
1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2016.2635133, IEEE
Transactions on Services Computing

1

An Adaptive Efficiency-Fairness Meta-scheduler
for Data-Intensive Computing

Zhaojie Niu, Shanjiang Tang, Bingsheng He

Abstract—In data-intensive cluster computing platforms such as Hadoop YARN, efficiency and fairness are two important factors for
system design and optimizations. Previous studies are either for efficiency or for fairness solely, without considering the tradeoff
between efficiency and fairness. Recent studies observe that there is a tradeoff between efficiency and fairness because of resource
contention between users/jobs. By leveraging the existing schedulers, a meta-scheduler is able to dynamically choose one of them for
job/task scheduling at runtime. In this paper, we propose a meta-scheduler called FLEX to realize the tradeoff between system
efficiency and fairness in Hadoop YARN. FLEX combines multiple existing schedulers into a single aggregated view without any
modification on the original schedulers. Equipped with these candidate schedulers, FLEX utilizes machine learning approach to
adaptively choose the most proper scheduler according to the characteristic of current running workload and user-defined SLA
(Service Level Agreement). We implement FLEX in Hadoop YARN. We conduct experiments with real deployment in a local cluster and
perform simulation studies with production traces. Experimental results show that the FLEX outperforms the state-of-the-art approach
in two aspects: 1) Given a predefined threshold on the fairness loss, the FLEX reduces the makespan by up to 22% and 24% in real
deployment and the large-scale simulation, respectively; 2) Given the predefined threshold on the makespan reduction, the FLEX
reduces the fairness loss by up to 75% and 73% in real deployment and the large-scale simulation, respectively.

Index Terms— meta-scheduling; efficiency-fairness tradeoff; data-intensive; Hadoop YARN

F

1 INTRODUCTION

In the current era of “big data”, data-intensive computing is a
common paradigm in clusters and clouds. A lot of large-scale
distributed data processing frameworks have thereby emerged
and become popular in recent years, including MapReduce [1],
Dryad [2], Mesos [3], Hadoop YARN [4] and Spark [5]. Effi-
ciency and fairness are two important concerns for the system
design on those shared environments. Efficiency indicates the
efficiency of the resource usage and it is usually measured with
the makespan of a set of jobs [6]. Fairness is often used to
guarantee the fair resource allocation between different users
in the shared environment. There have been a lot of fairness
measurement approaches proposed in the previous studies [7],
[6], [8], [9]. They are mainly defined from two different aspects:
from the performance’s aspect [7], [6] and from the resource
usage’s aspect [8], [9]. Many previous studies focus on either
efficiency or fairness without considering the tradeoff between
efficiency and fairness [10], [11], [12], [7], [13], [14]. Recent
studies have showed that there is a tradeoff between efficiency
and fairness due to the resource contention and proposed some
bi-criteria optimization algorithms [15], [16], [6], [8]. However,
all of these algorithms are heuristics, which fail to address the
tradeoff between efficiency and fairness. The reason is that, 1) the
efficiency and fairness of different schedulers vary a lot due to
their distinct optimization purposes; 2) due to the heterogeneous

• Zhaojie Niu is with Joint NTU-UBC Research Centre of Excellence in
Active Living for the Elderly (LILY), Interdisciplinary Graduate School,
Nanyang Technological University, Singapore.

• Shanjiang Tang is with School of Computer Science and Technology,
Tianjin University, China.

• Bingsheng He is with School of Computing, National University of Singa-
pore, Singapore.

resource demands of submitted jobs, a static scheduler cannot al-
ways achieve the best tradeoff between the efficiency and fairness
with the variation of the resource demands of running workload
during the computation.

Figure 1 shows a multi-resource usage profile of tasks from
Google in a data center of 12 thousands of machines based
on Google trace [17]. Multi-resource means that the resource
allocation is performed in multiple resource types (here, CPU
and memory are the two resource types). The position of a circle
indicates the CPU and memory resources consumed by tasks.
The size of a circle is logarithmic to the number of tasks in
the position. It shows that there are significantly heterogeneous
demands for tasks on CPU and memory resources. Users have
diverse demands on different types of resources and the most
needed resource is called the dominant resource [7]. We define
a metric (named complementary degree) to quantify the comple-
mentarity of the resource demands of the workload (see the formal
definition in Section 3). Ideally, two workloads are complementary
to each other, if they demand different dominant resources. For
two workloads, the more complementary their resource demands,
the greater the potential for efficiency optimization and the less
the potential for the fairness loss sacrificed in the efficiency
optimization. To illustrate that different complementary degrees
of submitted jobs have significant impact on the efficiency and
fairness in the sharing environment, we conduct an experiment
with Google trace. Figure 2 shows the makespan reduction and
the fairness loss of a efficiency-oriented scheduler for a workload
with different complementary degrees (The detailed setup can be
found in Section 5). With the increase of complementary degree,
the makespan reduction becomes higher, and the fairness loss
first increases significantly to a highest point and later decreases
after it. When the complementary degree lies between 0.5 and 1,
the complementary degree increases, the makespan reduction is



1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2016.2635133, IEEE
Transactions on Services Computing

getting higher and the fairness loss is also getting larger. When the
complementary degree lies between 1 and 2, the complementary
degree increases, the makespan reduction is still getting higher
while the fairness loss is getting less. It shows that the efficiency
and fairness of a scheduler are sensitive to the variation of the
workload.

-0.05
0.00

0.05
0.10

0.15
0.20

0.25
0.30

0.35
0.40

0.45
0.50

0.55

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
o

rm
a

li
z
e

d
 m

e
m

o
ry

 d
e

m
a

n
d

 p
e

r 
ta

s
k

Normalized cpu core demand per task

Fig. 1: Heterogeneous resource demand for tasks from Google
traces [17]

0%

2%

4%

6%

8%

10%

0%

10%

20%

30%

40%

50%

0 0.5 1 1.5 2

F
a

ir
n

e
ss

 l
o

ss
 

M
a

ke
sp

a
n

 R
e

d
u

ct
io

n

Complementary degree

Makespan Fairness

Fig. 2: Tradeoff between efficiency and fairness for workloads
with different complementary degrees

Therefore, we should develop a scheduler to be aware of
the workload dynamics and efficiency-fairness tradeoff. Since
researchers keep inventing new scheduling algorithms, a vi-
able approach is to leverage existing efficiency- and/or fairness-
optimized schedulers and develop a meta-scheduler to address
the efficiency-fairness tradeoff. Particularly, we propose a meta
scheduler called FLEX that takes advantage of existing sched-
ulers in Hadoop YARN and adaptively chooses the most proper
scheduler according to the current running workload and the user-
defined SLA (Service Level Agreement). FLEX performs the bi-
criteria optimization for efficiency and fairness. Given a predefined
threshold on fairness loss (i.e., the maximum fairness loss the
user can tolerant), FLEX is able to maximize the efficiency of
the cluster, or vice versa. FLEX is highly extensible and allows
adding/removing any new schedulers on Hadoop YARN. In our
current implementation, FLEX supports all mainstream schedulers
in the latest Hadoop YARN and one efficiency-oriented scheduler
which applies the efficient task packing algorithm proposed in
Tetris [6]. Equipping with these candidate schedulers, the FLEX
leverages the machine-learning approach to adaptively choose the
most proper scheduler with the variation of the current running
workload and the user-defined SLA. To support adaptive schedul-
ing, we model the scheduler choosing problem as a well-known
classification problem, and resolve the classification problem with
decision tree that mainly targets the multi-class classification.
Firstly, we train the decision tree model with the data consisting
of the scheduling result for different workloads and user-defined
SLAs. Then, given the current running workload and user-defined

SLA, the target scheduler can be easily inferred based on this built
decision tree model.

We implement FLEX in Hadoop YARN (2.6.0). We conduct
experiments with real deployment in a local cluster and perform
simulation studies with production traces. FLEX performs better
than the state-of-the-art scheduling algorithm [6] in two aspects: 1)
Given a predefined threshold on the fairness loss, FLEX reduces
the makespan by up to 22% and 24% in real deployment and
the large-scale simulation, respectively; 2) Given the predefined
threshold on the makespan reduction, it reduces the fairness loss
by up to 75% and 73% in real deployment and the large-scale
simulation, respectively.

The remainder of this paper is organized as follows. Section 2
reviews the background and related work. Section 3 describes the
workload characterization model. Section 4 presents our detailed
design of FLEX, followed by the experiment results in Section 5.
We conclude this paper in Section 6.

