000

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

H
it

 r
at

io

A
vg

 r
e

sp
o

n
se

 (
m

s）

Knob

user1.avg_time user2.avg_time

user1.hit_ratio user2.hit_ratio

(b) User 1 has 40 files of 1 GB each.
It has 5000 data accesses in total and
the data access complies with Zipf dis-
tribution. User 2 has 40 files of 1 GB
each. It has 1000 data accesses in to-
tal and the data access complies with
uniform distribution.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0

3000

6000

9000

12000

15000

18000

21000

24000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

H
it

 r
at

io

A
vg

 r
e

sp
o

n
se

 (
m

s)

knob

user1.avg_time user2.avg_time
user1.hit_ratio user2.hit_ratio

(c) User 1 has 40 files of 1 GB each.
It has 5000 data accesses in total
and the data access complies with
uniform distribution. User 2 has 40
files of different sizes. It has 1000
data accesses in total and the data ac-
cess complies with Zipf distribution,
where we assume that its hot data are
of large data blocks.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

H
it
	ra
ti
o

A
vg
	r
es
po

ns
e	
(m

s）

Knob

user1.avg_time user2.avg_time
user1.hit_ratio user2.hit_ratio

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0

3000

6000

9000

12000

15000

18000

21000

24000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

H
it
	ra
ti
o

A
vg
	r
es
po

ns
e	
(m

s)

knob

user1.avg_time user2.avg_time
user1.hit_ratio user2.hit_ratio

(d) User 1 has 40 files of different
Sizes. It has 5000 data accesses in to-
tal and the data access complies with
Zipf distribution, where we assume
that its hot data are of large data
blocks. User 2 has 40 files of 1 GB
each. It has 1000 data accesses in to-
tal and the data access complies with
uniform distribution.

Figure 6: The system efficiency for User 1 and User 2 under different
knobs configurations. The cache volume of SEM system is set to 10GB
for DRAM and 30GB for SSD, respectively. We particularly show that
the sensitivity of knob configuration on the tradeoff between fairness
and efficiency is related to the cached data distribution and their sizes.

and file sizes distributions. Both average response time and cache
hit ratio are presented for different knob configurations as illustrated
in Figure 6.

First, depending on file sizes and data access distributions, there
are different KIRs ρ (e.g., ρ = 0.1, 0.3, 0.4 and 0 for Figure 6 (a)∼6 (d),
respectively) for four workloads. In Figure 6 (a), its ρ = 0.1 since
although User 2’s total data accesses is smaller than User 1, the Zipf
data access distribution of User 2 makes it still have some popular
files whose access frequencies are larger than User 1 of uniform
data access distribution. In contrast, by exchanging the file access
distribution of User 1 and User 2 as shown in Figure 6 (b), its ρ
enlarges to be 0.3. It is because under the Zipf distribution, User 1
has some non-popular files whose file access frequencies are smaller
than User 2 of uniform distribution. Figure 6 (c) and 6 (d) are con-
trast workloads to Figure 6 (a) and 6 (b) with respect to skewed data
sizes, respectively. It shows us that besides the file access frequency,
the data size distribution does also have an impact on the ρ (i.e.,
tradeoff degree).

Second, ElasticSEM can balance the tradeoff between fairness and
efficiency flexibly. For example, in Figure 6 (a), when 0 ≤ σ ≤ 0.1,

there is no tradeoff between (relaxed) fairness and efficiency so
varying the knob σ has no impact on average response time and cache
hit ratio. However, when 0.1 < σ ≤ 1, there is a tradeoff between
(relaxed) fairness and efficiency and our knob-based ElasticSEM
can balance such a tradeoff by looking at the trend of hit ratio or
average response time under different knob configurations. e.g., the
hit ratio of User 1 with uniform distribution decreases to 0.512 when
we increase its knob up to one, which is close to the ideal hit ratio
of 0.5 = 20/40 for User 1 in the non-sharing scenario (i.e., 20 GB
cache volume, 40 GB data).