2 BACKGROUND AND RELATED WORK

2.1 Hadoop YARN

The system overview of Hadoop YARN [4] is shown in Figure 3.
Hadoop YARN implements major responsibilities of resource
management and job scheduling into separate components: Re-
source Manager and per-application App Master. The Resource
Manager is the unified resource arbitrator among all applications
in the system. The Apps Manager of Resource Manager launches
an App Master for each application which generates resource
requests, negotiates resources from the Resource Manager and
works with Node Managers to execute and monitor the cor-
responding tasks. Furthermore, Hadoop YARN provides fine-
grained resource management instead of coarse-grained slot based
manner. Each task is characterized by a resource requirement vec-
tor which specifies the amount of different resources of multiple
types required by this task, e.g., ⟨1 CPU, 3 GB⟩ indicates 1 CPU
core and 3 GB RAM are needed by the task. YARN Scheduler
of Resource Manager allocates the available resources reported
by Node Manager to the pending tasks based on a particular
scheduling policy.

There are four mainstream schedulers in Hadoop YARN,
including FIFO scheduler, Fair scheduler, Capacity scheduler and
DRF scheduler. The FIFO scheduler allocates the resources to
applications in first-in-first-out sequence. The Fair scheduler is
designed to fairly share the memory among all running users in
large-scale multi-tenant clusters. The Capacity scheduler allows
YARN applications to run in a multi-tenant cluster and maximizes
the throughput of the cluster. It can be considered as a weighted
Fair scheduler. DRF scheduler provides the fair allocation of
multiple resource types. Besides these schedulers, it is quite easy
to integrate new schedulers into Hadoop YARN by implementing
the YARN scheduling interface. Current schedulers in Hadoop
YARN focus on either the efficiency or the fairness. However, they
do not consider the tradeoff between the efficiency and fairness.

2.2 Related work

Efficiency-oriented scheduling. Maximizing resource utilization
is very important for Hadoop. In early years, the early generation
of Hadoop abstracts resources into map/reduce slots and allocates
them among jobs. DynMR [10] implements more fine-grained
reduce tasks with decoupled functional phases in order to resolve

2



1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2016.2635133, IEEE
Transactions on Services Computing

Fig. 3: The overview of Hadoop YARN

the low utilization problem caused by the data skew. RAS [18]
captures the heterogeneous resource requirements of workload
and dynamically adjusts slots on each machine to maximize
the cluster utilization. ILA [11] improves the throughput of the
virtual MapReduce clusters by considering the interference be-
tween map/reduce tasks. As the development of Hadoop, resource
managers in the large-scale cluster are proposed to allocate the
resources to the workload in a fine-grained way [3], [4], [12],
[19]. They provide a general approach to improve the resource
utilization of the cluster by performing coordinated resource allo-
cation and assignment. As the explosive growth of data, I/O opti-
mizations become the core concern of data intensive applications.
Delay scheduling achieves nearly optimal data locality by only
waiting a small of amount of time [20]. CoHadoop [21] explores
more flexible data placement policy to improve the data locality.
In addition to these, many more new I/O scheduling algorithms
for MapReduce are proposed [22], [23], [24], [25].

Fair scheduler. Fair scheduler [26] is proposed in the early
generation of Hadoop to allocate slots fairly among different users
based on the max-min fairness. Quincy [13] resolves fair allo-
cations efficiently by mapping from the fair scheduling problem
to min-cost flow. Choosy [14] is a fair scheduler that considers
the fairness with resource constraints in data centers. LTRF [9]
resolves the fairness problem in pay-as-you-go environment by
considering the historical allocations. Besides the single-resource
fair allocation mentioned above, there are a lot of studies for multi-
resource fair allocation. Dominant Resource Fairness [7] is the first
work to generalize the max-min fairness to multiple resource types
on Hadoop YARN. Wang et al. [27] extend Dominant Resource
Fairness especially for the heterogeneous environment. Liu et
al. [28], [29] propose a novel resource allocation mechanism,
called Reciprocal Resource Fairness, to enable fair sharing multi-
ple types of resources in the cloud.

Efficiency vs. Fairness. To the best of our knowledge, few
studies consider the tradeoff between the efficiency and the
fairness on Hadoop YARN. Joe-Wong et al. [16] theoretically
analyze the fairness-efficiency tradeoff with multiple resource
types for two families of fairness functions. Wang et al. [15], [8]
analyze the tradeoff in multi-resource packet processing. Tetris [6]
is the first work to explore the tradeoff between efficiency and
fairness over YARN framework. Tetris leverages many alignment
heuristics to efficiently pack tasks with heterogeneous demands
to machines. Although these studies have observed the tradeoff
between efficiency and fairness, they are not aware of the variation
of the multi-resource demand of the running workload and still
perform the scheduling with a static approach during computation.
Our preliminary study Gemini [30] considers the variation of the

workload and proposes a workload-aware scheduling algorithm.
This paper extends Gemini in the following major manner. First,
we propose a general meta-scheduler which leverages existing
schedulers in Hadoop YARN to realize the efficiency-fairness
tradeoff. Second, we model the adaptive scheduling as a classi-
fication problem and resolve it with decision tree approach.

Hierarchical Scheduler and Meta-Scheduler design. Meta
Scheduler is a high-level abstract scheduler built atop of a set
of specific schedulers like FIFO, Fair schedulers, which has
been widely used in Grid, Cloud, HPC and other distributed
environments [31], [32], [33], [34], [35], [36], [37], [38], [39].
Computational resources in large-scale Grid are generally man-
aged by a meta-scheduler that interfaces with different specific
schedulers to decide the most suitable resources for applications
with different preferences [31], [32], [33], [34], [35]. In cloud area,
in order to support the coordinated distribution of different cloud
workloads, there are some studies proposing some meta schedulers
to manage these workloads [36], [37]. Moreover, meta-schedulers
are widely used to improve the performance and reduce the energy
consumption of HPC systems [38], [39]. Meta-schedulers are also
applied in other distributed environments [40]. In contrast, this
paper focuses on scheduling data-intensive workloads in a single
data center, by improving the resource utilization or the workload
fairness, and adaptively choosing the suitable scheduler during the
runtime.

In order to support different applications, researchers have ex-
plored design of hierarchical schedulers. YARN [4] and Mesos [3]
split the resource management and scheduling between a central-
ized resource manager and multiple application masters such as
Hadoop MapReduce [1] and Spark [5] using an offer-based way.
Omega [41], the cluster manager in Google, utilizes optimistic
concurrency control to provide high flexibility and parallelism for
different workloads that required to access the whole state of the
cluster. Rather than focusing on hierarchical scheduler design, this
paper is a meta-scheduler focusing on adopting different candi-
date schedulers on resource management according to workload
characteristics and user-defined SLAs.

3 WORKLOAD CHARACTERIZATION MODEL AND
PROBLEM STATEMENT

The meta-scheduler adaptively adopts different candidate sched-
ulers according to the characteristic of the workload and user-
defined SLAs. To be aware of the variation of the workload, we
propose a resource-based model to characterize the workload and
optimize the efficiency and the fairness of the system by adaptively
choosing the most proper scheduler at runtime. In this section,
we first present our workload characterization model, and then
formulate our optimization problem.

3.1 Workload characterization model
In this section, we propose an entropy-based approach to calculate
the complementary degree of the workload.

CPUs

(9 total)

Memory

(18GB total)

Job A1

100%

50%

0%
2 GB

CPUs

(9 total)

Memory

(18GB total)

Job A2

100%

50%

0%
2 GB6 CPUs 6 CPUs

(a) Workload A

CPUs

(9 total)

Memory

(18GB total)

Job B1

100%

50%

0%
2 GB

CPUs

(9 total)

Memory

(18GB total)

Job B2

100%

50%

0%
6 CPUs 3 CPUs 14 GB

(b) Workload B

Fig. 4: The workloads with different resource demands.

3



1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2016.2635133, IEEE
Transactions on Services Computing

Entropy is widely used in information theory to characterize
the distribution of information content. Larger entropy indicates
more random information. We treat the resource demand as the
information and then utilize entropy to characterize the distribu-
tion of the resource demands of the workload. If the resource
demands are randomly distributed, they are complementary for
co-scheduling. The randomness of the resource demands indi-
cates the degree of their complementarity. Therefore, we extend
the definition of entropy in information theory to quantify the
complementary degree of the resource demands of the workload.

We use an example to illustrate the basic concept of comple-
mentary degree. We consider two types of resources in our system:
CPU and memory. Figure 4 shows two different workloads and
each of them consists of two jobs. The job A1 and A2 in workload
A are both CPU-intensive. The job B1 and B2 in workload B are
CPU-intensive and memory-intensive, respectively. The resource
demands of workload A are not complementary to each other
as they are all CPU-intensive. In contrast, the resource demands
of workload B are complementary to each other because their
intensive resources are different. The complementary degree we
defined below is used to quantify the complementarity of these
resource demands. The complementary degree of the workload B
should be higher than the complementary degree of the workload
A.

We define some terminology for a multi-resource alloca-
tion system. We consider m typed hardware resources (e.g.,
CPU, memory, disk, network) denoted by R = {r1, ...,rm}. Let
U = {u1, ...,un} be the set of users sharing the cluster. For every
user i, let Di = (Di1, ...,Dim) be its resource demand vector, where
Di j is the fraction of resource j needed by each task of user i over
the total capacity of the cluster. For simplicity, we only consider
the running tasks and assume the demand for all users are non-
negative, i.e., Di j ⩾ 0,∀i ∈ U, j ∈ R. We say resource ki is the
dominant resource of user i if

ki = argmax
j∈R

Di j. (1)

The dominant resource ki is the most heavily demanded
resource needed by user i′s tasks in the resource pool. We calculate
the percentage of the users whose dominant resource is k as

P(k) =
∑n

i=1 δ (ki,k)
n

. (2)

δ (x,y) is an indicator function which is shown as

δ (x,y) =

{
1, if x = y.
0, otherwise.

(3)

Statistically, P(k) is the probability of observing a job whose
dominant resource type is k.

Based on the underlying probability distribution of jobs with
different dominant resource types, we quantify the complementary
degree of the workload with entropy. According to the definition
of entropy [42], the complementary degree d of the workload can
be easily calculated as

d =−∑
i∈R

P(i) log2 P(i). (4)

3.2 Problem statement
The workload characterization model captures the resource usage

of different resource types, which essentially reflects the potential
of efficiency-fairness tradeoff in the system. Due to the variation of
the workload, we need a more fine-grained approach to realize the
potential. Based on the workload characterization model, FLEX
monitors the variation of the running workload and adaptively
chooses the most proper scheduler to perform bi-criteria opti-
mization for efficiency and fairness. In this paper, we evaluate the
efficiency with the makespan, i.e., the maximum execution time
from the first task submitted till the lasted task completes. For the
fairness, following the fairness concept of DRF [7], we consider
the fairness of dominant resource. Assume the cluster consists
of n hardware resources (e.g., Memory, CPU, Disk) denoted by
R = {1, ...,n}. Let U = {1, ...,m} be the set of users sharing
the cluster. For each user i, let Ri = (Ri1, ...,Rin) be its resource
demand vector, where Rir is the share (fraction) of resource r
needed by each task of user i during the execution. Resource r∗i is
the dominant resource of user i if

r∗i = argmax
r∈R

Rir. (5)

We say the resources are allocated fairly among all users if
r∗1 = r∗2 = ...= r∗m. Following DRF and Tetris [6], we evaluate the
target scheduler with the improvement on the efficiency and the
fairness loss compared with the DRF scheduler. We quantify the
improvement on the efficiency with the percentage improvement
(or reduction) on the makespan. Let the makespan under the target
scheduler is T ∗ and the makespan under DRF scheduler is T , then
the makespan reduction E of the target scheduler can be calculated
as

E = max
{

T −T ∗

T
,0
}
. (6)

Many fairness definitions are proposed to guarantee the fair
resource allocation in the shared environment [7], [6], [9]. As in
the previous studies [7], [6], it is very natural and straightforward
to measure the fairness along the lifetime of the job with its
favored/degraded performance. In our paper, we directly apply
this kind of approach. For completeness, we also study the impact
the other kind measurement approach which is defined from
the resource usage’s aspect [9] (more details can be referred in
Section 5.2.4).

Many previous studies (e.g., [7], [6]) quantify the fairness from
the per-user performance aspect because the execution time of
the applications from individual users is the key factor that the
users really care about in the shared cluster and the comparison
of fairness can be made by considering how the schedulers
favor/degrade performance among users (e.g., [6], [43], [44]).
Particularly, most of those studies [7], [6] have measured the
fairness of the proposed scheduler on the basic of slowdown of
each user compared with that of a fair scheduler (such as DRF [7]
scheduler and max-min fair scheduler [26]). More precisely, the
slowdown refers to the difference in the expected execution time
for the same user between when it is scheduled with others
under the proposed scheduler and when it is scheduled under a
fair scheduler. We directly follow these studies and apply their
definitions of fairness in our paper. That is, we quantify the
fairness loss of the target scheduler with the average slowdown
(reduction) of the job completion time compared with the fair
scheduler. Let J = {1, ...,k} be the set of users sharing the cluster.
For each user i, the completion times of its applications under the
target scheduler and fair scheduler are t∗i and ti, respectively. Let

4



1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2016.2635133, IEEE
Transactions on Services Computing

si be the reduction of the completion time of the applications from
user i and si can be easily calculated as

si = max
{

t∗i − ti
ti

,0
}
. (7)

Then the fairness loss F of the target scheduler during the
whole execution can be calculated as

F =
∑i∈J si

k
. (8)

Given the workload characterization model and the definition
of efficiency as well as fairness, the optimization problem of this
paper is formulated as follows. We consider the bi-criteria opti-
mization between efficiency and fairness in our paper. Particularly,
we study two cases for the bi-criteria optimization problem. Given
a predefined threshold on the fairness loss F , which represents
the maximum fairness loss the user can tolerant compared to
fair scheduler, FLEX maximizes the makespan reduction E of
the system by adaptively choosing the most proper scheduler
according to the characteristic of the workload. Similarly, Given
the predefined threshold on the makespan reduction E, which indi-
cates the makespan reduction expected by the user in comparison
with the fair scheduler, FLEX minimizes the fairness loss F of the
system.

4 FLEX DESIGN

In this section, we introduce the design and implementation of
our meta-scheduler FLEX. First, we list a number of rationales
used in designing our meta-scheduler FLEX. Second, we give the
system overview of FLEX. Third, we describe each component of
FLEX in detail. Finally, we show the implementation of FLEX on
Hadoop YARN.

4.1 Rationale of system design
As we review the related work in Section 2, researchers keep in-
venting new schedulers for Hadoop/YARN. Ideally, any scheduler
reflects some aspect of the efficiency-fairness tradeoff. Thus, a
static approach based on heuristics (e.g., [20], [6]) cannot fully
address the efficiency-fairness tradeoff. Motivated by the widely
applicability of meta-scheduler design in different application
environments [35], [36], [38], we propose to design a meta-
scheduler to take advantage of the existing or future schedulers
in Hadoop YARN. Our system design is driven by a number of
rationales.

• Extendability. Since the system targets at a meta-scheduler
design, it should be extensible to new schedulers besides
the existing schedulers. FLEX should be able to adapt
to the removal/addition of a scheduler. Note that, the
effectiveness of meta-scheduling still depends on the set of
candidate schedulers, and how they can cover the spectrum
of the efficiency-fairness tradeoff. The design of our meta-
scheduler is able to exploit the spectrum of the efficiency-
fairness tradeoff exposed by the candidate schedulers.

• Workload variation awareness. Since the most proper
scheduler depends on the characteristic of the workload,
the system should provide an automatic mechanism to
adaptively switch the scheduler when the workload varies.

• Lightweight runtime overhead. Since the decision has to be
made at runtime in order to adapt to workload dynamics,
the overhead of the scheduler should be lightweight.

4.2 System overview
The overall design of our meta-scheduler FLEX is shown in
Figure 5. FLEX integrates multiple existing schedulers in Hadoop
YARN into a single aggregated view. These schedulers are can-
didate schedulers to be chosen by FLEX. FLEX performs the
bi-criteria optimization between the efficiency and fairness. Given
the user-defined threshold on the fairness loss, the scheduler which
satisfies the user-defined SLA and maximizes the efficiency of the
cluster is chosen, or vice versa. FLEX implements these optimiza-
tions through adaptive scheduling. As the efficiency and fairness
of a scheduler depend on the workload, FLEX automatically
detects the variation of the current running workload based on
the workload characterization model and leverages the machine
learning approach to adaptively select the most suitable scheduler
from all candidate schedulers. The target scheduler selected from
all candidate schedulers becomes the current scheduler of Hadoop
YARN and is responsible for the resource allocation till another
scheduler is chosen. When the resources in the cluster become
available, the current scheduler of Hadoop YARN allocates the
resources to the pending jobs/tasks according to its scheduling
policy and launches them on the corresponding machine in the
cluster.