1000 2000 3000 4000 5000 6000 7000 8000
Avg response(ms)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Isolation
LFU
ElasticSEM-0.0
ElasticSEM-0.5
ElasticSEM-1.0
Max-min fairness

Figure 7: The CDF of average response time for various cache alloca-
tion policies.

5.2.3 Performance Comparison. This section comes to eval-
uate the performance of ElasticSEM with the macro-benchmarks.
Figure 7 gives the CDF of average response time for Isolation (non-
cache sharing), LFU (global resource sharing), max-min fairness
and ElasticSEM under different knob configurations.

First, cache sharing (e.g., LFU, ElasticSEM, max-min fairness)
can have a better performance than isolation. For max-min fairness
policy, more than 70% of data accesses whose response time is within
5000ms, whereas only 51% for isolation. In comparison, ElasticSEM
can further improve its CDF up to about 90% when we decrease
its knob from 1.0 to 0.0. The performance improvement for cache
sharing mainly attributes to the resource preemption of unused re-
sources by over-demanded users from under-demanded users. In
this example, Purdue workload would yield its unused 10GB data
share to other overloaded users in the sharing scenario, improving
the cache resource utilization and hereby the overall performance
compared to the non-sharing case (Isolation).

Second, for ElasticSEM, we can improve the performance ef-
ficiency by decreasing the knob value. When the knob σ = 1.0,
its CDF curve of response time is much close to that of max-min
fairness. Moreover, when the knob σ = 0, its CDF curve becomes
close to that of LFU. All of the two indicate that 1) ElasticSEM can
balance the fairness and performance via the knob tuning and 2)
ElasticSEM is highly efficient in performance.

5.2.4 Overhead Evaluation. Compared to traditional heursitic
cache allocation policies such as LRU and LFU, ElasticSEM is much
more complex since it integrates DRAMs and SSDs as a whole in
SEM cache allocation and involves fairness-stage allocation and
efficiency-stage allocation for a given knob. Moreover, ElasticSEM

ICPP’20, Aug 17–18, 2020, Edmonton, AB, Canada Shanjiang Tang, Qifei Chai, Ce Yu, Yusen Li, and Chao Sun

300 600 900 1200 1500 1800 2100 2400 2700 3000
Number of Files

0

25

50

75

100

125

150

175

200
Ru

nt
im

e(
m

s)
Overhead

Figure 8: The overhead of ElasticSEM in Alluxio.

is equipped with a mechansim that can prevent users from cheating.
This section evaluates the overhead of ElasticSEM with different
number of files, where the overhead refers to the time for ElasticSEM
making a decision of whether or how to cache the data since a I/O
request is submitted.

We consider 20 users with a total number of files from 300 to
3000 with each of 256MB. Figure 8 presents the overhead (time)
of ElasticSEM to make decision on data caching in SEM. First, it
illustrates that the overhead time of ElasticSEM increases slightly
with a more number of files. Second, compared to the data r/w
time that generally takes seconds as shown in the aforementioned
experiments, the overhead of ElasticSEM is minor and negligible.
In summary, ElasticSEM is a lightweight fairness-efficiency I/O
scheduler.

6 RELATED WORK
Fairness-efficiency Resource Allocation. In the literature, there
are a large body of studies on the tradeoff between fairness and efffi-
ciency in multi-resource allocation. Joe-Wong et al. [20] captured
the tradeoff between fairness and efficiency by proposing a unify-
ing mathematical framework for multi-resource allocation, which
is however purely theoretical and cannot be directly applied for
real systems. In comparison, our proposed ElasticSEM is practical
and has implemented in Alluxio. QKnober [38] and Tetris [19] are
both knob-based fairness-efficiency schedulers for big data process-
ing systems such as Hadoop by considering CPUs and memory
resources. Danna et al. [14] and Wang et al. [41, 42] studied the
fairness-efficiency for packet processing in multi-resource alloca-
tion, where CPU and link bandwidth are considered. All of the above
work focused on the multi-resources of different types (e.g., CPU,
memory, bandwidth), whereas we consider the multi-resources of
the same type (i.e., storage resource).

There are also some work focused on the multi-resources of the
same types. Our prior work [35] studied the fairness and efficiency
in Coupled CPU-GPU architecture [45] by proposing a knob-based
scheduler called EMRF, where the alloctions of computing resources
such as CPU and GPU are considered. In contrast, this work focused
on the storage resources of DRAM and SSD. Wang et al. [40] pro-
posed a bottleneck-aware allocation policy for multi-tiered storage
consisting of SSD and HDD to balance fairness and efficiency for
users, where SSD plays a cache role. However, they only focused

on the I/O allocation without considering the amount of cache re-
sources allocated. Also, their approach are not flexible, where users
cannot change the tradeoff as needed. In contrast, we focused on
SEM, whose DRAM and SSD both act as caches. Our proposed
ElasticSEM is a knob-based fairness-efficiency I/O scheduler that
provides users with a knob parameter to flexibly balance the tradeoff
between fairness and efficiency.

Semi-external Memory. To overcome the capacity limitation of
DRAM for big data applications, many existing studies [6, 10, 27,
46, 47] instead take semi-external memory as an alternative and
show good performance results. Badam et al. [10] provided a hy-
brid SSD/RAM memory management system named SSDAlloc that
extends the DRAM with SSDs for new and existing applications
in a system. Abello et al. [6] proposed an semi-external comput-
ing model for graph data applications by fitting the vertex set in
memory while putting edge set of a graph in SSD. Pearce et al. [27]
experimentally demonstrated the benefits of using semi-external
memory with its proposed asynchronous graph traversal approach
compared to a serial in-memory alternative. FlashGraph [46] is a
semi-external memory-based graph-processing engine adopting the
concept of putting vertex state in memory and edge lists on SSDs. It
outperforms its in-memory implementation by up to 80% as well as
PowerGraph, which is a well-known distributed in-memory graph en-
gine. To ease the graph programming and I/O optimization in SEM,
an extensible parallel SEM graph library called Graphyti [26] is built
on top of FlashGraph. Graphmp [33] is an efficient semi-external-
memory big graph processing system for a single machine. Zheng et
al. [47] studied sparse matrix multiplication in semi-external mem-
ory by putting the sparse matrix on SSDs and dense matrices in
memory. Mhembere et al. [25] developed a NUMA-optimized in
memory, distributed and semi-external memory library called knor
for k-means algorithm atop of FlashGraph. In constrast to previ-
ous studies that focused on the performance optimization for SEM
applications, we consider the tradeoff balancing between fairness
and efficiency for cache sharing in SEM by integrating DRAM and
SSD as a whole in its cache resource allocation across multiple
users/applications. Moreover, we find that there is a cheating prob-
lem for efficiency cache allocation and address it in our proposed
ElasticSEM policy.

7 CONCLUSION
Semi-external memory has been widely used as a cache for many
big data applications, given that it can overcome the capacity lim-
itation of DRAM by extending it with SSD. We particularly show
that it is crucial to take DRAM and SSD as a whole for fairness
allocation rather than separately for each cache device as previous
studies did. Fairness and efficiency are two critical metrics for users
in resource allocation, which however has a tradeoff between each
other. We propose a knob-based fairness-efficiency allocation pol-
icy called ElasticSEM, consisting of fairness-stage allocation and
efficiency-stage allocation, to allow users to balance such a tradeoff
flexibly for semi-external memory while guaranteeing the θ -relaxed
fairness under a given knob (See Theorem 1). It integrates DRAM
and SSD as a whole wih the awareness of different latencies between
DRAM and SSD by having different weights to them. We identify
the cheating problem in the efficiency-stage allocation and propose

Balancing Fairness and Efficiency for Cache Sharing in Semi-external Memory System ICPP’20, Aug 17–18, 2020, Edmonton, AB, Canada

a cheating detection and punishment mechanism to address it. We
implement ElasticSEM in Alluxio and our experiments demonstrate
the effectivness of our approach.