FIFO

Fair

DRF

Perf

Dispatcher

Manager

Jobs

Scheduler

Job queue

Workload

characteristic 

R
e

so
u

rce
 p

o
o

l

User-defined 

SLA

Idle resources

Resource 

allocation

Scheduler 

decision

Task

Task

Task

Task

Fig. 5: Design of the meta-scheduler FLEX

4.3 Detailed design of FLEX
We introduce the design of FLEX in detail. FLEX consists of
a number of candidate schedulers, a dispatcher manager and a
scheduler switcher. FLEX integrates existing mainstream sched-
ulers in Hadoop YARN and allows the addition of new schedulers.
The dispatcher manager utilizes the machine learning approach to
adaptively decide the most suitable scheduler from all candidate
schedulers according to the workload characteristics and the user-
defined SLAs. Once the target scheduler is decided, the scheduler
switcher updates the current scheduler of Hadoop YARN and the
chosen scheduler is responsible for the resource allocation till
another scheduler is chosen.

Candidate schedulers. Essentially, the application scheduling
in Hadoop YARN is actually a procedure of determining the
job/task execution order of all running applications. All applica-
tions are added into a queue and Hadoop YARN determines their
execution order according to the policy of current scheduler when
resource becomes available. Requests for the first application in
the queue are allocated first; once its requests have been satisfied,
the next application in the queue is served, and so on. The effec-
tiveness of meta-scheduling in addressing the efficiency-fairness
tradeoff depends on the set of candidate schedulers and how they
can cover the spectrum of the efficiency-fairness tradeoff. In our
current implementation, we consider three mainstream schedulers
in Hadoop YARN and add one efficiency-oriented scheduler in our

5



1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2016.2635133, IEEE
Transactions on Services Computing

system to demonstrate that new candidate schedulers can be added
in a flexible manner.

• FIFO scheduler sorts all applications in the order of
submission (first in, first out).

• Fair scheduler considers the memory usage of all applica-
tions and sorts these applications in the decreasing order
of how far they are from their fair memory shares.

• DRF scheduler takes the amount of dominant resource as
the fair share in a system supporting multiple resource
types and sorts the applications in the decreasing order
of how far they are from their fair shares. Basically,
Hadoop YARN has implemented the policy in the original
paper [7].

• Perf scheduler is an efficiency-oriented scheduler which
supports makespan-aware job packing algorithm which
is proposed in Tetris [6]. It sorts all applications in the
decreasing order of the similarity between their resource
requests and the available resources.

Dispatcher manager. With the variation of the running work-
load and the user-defined SLA, FLEX needs to adaptively choose
the most suitable scheduler from all candidate schedulers. We
model this decision as a classification problem in the machine
learning area. All available candidate schedulers represent a finite
set of class labels and the decision of the target scheduler is
actually a process of identifying a class label for the target
scheduler. Decision tree [45], a well known predictive modeling
approach used in machine learning, fits our problem quite well.
It creates a tree-structured predictive model which predicts the
value of a target item based on the observed features about
the item. In the tree-structured model, leaves represent a class
or a probability distribution over the classes and the branches
represent conjunctions of features that lead to those class labels.
Algorithms for constructing decision trees usually work top-down,
by choosing a variable at each step that best splits the set of
items. We apply the a recursive greedy algorithm called top-down
induction of decision tress (TDIDT) which is by far the most
common strategy for learning decision tree from data [46]. We
can use different metrics for measuring the splits of the set of
items to be classified. These metrics measure the homogeneity of
the target label within the subsets. We use two kinds of metrics
called Gini impurity and Information gain in our system. Gini
impurity is a measure of the how often a randomly chosen item
from the set would be incorrect labeled if it was randomly labeled
according to the distribution of labels [47]. Information gain is
based information theory and the information gain of an event if
the discrepancy of the amount of information before observing
that event and the amount after observation [47].

Besides these metrics, there are many other parameters which
decide the accuracy and performance of the decision tree model.
We describe some important parameters in Table 1 and evaluate
the best combinations in the experiment part. Criterion mainly
consists of “gini” and “entropy”. The “gini” is the default value
due to it is slightly faster compared with entropy. For the max-
features, max-depth and max-leaf-node, a smaller value may lead
to model inaccuracy, while a too large value will cause overfit
on data. By contrast, the decision tree model tends to overfit on
data with very small value for the min-samples-split and min-
samples-leaf. For the splitter, the “best” strategy is usually applied
during the training. In the experiment part, we utilize grid search

approach [48] to find the best settings for all the parameters of the
decision tree.

Parameter Description Default
Value

Criterion The function to measure the quality of a split.
The “gini” and “entropy” are two supported
criteria which represent the gini impurity and
the information gain, respectively.

“gini”

Splitter The strategy used to choose the split at
each node. The “best” and “random” are two
supported strategies which represent the best
split and random split, respectively.

“best”

max-features The number of features used in the split. The num-
ber of all
features

max-depth The maximum depth of the tree. 2
min-samples-split The minimum number of samples which is

required to split an internal node.
10

min-samples-leaf The minimum number of samples which is
required to be at a leaf node.

5

max-leaf-node The maximum number of the leaf nodes. If
None, then the limitation is ignored.

10

random-state the seed used by the random number genera-
tor.

np.random

TABLE 1: Default parameters for the decision tree.

Given the default values for all these parameters which are
shown in Table 1, we gain the decision tree, illustrated in Fig-
ure 6. The brunch nodes are shown with solid rectangles and the
condition expressions of the features inner these rectangles are the
rules used for classification. In this example, we mainly consider
two features: the complementary degree of the resource demands
and the user-defined threshold on the fairness loss. The leaf nodes
which are shown with dotted rectangles indicate the classification
results. The “Samples” is the total number of items and the vector
shows the number of each categories.

Complementary

Degree <= 0 

Samples = 1200 

Samples = 252 

Value = [252,0,0,0] 

FairSLA <= 10% 

Samples = 948 

Complementary

Degree <= 1.2 

Samples = 292 

Samples = 124 

Value = [23,101,0,0] 

Samples = 168 

Value = [2,163,3,0] 

FairSLA <= 30% 

Samples = 656 

Samples = 292 

Value = [10,242,31,9] 

Samples = 364 

Value = [9,33,314,8] 

Fig. 6: An example decision tree trained with the default parameter
setting

The decision tree can be trained from the labeled training
dataset. The training dataset consists of different workloads and
user-defined SLAs. Data comes in records of the form (d,s,Y ). d
is the complementary degree of the workload calculated according
to Equation (4). s is the user-defined threshold on the fairness
loss or the makespan reduction. Y is the target scheduler we
will classify. During the training phase, this variable is already
labeled. If our problem is optimizing the efficiency of the cluster
given the user-defined threshold on the fairness loss, then Y is the
scheduler which satisfies the user’s requirement and maximizes the
makespan reduction. Similarly, if the our problem is optimizing
the fairness between all jobs given the user-defined threshold on
the makespan reduction, then Y is the scheduler which can achieve
the best fairness under the constraints on efficiency. With the
heuristic approach [46], we train the decision tree which can infer

6



1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2016.2635133, IEEE
Transactions on Services Computing

the type of Y at runtime according to the workload characteristic
d and the user-defined SLA s.

Based on the decision tree, the dispatcher manager adaptively
decides the most suitable scheduler for Hadoop YARN at runtime.
The detail of the decision procedure is shown in Algorithm 1.
The scheduler manager calculates the complementary degree when
new jobs come or existing jobs finish. Once the complementary
degree changes, then we predict the type of the target scheduler
among candidate schedulers with the decision tree and update
the current YARN scheduler with the decided scheduler. This
scheduler is responsible for the resource allocation in Hadoop
YARN till another new scheduler is chosen.

Algorithm 1 Scheduling algorithm
1: c = (FIFO,Fair,DRF,Perf);
2: s = user-defined SLA;
3: cur = complementary degree of the current workload;
4: dt = the decision-tree based predictive model;
5: YARN = scheduler of Hadoop YARN;
6: if new jobs come or some jobs finish then
7: new = complementary degree of the new workload calcu-

lated according to Equation (4);
8: if new ̸= cur then
9: Y = decide the target scheduler from c with dt given

(new,s);
10: update the YARN scheduler YARN to Y ;
11: allocate resource according to YARN;

Scheduler switcher. In order to support the adaptive schedul-
ing of FLEX, we implements a scheduler switcher that is able to
dynamically change the scheduling policy of Hadoop YARN at
runtime. Once the target scheduler is chosen from the candidate
schedulers by the dispatcher manager, FLEX replaces the current
scheduler of Hadoop YARN with the chosen scheduler and this
new scheduler is responsible for the resource allocation of Hadoop
YARN till another scheduler is chosen.