Finally, we want to claim that although our approach in this paper
focuses on the semi-external memory, its idea is general and can
be directly applied to other heterogenous cache devices such as
DRAM/NVM and cache systems including Memcached and Redis.

8 ACKNOWLEDGMENTS
This work was funded by National Key Research and Development
Program of China (2018YFB0204305).

REFERENCES
[1] Amazon elasticache. In https://aws.amazon.com/elasticache/.
[2] Memcache on ssd. In https://github.com/twitter/fatcache.
[3] Redis labs. In https://redislabs.com/.
[4] Apache hive performance benchmarks. In

https://issues.apache.org/jira/browse/HIVE-396, 2009.
[5] Swim. In https://github.com/SWIMProjectUCB/SWIM/tree/

master/workloadSuite, 2010.
[6] James Abello, Adam L Buchsbaum, and Jeffery R Westbrook. A functional

approach to external graph algorithms. Algorithmica, 32(3):437–458, 2002.
[7] P. Aguilera, K. Morrow, and N. S. Kim. Fair share: Allocation of gpu resources

for both performance and fairness. In ICCD’14, pages 440–447, Oct 2014.
[8] Faraz Ahmad, Seyong Lee, Mithuna Thottethodi, and T. N. Vijaykumar. Puma:

Purdue mapreduce benchmarks suite. In ECE Technical Reports, 2012.
[9] Ganesh Ananthanarayanan, Ali Ghodsi, Andrew Wang, Dhruba Borthakur,

Srikanth Kandula, Scott Shenker, and Ion Stoica. Pacman: Coordinated memory
caching for parallel jobs. In NSDI’12, pages 20–20, Berkeley, CA, USA, 2012.
USENIX Association.

[10] Anirudh Badam and Vivek S. Pai. Ssdalloc: Hybrid ssd/ram memory management
made easy. In NSDI’11, pages 211–224, Berkeley, CA, USA, 2011. USENIX
Association.

[11] Bogdan Caprita, Jason Nieh, and Clifford Stein. Grouped distributed queues:
Distributed queue, proportional share multiprocessor scheduling. In PODC ’06,
pages 72–81, New York, NY, USA, 2006. ACM.

[12] Josiah L. Carlson. Redis in Action. Manning Publications Co., Greenwich, CT,
USA, 2013.

[13] Asaf Cidon, Daniel Rushton, Stephen M. Rumble, and Ryan Stutsman. Memshare:
a dynamic multi-tenant memory key-value cache. CoRR, abs/1610.08129, 2016.

[14] Emilie Danna, Subhasree Mandal, and Arjun Singh. A practical algorithm for
balancing the max-min fairness and throughput objectives in traffic engineering.
In INFOCOM’12, pages 846–854. IEEE, 2012.

[15] A. Demers, S. Keshav, and S. Shenker. Analysis and simulation of a fair queueing
algorithm. In SIGCOMM ’89, pages 1–12, New York, NY, USA, 1989. ACM.

[16] Brad Fitzpatrick. Distributed caching with memcached. Linux J., 2004(124):5–,
August 2004.

[17] Ali Ghodsi, Vyas Sekar, Matei Zaharia, and Ion Stoica. Multi-resource fair
queueing for packet processing. In SIGCOMM ’12, pages 1–12, New York, NY,
USA, 2012. ACM.

[18] Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Konwinski, Scott Shenker,
and Ion Stoica. Dominant resource fairness: Fair allocation of multiple resource
types. In NSDI’11, pages 323–336, Berkeley, CA, USA, 2011. USENIX Associa-
tion.

[19] Robert Grandl, Ganesh Ananthanarayanan, Srikanth Kandula, Sriram Rao, and
Aditya Akella. Multi-resource packing for cluster schedulers. ACM SIGCOMM
Computer Communication Review, 44(4):455–466, 2014.