4.4 Implementation on Hadoop YARN
We incorporate FLEX into Hadoop YARN (2.6.0) by modify-
ing Resource Manager of Hadoop YARN. The implementation
detail is shown in Figure 7. In order to reduce the scheduling
latency, Hadoop YARN applies the asynchronous event-based
programming model. AsyncDispatcher is the core component
of the asynchronous programming model. All components of
Resource Manager need to register their events dispatchers in the
AsyncDispatcher and communicate with each other by sending
their events. AsyncDispatcher monitors all coming events and
transfers each received event to the corresponding event dis-
patcher. We incorporate FLEX into YARN framework by making
the following modifications:

• AppsManager provides a workload query API for other
components to gain the information of current running
workload including the input data, the application exe-
cutable, the submission parameters and the resource de-
mand of tasks. When a new job is coming, AppsManager
notifies the other components by sending an event App-
sEvent.Start to AsyncDispatcher. AsyncDispatcher notices
WorkloadMonitor that a new application starts by sending
an event MonitorEvent.AppStarted to it. If this application
is completely new, AsyncDispatcher tells ModelTrainer

by sending an event TrainerEvent.NewApp to it. When
a job finishes, AppsManager tells the other components
by sending an event AppsEvent.Start to AsyncDispatcher.
AsyncDispatcher then notices WorkloadMonitor by send-
ing an event MonitorEvent.AppFinished to it.

• Two new components, namely, ModelTrainer and Work-
loadMonitor are integrated into Resource Manager of
YARN. Their corresponding event dispatchers are firstly
registered in AsyncDispatcher and listen to the corre-
sponding events. ModelTrainer trains the workload char-
acterization model in an offline model using decision tree
method. It listens for the TrainerEvent.NewApp event and
collects the information of the newly coming applica-
tion from AppsManager. The ModelTrainer retrains and
maintains workload characterization model periodically
with the latest workloads. In general, the complexity of
the decision tree training is O(mnlogn), where m is the
number of features and the n is the number of samples
in the dataset. In our experiment, the training time of
a workload consisting of 1200 jobs is only 1 second,
which is ignorable for data-intensive computing. On the
other hand, this model training and maintainence can be in
an asynchronous/offline manner, which does not interfere
the execution of our meta-scheduler. WorkloadMonitor
monitors the starting and finishing of all applications and
notices DispatcherManager when their resource demands
vary.

• We implement two new modules called DispatcherMan-
ager and SchedulerSwitcher in YARNScheduler compo-
nent. All candidate schedulers (FIFO, Fair, DRF and
Perf) are integrated into DispatcherManager. Dispatcher-
Manager listens for the SchedulerEvent.DemandVarying
event and provides the adaptive scheduling based on the
workload characterization model trained by ModelTrainer.
SchedulerSwitcher supports the replacement of the sched-
uler of Hadoop YARN at runtime.

Fig. 7: FLEX implementation on Hadoop YARN. The modified
existing components are shown with green rectangles and the
newly added components are shown with blue rectangles. Their
corresponding event dispatchers are shown with grey round rect-
angles. The newly added modules of the component are shown
with blue round rectangles.

5 EVALUATION

In this section, we evaluate FLEX with Hadoop YARN on a small
cluster and with simulations on the real trace.

7



1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2016.2635133, IEEE
Transactions on Services Computing

5.1 Experiment setup

We perform two sets of experiments to evaluate FLEX. We
evaluate FLEX by running our prototype implementation in our
10-nodes cluster. To evaluate the efficiency-fairness tradeoff and
study the parameter impacts at large scale, we conduct a trace-
driven simulations using the production trace in Google.

Hadoop cluster. We use Hadoop YARN (2.6.0) and run the
experiments in our local cluster. The local cluster consists of
10 compute nodes, each with two Intel X5675 CPUs (6 CPU
cores per CPU with 3.07 GHz), 24GB DDR3 memory and
500GB 7200RPM disk drivers. These machines are connected
with 10Gb/sec Ethernet.

Workload. In our experiment, we use two synthesized work-
loads based on real traces from Facebook and Google.

• Facebook workload. We synthesize a Facebook-like work-
load based on the distribution of jobs sizes and inter-
arrival time at Facebook provided by Zaharia et. al. [20].
The workload consists of 100 jobs. Based on their re-
source demand, we categorize them into 9 bins ac-
cording to job types and sizes, as listed in Table 2.
It is consisted of large number of small-sized jobs
(1 ∼ 15 tasks) and small number of large-sized jobs
(e.g., 800 tasks1). The job submission time is derived
from one of SWIM’s Facebook workload traces (e.g.,
FB-2009 samples 24 times 1hr 1.tsv) [49]. The demand
distribution of map/reduce tasks is based on Figure 1
provided by Ghodsi et al [7]. As YARN currently only
supports the allocation of CPU and memory, we also only
consider these two resources in real cluster experiments
and consider more types of resources in our trace-driven
simulation. The actual jobs are from Hive benchmark [50],
containing four types of applications, i.e., rankings selec-
tion, grep search (selection), uservisits aggregation and
rankings-uservisits join.

• Google workload. We also synthesize a Google-like work-
load by randomly picking 100 jobs from Google trace over
a one-hour period.

Metrics. We calculate the improvement on the efficiency and
the fairness loss of the target scheduler compared with the DRF
scheduler. To quantify the improvement on the efficiency, we
use the percentage improvement (or reduction) on the makespan,
illustrated in Equation 6. For the fairness loss, we calculate it with
the average reduction of job completion times, illustrated in Equa-
tion 8. There are some other fairness measurement approaches
which quantify the fairness from resource aspect [16], [8], [9].
For completeness, we also apply those kinds of approaches and
achieve similar results which are shown in Section 5.2.4. In our
experiments, we compare our proposed meta-scheduler FLEX
with Tetris [6], the state-of-the-art scheduler which studies the
tradeoff between the efficiency and the fairness in Hadoop YARN,
by showing the reduction on the makespan and fairness loss of
FLEX compared to Tetris.

In order to evaluate the accuracy of our decision tree model, we
utilize the confusion matrix which is widely used to evaluate the
quality of the output of the classifier in machine learning through
visualization [51]. Each row of the matrix represents the instances
in an actual class while each column represents the instances in

1. We reduce the size of the largest jobs in [20] to have the workload fit our cluster
size.

a predicted class. The diagonal elements of the matrix represent
the number of points for which the label is correctly predicted,
while off-diagonal elements are those that are mislabeled by the
classifier. The higher the diagonal values of the confusion matrix
the better, indicating many correct predictions. Based on the
confusion matrix, we use three important matrices called accuracy,
recall and F1 score. The accuracy is the proportion of the total
number of predictions that are correct. The recall is the proportion
of the total number of actual instances that are predicted correctly.
F1 score is a weighted average of the precision and recall.

Trace-driven simulator. In order to evaluate FLEX at a larger
cluster, we implement a trace-driven simulator that replays the
production traces collected in Google cluster [17]. This trace
provides the information of all tasks submitted by over 900 users
on a cluster of about 12.5k machines in one month, including
task submission times, execution time and normalized CPU/Mem-
ory/Disk resource demands. In order to accelerate the simulation,
we simulate 60 users submitting tasks with different resource
demands for three resource types (CPU, memory and disk) in 24
hours to a 600-node cluster. We assume that all users share the
cluster equally.

Bin Job Type Map Tasks Reduce Tasks # Jobs# Demand # Demand

1 rankings selection 1 <1,1 GB> NA NA 38
2 grep search 2 <1, 1.5 GB> NA NA 18
3 uservisits aggregation 10 <2, 0.5 GB> 2 <4,2 GB> 14
4 rankings selection 50 <4, 1 GB> NA NA 10
5 uservisits aggregation 100 <2, 1.5 GB> 10 <2, 2 GB> 6
6 rankings selection 200 <3, 2 GB> NA NA 6
7 grep search 400 <2, 1 GB> NA NA 4
8 rankings-uservisits

join
400 <1, 2 GB> 30 <2, 0.5 GB> 2

9 grep search 800 <2, 0.5 GB> 60 <1, 3 GB> 2

TABLE 2: Job types and sizes for synthetic Facebook workloads.

5.2 Real deployment evaluations

We evaluate the efficiency and fairness of FLEX with the synthetic
workload in our local cluster. We compare FLEX with Tetris.
First, we compare their makespan, fairness loss and resource
utilizations. Then, we measure the overhead of our scheduling
algorithm. Finally, we evaluate the tradeoff model used by FLEX
with the cross-validation approach.