[20] Carlee Joe-Wong, Soumya Sen, Tian Lan, and Mung Chiang. Multi-resource
allocation: Fairness–efficiency tradeoffs in a unifying framework. IEEE/ACM
TON’13, 21(6):1785–1798, 2013.

[21] Carlee Joe-Wong, Soumya Sen, Tian Lan, and Mung Chiang. Multiresource
allocation: Fairness-efficiency tradeoffs in a unifying framework. IEEE/ACM
Trans. Netw., 21(6):1785–1798, December 2013.

[22] Adwait Jog, Evgeny Bolotin, Zvika Guz, Mike Parker, Stephen W. Keckler, Mah-
mut T. Kandemir, and Chita R. Das. Application-aware memory system for fair
and efficient execution of concurrent gpgpu applications. In GPGPU-7, pages
1:1–1:8, New York, NY, USA, 2014. ACM.

[23] Mayuresh Kunjir, Brandon Fain, Kamesh Munagala, and Shivnath Babu.
ROBUS: fair cache allocation for multi-tenant data-parallel workloads. CoRR,
abs/1504.06736, 2015.

[24] Haoyuan Li, Ali Ghodsi, Matei Zaharia, Scott Shenker, and Ion Stoica. Tachyon:
Reliable, memory speed storage for cluster computing frameworks. In SOCC ’14,
pages 6:1–6:15, New York, NY, USA, 2014. ACM.

[25] Disa Mhembere, Da Zheng, Carey E Priebe, Joshua T Vogelstein, and Randal
Burns. knor: A numa-optimized in-memory, distributed and semi-external-memory
k-means library. In HPDC’17, pages 67–78, 2017.

[26] Disa Mhembere, Da Zheng, Carey E Priebe, Joshua T Vogelstein, and Randal
Burns. Graphyti: A semi-external memory graph library for flashgraph. arXiv
preprint arXiv:1907.03335, 2019.

[27] Roger Pearce, Maya Gokhale, and Nancy M. Amato. Multithreaded asynchronous
graph traversal for in-memory and semi-external memory. In SC ’10, pages 1–11,
Washington, DC, USA, 2010. IEEE Computer Society.

[28] Russell Power and Jinyang Li. Piccolo: Building fast, distributed programs
with partitioned tables. In OSDI’10, pages 293–306, Berkeley, CA, USA, 2010.
USENIX Association.

[29] Qifan Pu, Haoyuan Li, Matei Zaharia, Ali Ghodsi, and Ion Stoica. Fairride: Near-
optimal, fair cache sharing. In NSDI’16, pages 393–406, Berkeley, CA, USA,
2016. USENIX Association.

[30] K. V. Rashmi, Mosharaf Chowdhury, Jack Kosaian, Ion Stoica, and Kannan
Ramchandran. Ec-cache: Load-balanced, low-latency cluster caching with online
erasure coding. In OSDI’16, pages 401–417, Berkeley, CA, USA, 2016. USENIX
Association.

[31] Kai Shen and Stan Park. Flashfq: A fair queueing i/o scheduler for flash-based
ssds. In USENIX ATC’13, pages 67–78, Berkeley, CA, USA, 2013. USENIX
Association.

[32] Avraham Shinnar, David Cunningham, Vijay Saraswat, and Benjamin Herta.
M3r: Increased performance for in-memory hadoop jobs. Proc. VLDB Endow.,
5(12):1736–1747, August 2012.

[33] Peng Sun, Yonggang Wen, Ta Nguyen Binh Duong, and Xiaokui Xiao. Graphmp:
An efficient semi-external-memory big graph processing system on a single ma-
chine. In ICPADS’17, pages 276–283. IEEE, 2017.