5.2.1 Overall comparison
We compare the makespan and the fairness loss for FLEX and
Tetris. Figure 8(a) shows the makespan reduction of FLEX com-
pared to Tetris for different thresholds on the fairness loss. The
makespan reduction is up to 22% and 13% in average. This gain is
achieved by considering the variation of the efficiency-fairness
tradeoff during the computation. FLEX adaptively decides the
suitable scheduler from the candidate schedulers according to the
variation of the workload. Instead, Tetris applies the same schedul-
ing policy (Perf ) through the whole computation which loses
many optimization opportunities for efficiency-fairness tradeoff.
Similarly, FLEX significantly reduces the fairness loss compared
to Tetris for different thresholds on the makespan reduction
because FLEX skips the unworthy optimizations which would
trade much unnecessary fairness loss for negligible makespan
reduction. The result is shown in Figure 8(b). The reduction on
the fairness loss is up to 75% and 59% in average compared
to Tetris. By designing the adaptive scheduling algorithm, FLEX
optimizes the efficiency as well as the fairness at the same time

8



1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2016.2635133, IEEE
Transactions on Services Computing

compared to Tetris. We also get the similar results with Google
workload which are shown in Figure 9(a) and Figure 9(b). The
main difference is that the reductions on the makespan and fairness
loss for Google workload are both slightly smaller than that for
Facebook workload because the resource demands of Google
workload are more complementary than the resource demands of
Facebook workload.

0%

5%

10%

15%

20%

25%

0% 1% 2% 3% 4% 5% 6% 7% 8%M
a

ke
sp

a
n

 R
e

d
u

ct
io

n

Fairness Loss

(a) Makespan reduction for different
fairness losses

0%

20%

40%

60%

80%

100%

5% 10%15%20%25%30%32%

F
a

ir
n

e
ss

 L
o

ss
 

R
e

d
u

ct
io

n

Makespan Reduction

(b) Fairness loss reduction for differ-
ent makespan reductions

Fig. 8: The reduction on the makespan and fairness loss of FLEX
compared to Tetris (Facebook workload)

0%

5%

10%

15%

20%

25%

0% 1% 2% 3% 4% 5% 6% 7% 8%M
a

ke
sp

a
n

 R
e

d
u

ct
io

n

Fairness Loss

(a) Makespan reduction for different
fairness losses

0%

20%

40%

60%

80%

100%

5% 10%15%20%25%30%35%

F
a

ir
n

e
ss

 L
o

ss
 

R
e

d
u

ct
io

n

Makespan Reduction

(b) Fairness loss reduction for differ-
ent makespan reductions

Fig. 9: The reduction on the makespan and fairness loss of FLEX
compared to Tetris (Google workload)

To understand the improvement on the efficiency of FLEX
compared with Tetris, we compare the resource utilization for
both schedulers. As YARN currently only supports the allocation
of memory and CPU, we show the utilization of memory and
CPU for bother schedulers. In average, FLEX achieves 137%
improvement on memory utilization and 122% improvement on
CPU utilization. Figure 10(a) shows the detailed CPU utilization
of both schedulers during the whole execution when the threshold
on the fairness loss is set as 8%. Similarly, the memory utilization
of both schedulers is shown in Figure 10(b). The cluster is
bottlenecked on different types of resources at different times and
FLEX almost fully utilizes the bottlenecked resource all the time.
In contrast, Tetris cannot fully utilize both resources due to a large
number of resource fragmentation.

0%

20%

40%

60%

80%

100%

0

2
4

0

4
8

0

7
2

0

9
6

0

1
2

0
0

1
4

4
0

1
6

8
0

1
9

2
0

2
1

6
0

2
4

0
0

2
6

4
0

2
8

8
0

C
P

U
 u

ti
li

za
ti

o
n

 

Time (sec) 

FLEX Tetris

(a) CPU utilization

0%

20%

40%

60%

80%

100%

0

2
4

0

4
8

0

7
2

0

9
6

0

1
2

0
0

1
4

4
0

1
6

8
0

1
9

2
0

2
1

6
0

2
4

0
0

2
6

4
0

2
8

8
0

M
e

m
o

ry
 u

ti
li

za
ti

o
n

 

Time (sec) 

FLEX Tetris

(b) Memory utilization

Fig. 10: Resource utilization of the cluster under FLEX and Tetris
during the execution

We conduct detailed studies on the impact of all candidate
schedulers on the efficiency-fairness tradeoff in Figures 11–14 and
have made the following major observations.

First, the schedulers have different optimization goals and the
selection of the most suitable scheduler depends on the workload
characteristics at runtime. For example, the scheduler which can
gain the best efficiency changes with the variation of the workload
and user-defined threshold on fairness loss. Figure 11 shows the
selection distribution of all candidate schedulers for which can
gain the best efficiency for different complementary degrees and
different user-defined thresholds on fairness loss. DRF and Perf
are mostly used than the other schedulers for all cases. It means
that these two schedulers play very important roles in FLEX as
we mainly study the efficiency-fairness tradeoff. With the increase
of the complementary degree of the workload, the usage of Perf
becomes even higher due to more optimizations which satisfies
the user-defined SLA on the fairness can be conducted. Similarly,
with the increase of the user-defined threshold on fairness loss,
the usage of Perf also increases as more efficiency improvement
can be achieved with the increase of user’s tolerant on the fairness
loss.

Second, the set of candidate schedulers is very important
for the effectiveness of meta-scheduling. Our FLEX considers
4 candidate schedulers in the experiment. In order to show the
impact of different combinations of schedulers on the effectiveness
of the meta-scheduling, we enumerate all combinations of the
candidate schedulers of FLEX and perform the scheduling for
different workloads given different user-defined thresholds on
fairness losses. We calculate the makespan reduction of each
combination compared to DRF scheduler according to Equation 6.
If the user-defined threshold on the fairness loss can not be
satisfied no matter which scheduler is chosen, we give the penalty
on efficiency by setting the makespan reduction to -100%. For
each combination, we show the average makespan reduction given
different thresholds on the fairness loss for all workloads. We
classify these combinations into different categories according to
the number of candidate schedulers which can be chosen.

• One scheduler. We assume only one scheduler can be
selected. There are 4 combinations in total by choosing
only one from these 4 candidate schedulers. Figure 12
shows their average makespan reduction given different
thresholds on the fairness loss for all workloads. FIFO,
Fair and DRF do not achieve any makespan reduction. For
Perf, when the user-defined threshold on fairness loss is
large enough, the makespan can be reduced.

• Tow schedulers. There are 6 combinations in total by
choosing any two from these 4 candidate schedulers.
Figure 13 shows their average makespan reduction given
different thresholds on the fairness loss for all workloads.
We can see that the combination of DRF and Perf out-
performs all the other combinations. DRF guarantees that
the user-defined threshold on the fairness can always be
satisfied and Perf can reduce the makespan when the user’s
requirement is satisfied.

• Three schedulers. There are 4 combinations in total by
choosing any three from these 4 candidate schedulers.
Figure 14 shows their average makespan reduction given
different thresholds on the fairness loss for all work-
loads. Combination (FIFO,DRF,Perf) and combination
(Fair,DRF,Perf) achieve similar results and they both out-
perform than the other combinations. It further validates
the conclusion observed before that DRF and Perf play
very important role in our meta-scheduling.

9



1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2016.2635133, IEEE
Transactions on Services Computing

0%

20%

40%

60%

80%

100%

0.5 1 1.5 2

S
e

le
ct

io
n

 d
is

tr
ib

u
ti

o
n

Complementary degree

FIFO Fair DRF Perf

(a) Fairness loss = 0%

0%

20%

40%

60%

80%

100%

0.5 1 1.5 2

S
e

le
ct

io
n

 d
is

tr
ib

u
ti

o
n

Complementary degree

FIFO Fair DRF Perf

(b) Fairness loss = 10%

0%

20%

40%

60%

80%

100%

0.5 1 1.5 2

S
e

le
ct

io
n

 d
is

tr
ib

u
ti

o
n

Complementary degree

FIFO Fair DRF Perf

(c) Fairness loss = 20%

0%

20%

40%

60%

80%

100%

0.5 1 1.5 2

S
e

le
ct

io
n

 d
is

tr
ib

u
ti

o
n

Complementary degree

FIFO Fair DRF Perf

(d) Fairness loss = 30%

0%

20%

40%

60%

80%

100%

0.5 1 1.5 2

S
e

le
ct

io
n

 d
is

tr
ib

u
ti

o
n

Complementary degree

FIFO Fair DRF Perf

(e) Fairness loss = 40%

0%

20%

40%

60%

80%

100%

0.5 1 1.5 2

S
e

le
ct

io
n

 d
is

tr
ib

u
ti

o
n

Complementary degree

FIFO Fair DRF Perf

(f) Fairness loss = 50%

Fig. 11: The scheduler selection ratio

-100%

-80%

-60%

-40%

-20%

0%

0
%

1
0

%

2
0

%

3
0

%

4
0

%

5
0

%

6
0

%

7
0

%

8
0

%

9
0

%

1
0

0
%

M
a

ke
sp

a
n

 R
e

d
u

ct
io

n

Fairness loss

(a) FIFO scheduler

-100%

-80%

-60%

-40%

-20%

0%

0
%

1
0

%

2
0

%

3
0

%

4
0

%

5
0

%

6
0

%

7
0

%

8
0

%

9
0

%

1
0

0
%

M
a

ke
sp

a
n

 R
e

d
u

ct
io

n

Fairness loss

(b) Fair Scheduler

0%

10%

20%

30%

40%

0
%

1
0

%

2
0

%

3
0

%

4
0

%

5
0

%

6
0

%

7
0

%

8
0

%

9
0

%

1
0

0
%

M
a

k e
sp

a
n

 R
e

d
u

ct
io

n

Fairness loss

0%

(c) DRF scheduler

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

0
%

1
0

%

2
0

%

3
0

%

4
0

%

5
0

%

6
0

%

7
0

%

8
0

%

9
0

%

1
0

0
%

M
a

k e
sp

a
n

 R
e

d
u

ct
io

n

Fairness loss

(d) Perf scheduler

Fig. 12: One scheduler (4 combinations in total)

5.2.2 Runtime overhead analysis

In order to evaluate the runtime overhead of our scheduling
algorithm, we run experiments with different numbers of jobs
and tasks. We evaluate the scheduling overhead by observing
the time needed by the Resource Manager (RM) to process the
heartbeats coming from Application Masters (AM) and Node
Managers (NM). YARN RM conducts the real resource allocation
during the NM heartbeat and only updates the resource requests
and responses during the AM heartbeat. The processing time of
these heartbeats for different schedulers is shown in Table 3. For
NM heartbeat, FLEX and Tetris are a bit slower than Hadoop
Fair scheduler as they have more complex scheduling logic. For
AM heartbeat, they all take the same time. All schedulers perform
rather good scalability. We further evaluate the space overhead
by monitoring the memory usage on Resource Manager and we
find that Gemini consumes almost the same memory as Hadoop
Fair scheduler. Our online algorithm design has little runtime
overhead, rather than more complex optimizations based on linear
programming [52].

Hadoop Fair scheduler Tetris FLEX
10K (50K) tasks 10K (50K) tasks 10K (50K) tasks

NM heartbeat .05ms (.18ms) .08ms (.19ms) .08ms (.20ms)
AM heartbeat .04ms (.04ms) .04ms (.04ms) .04ms (.04ms)

TABLE 3: Overheads: Average processing time of heartbeats from the
Node Manager (NM) and the Application Master (AM) for different
schedulers

5.2.3 Model evaluation
We use grid search [48] to find the best settings for all the
parameters of the decision tree. We apply these optimal parameter
settings which are shown in Table 4 in the following experiments.
Based on the optimal setting, we first evaluate the accuracy of
the model with the cross validation approach and then study the
impact of the prediction error on FLEX.

Parameter Best Value
Criterion “entropy”
Splitter “best”
max-features 2
max-depth 3
min-samples-split 10
min-samples-leaf 5
max-leaf-node 20
random-state np.random

TABLE 4: Optimal parameter setting for the decision tree in the
experiment

Cross validation with the same workload. We evaluate
our decision-tree based tradeoff model with the cross validate
approach which is widely used in machine learning. We shuffle the
training data and split them into a pair of train and test sets. We use
70% data for training and validate the model with the remaining
30% data. With the parameter setting which is shown in Table 4,
we firstly evaluate the accuracy of our decision tree with Facebook
workload. The confusion matrix is shown in Figure 15 and the
darker color in the diagonal of the confusion matrix indicates

10



1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2016.2635133, IEEE
Transactions on Services Computing

-100%

-80%

-60%

-40%

-20%

0%

0
%

1
0

%

2
0

%

3
0

%

4
0

%

5
0

%

6
0

%

7
0

%

8
0

%

9
0

%

1
0

0
%

M
a

ke
sp

a
n

 R
e

d
u

ct
io

n

Fairness loss

(a) FIFO + Fair

0%
5%

10%
15%
20%
25%
30%
35%
40%

0
%

1
0

%

2
0

%

3
0

%

4
0

%

5
0

%

6
0

%

7
0

%

8
0

%

9
0

%

1
0

0
%

M
a

ke
sp

a
n

 R
e

d
u

ct
io

n

Fairness loss

(b) FIFO + DRF

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

0
%

1
0

%

2
0

%

3
0

%

4
0

%

5
0

%

6
0

%

7
0

%

8
0

%

9
0

%

1
0

0
%

M
a

k e
sp

a
n

 R
e

d
u

ct
io

n

Fairness loss

(c) FIFO + Perf

0%
5%

10%
15%
20%
25%
30%
35%
40%

0
%

1
0

%

2
0

%

3
0

%

4
0

%

5
0

%

6
0

%

7
0

%

8
0

%

9
0

%

1
0

0
%

M
a

k e
sp

a
n

 R
e

d
u

ct
io

n

Fairness loss

(d) Fair + DRF

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

0
%

1
0

%

2
0

%

3
0

%

4
0

%

5
0

%

6
0

%

7
0

%

8
0

%

9
0

%

1
0

0
%

M
a

k e
sp

a
n

 R
e

d
u

ct
io

n

Fairness loss

(e) Fair + Perf

0%
5%

10%
15%
20%
25%
30%
35%
40%

0
%

1
0

%

2
0

%

3
0

%

4
0

%

5
0

%

6
0

%

7
0

%

8
0

%

9
0

%

1
0

0
%

M
a

k e
sp

a
n

 R
e

d
u

ct
io

n

Fairness loss

(f) DRF + Perf

Fig. 13: Two schedulers (6 combinations in total)

0%

10%

20%

30%

40%

0
%

1
0

%

2
0

%

3
0

%

4
0

%

5
0

%

6
0

%

7
0

%

8
0

%

9
0

%

1
0

0
%

M
a

k e
sp

a
n

 R
e

d
u

ct
io

n

Fairness loss

(a) FIFO + Fair + DRF

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

0
%

1
0

%

2
0

%

3
0

%

4
0

%

5
0

%

6
0

%

7
0

%

8
0

%

9
0

%

1
0

0
%

M
a

k e
sp

a
n

 R
e

d
u

ct
io

n

Fairness loss

(b) FIFO + Fair + Perf

0%

10%

20%

30%

40%

0
%

1
0

%

2
0

%

3
0

%

4
0

%

5
0

%

6
0

%

7
0

%

8
0

%

9
0

%

1
0

0
%

M
a

k e
sp

a
n

 R
e

d
u

ct
io

n

Fairness loss

(c) FIFO + DRF + Perf

0%

10%

20%

30%

40%

0
%

1
0

%

2
0

%

3
0

%

4
0

%

5
0

%

6
0

%

7
0

%

8
0

%

9
0

%

1
0

0
%

M
a

k e
sp

a
n

 R
e

d
u

ct
io

n

Fairness loss

(d) Fair + DRF + Perf

Fig. 14: Three schedulers (4 combinations in total)

higher accuracy. We also show the detail of related metrics in
Figure 16. The results show that our model is accurate enough and
can effectively guide the adaptive scheduling of FLEX.

Fig. 15: Confusion matrix (Facebook workload)

Cross validation with different workloads. In order to
evaluate the robustness of the decision tree model across different
workloads, we train our decision tree with Facebook workload and
evaluate its accuracy with the Google workload. The confusion
matrix is shown in Figure 17 and the related metrics are shown
in Figure 18. The average precision, Recall and F1-score are all
larger than 80% which further indicates that our model is accuracy
even with different workloads.

Precision Recall F1-score 

FIFO 1.00 0.80 0.88 

DRF 0.92 0.86 0.89 

Perf 0.80 1.00 0.89 

Fair 1.00 1.00 1.00 

avg 0.93 0.91 0.91 

Fig. 16: Classification accuracy of the decision tree (Facebook
workload)

Fig. 17: Confusion matrix (Different workloads)

Impact of the prediction error on efficiency. We study
the impact of the prediction error of our workload model on
the efficiency. Figure 19(a) shows the makespan reduction of

11



1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2016.2635133, IEEE
Transactions on Services Computing

Precision Recall F1-score 

FIFO 0.80 0.77 0.78 

DRF 0.81 0.79 0.80 

Perf 0.72 0.85 0.78 

Fair 0.90 0.80 0.85 

avg 0.81 0.80 0.80 

Fig. 18: Classification accuracy of the decision tree (Different
workloads)

FLEX compared with Tetris by introducing different degrees of
prediction errors. The makespan reduction decreases slightly with
the increase of the prediction error while our meta-scheduler
still reduces the makespan significantly compared with Tetris.
Specifically, the allowable threshold on the fairness loss w is 8%
here. Given the a prediction error e, the prediction has a probability
which is randomly distributed in [w,w(1+e)] to randomly choose
one scheduler from the candidate schedulers. We vary e from 0%
(no error) to 30%. The result demonstrates the robustness of our
optimizations, if the prediction error is reasonable.