[34] Shanjiang Tang, Bingsheng He, Ce Yu, Yusen Li, and Kun Li. A survey on spark
ecosystem: Big data processing infrastructure, machine learning, and applications.
IEEE Transactions on Knowledge and Data Engineering, pages 1–1, 2020.

[35] Shanjiang Tang, BingSheng He, Shuhao Zhang, and Zhaojie Niu. Elastic multi-
resource fairness: balancing fairness and efficiency in coupled cpu-gpu architec-
tures. In SC’16, pages 875–886. IEEE, 2016.

[36] Shanjiang Tang, Bu-Sung Lee, and Bingsheng He. Fair resource allocation for
data-intensive computing in the cloud. IEEE Transactions on Services Computing,
11(1):20–33, 2018.

[37] Shanjiang Tang, Zhaojie Niu, Bingsheng He, Bu-Sung Lee, and Ce Yu. Long-term
multi-resource fairness for pay-as-you use computing systems. IEEE Transactions
on Parallel and Distributed Systems, 29(5):1147–1160, 2018.

[38] Shanjiang Tang, Ce Yu, Chao Sun, Jian Xiao, and Yinglong Li. Qknober: a knob-
based fairness-efficiency scheduler for cloud computing with qos guarantees. In
ICSOC’18, pages 837–853. Springer, 2018.

[39] Carl A. Waldspurger and William E. Weihl. Lottery scheduling: Flexible
proportional-share resource management. In OSDI ’94, Berkeley, CA, USA,
1994. USENIX Association.

[40] Hui Wang and Peter Varman. Balancing fairness and efficiency in tiered storage
systems with bottleneck-aware allocation. In FAST’14, pages 229–242, 2014.

[41] Wei Wang, Chen Feng, Baochun Li, and Ben Liang. On the fairness-efficiency
tradeoff for packet processing with multiple resources. In ACM CoNext14, pages
235–248, 2014.

[42] Wei Wang, Shiyao Ma, Bo Li, and Baochun Li. Coflex: Navigating the fairness-
efficiency tradeoff for coflow scheduling. In INFOCOM’17, pages 1–9. IEEE,
2017.

[43] Minhoon Yi, Minho Lee, and Young Ik Eom. Cffq: I/o scheduler for providing
fairness and high performance in ssd devices. In IMCOM ’17, pages 87:1–87:6,
New York, NY, USA, 2017. ACM.

[44] Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tathagata Das, Michael Armbrust,
Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman, Michael J.
Franklin, Ali Ghodsi, Joseph Gonzalez, Scott Shenker, and Ion Stoica. Apache
spark: A unified engine for big data processing. Commun. ACM, 59(11):56–65,
October 2016.

[45] Feng Zhang, Jidong Zhai, Bo Wu, Bingsheng He, Wenguang Chen, and Xiaoyong
Du. Automatic irregularity-aware fine-grained workload partitioning on integrated
architectures. IEEE Transactions on Knowledge and Data Engineering, pages
1–1, 2019.

[46] Da Zheng, Disa Mhembere, Randal Burns, Joshua Vogelstein, Carey E. Priebe,
and Alexander S. Szalay. Flashgraph: Processing billion-node graphs on an array
of commodity ssds. In FAST’15, pages 45–58, Berkeley, CA, USA, 2015. USENIX
Association.

[47] Da Zheng, Disa Mhembere, Vince Lyzinski, Joshua T. Vogelstein, Carey E. Priebe,
Randal Burns, undefined, undefined, undefined, and undefined. Semi-external
memory sparse matrix multiplication for billion-node graphs. IEEE TPDS’17,
28(5):1470–1483, 2017.

	Abstract
	1 Introduction
	2 Background and Motivation
	3 Semi-external Memory Cache Model
	4 Elastic Semi-external Memory Allocation
	4.1 Allocation Model
	4.2 ElasticSEM Allocation Policy

	5 Experimental Evaluation
	5.1 Experimental Setup
	5.2 Experimental Results

	6 Related Work
	7 Conclusion
	8 Acknowledgments
	References