0%

5%

10%

15%

20%

25%

0% 10% 20% 30%M
a

ke
sp

a
n

 R
e

d
u

ct
io

n

Prediction Errors

(a) The makespan reduction for dif-
ferent prediction errors

0%

20%

40%

60%

80%

100%

0% 10% 20% 30%

F
a

ir
n

e
s
s
 L

o
s
s
 

R
e

d
u

c
ti

o
n

Prediction Errors

(b) The fairness loss reduction for
different prediction errors

Fig. 19: The reduction on the makespan and fairness loss of FLEX
compared with Tetris for different prediction errors

Impact of prediction error on fairness. We also show the
impact of prediction errors on the fairness loss reduction of Flex
compared with Tetris in Figure 19(b). The fairness loss reduction
slightly decreases with the increase of prediction error while
our meta-scheduler still reduces the fairness loss significantly
compared with Tetris.

5.2.4 Impact of long-term fairness definitions
The fundamental difference between multiple fairness-oriented
schedulers is that they have different efficiency-fairness tradeoffs.
The choice of different fair schedulers depends on three major
factors, including the workload characteristics, the user-defined
SLA and the efficiency-fairness tradeoff of the fair schedulers. In
fact, our meta-scheduler already integrates two fair schedulers into
our system: Fair scheduler and DRF scheduler. Fair scheduler only
considers memory. DRF is the state-of-the-art fair scheduler by
considering multiple resource types and is treated as the baseline
for comparison in our experiment. Figure 12(b) only utilizes the
Fair scheduler in our meta-scheduler and Figure 12(c) only consid-
ers the DRF scheduler in the meta-scheduler. In Figure 12(b), Fair
scheduler violates user-defined fairness loss requirement for some
workloads. Therefore, the makespan reduction is penalized and
the penalization decreases with the loose of the fairness constraint.
In Figure 12(c), the makespan reductions for different thresholds
on the fairness loss are all zero as DRF scheduler is treated as
the comparison baseline. In Figure13(d), both Fair scheduler and

DRF scheduler are integrated into our meta-scheduler and their
cooperation actually achieves higher makespan reduction under
the fairness constraint compared with the individual scheduler
in Figure 12(b) and Figure 12(c). For some workloads, Fair
scheduler is selected by the meta-scehduler because it is able to
reduce makespan while satisfying the user-defined threshold on
the fairness loss. For other workloads, DRF scheduler is chosen
by the meta-scheduler to guarantee the user-defined threshold on
the fairness loss.

Both Fair and DRF only consider instantaneous resource
allocation on a snapshot. In order to evaluate the fairness in one
period, we apply the concept of long-term fairness [9] that ensures
the fair allocation among multiple users along the time of their
execution and the fairness is quantified from resource aspect by
considering actual received allocation and purported fair allocation
of all applications over their runtime. We make the following
observations. First, there is still a tradeoff between the system
efficiency and this long-term fairness, which is shown in Figure 20.
This tradeoff also depends on the workload that further verifies the
importance of the adaptive scheduler in bi-criteria optimization for
efficiency and fairness. Second, the fairness loss reduction under
the long-term fairness definition is slightly higher compared with
that under the definition in Section 5.2.1, due to the interference
in the shared environment. In the context of this new fairness
definition, FLEX still achieves significant makespan reduction
compared to Tetris for the different thresholds on the fairness loss
(as shown in Figure 21(a)). Similar, for the different thresholds
on the makespan reduction, FLEX also significantly reduces the
fairness loss, compared with Tetris (as shown in Figure 21(b)).

0%

2%

4%

6%

8%

0%

10%

20%

30%

40%

50%

0 0.5 1 1.5 2

F
a

ir
n

e
ss

 l
o

ss

M
a

ke
sp

a
n

 R
e

d
u

ct
io

n

Complementary degree

Makespan Fairness

Fig. 20: Tradeoff between the efficiency and fairness of efficiency-
oriented scheduler for workloads with different complementary
degrees. (long-term fairness)

0%

5%

10%

15%

20%

25%

0% 1% 2% 3% 4% 5% 6% 7% 8%M
a

ke
sp

a
n

 R
e

d
u

ct
io

n

Fairness Loss

(a) Makespan reduction for different
fair losses

0%

20%

40%

60%

80%

100%

5% 10%15%20%25%30%32%

F
a

ir
n

e
ss

 L
o

ss
 

R
e

d
u

ct
io

n

Makespan Reduction

(b) Fairness loss reduction for differ-
ent makespan reductions

Fig. 21: The reduction on the makespan and fairness loss of FLEX
compared to Tetris (long-term fairness)

5.3 Trace-driven simulations
Here, we evaluate the efficiency improvement and fairness loss of
FLEX at a larger scale by mimic scheduling in a Google cluster
using the production trace provided by Google.

Figure 22(a) shows the makespan reduction of FLEX com-
pared with Tetris for different thresholds on the fairness loss and

12



1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2016.2635133, IEEE
Transactions on Services Computing

Figure 22(b) gives the result of the reduction on the fairness
loss of FLEX compared to Tetris for different thresholds on the
makespan reduction. Similar to the results in our local cluster,
FLEX can achieve better results than Tetris. We highlight with
the following observations for the simulations with the production
trace. For the same threshold on the fairness loss in Figure 22(a),
the makespan reduction in the simulation is slightly higher than
that of the local cluster, because our trace-driven simulator con-
siders more resource types provided in Google trace. Instead, our
prototype implementation only considers two resource types as
Hadoop YARN currently only supports the allocation of CPU and
Memory. This results in more fragmentation and over-allocation
of resources.

0%

5%

10%

15%

20%

25%

0
%

1
%

2
%

3
%

4
%

5
%

6
%

7
%

8
%

9
%

1
0

%

1
2

%M
a

ke
sp

a
n

 R
e

d
u

ct
io

n

Fairness Loss

(a) Makespan reduction for different
fair losses

0%

20%

40%

60%

80%

100%

5
%

1
0

%

1
5

%

2
0

%

2
5

%

3
0

%

3
5

%

4
0

%

F
a

ir
n

e
ss

 L
o

ss
 

R
e

d
u

ct
io

n

Makespan Reduction

(b) fairness loss reduction for differ-
ent makespan reductions

Fig. 22: The reduction on the makespan and fairness loss of FLEX
compared to Tetris in large-scale simulation with Google trace

6 CONCLUSION

This paper shows that due to the heterogenous demand of multiple
resources for users’ jobs, being aware of the variation of the
resource demand of the running workload is non-trivial for bi-
criteria optimization between efficiency and fairness. There is a
need to bridge this gap by studying the impact of workload’s
demand variation on the efficiency and fairness optimizations. In
view of this, we propose a meta-scheduler called FLEX to realize
the tradeoff between system efficiency and fairness in Hadoop
YARN. The experiments on real clusters and simulations show
that FLEX achieves better efficiency as well as fairness than the
state-of-the-art work.

There are a few interesting studies for extending this work.
First, the current system mainly considers the recurring workload.
In the future, we are interested in developing more complex online
algorithms to support the scheduling of ad-hoc jobs. Second, to
further improve resource utilization, we plan to design dynamic
and fine-grained resource allocation model by extending the cur-
rent resource allocation mechanisms provided by Hadoop YARN.

7 ACKNOWLEDGMENT

This project is partially funded by a collaborative grant from
Microsoft Research Asia and an NUS startup grant in Singapore.
Zhaojie’s work is in part supported by the National Research
Foundation, Prime Ministers Office, Singapore under its IDM
Futures Funding Initiative. Shanjiang’s work is partly supported
by National Natural Science Foundation of China (No.61602336).

REFERENCES

[1] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” in OSDI, 2004.

[2] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad: distributed
data-parallel programs from sequential building blocks,” in EuroSys,
2007.

[3] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. H.
Katz, S. Shenker, and I. Stoica, “Mesos: A platform for fine-grained
resource sharing in the data center.” in NSDI, 2011.

[4] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,
R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth et al., “Apache hadoop
yarn: Yet another resource negotiator,” in SoCC, 2013.

[5] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J.
Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster computing,” in NSDI,
2012.

[6] R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and A. Akella,
“Multi-resource packing for cluster schedulers,” in SIGCOMM, 2014.

[7] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and
I. Stoica, “Dominant resource fairness: Fair allocation of multiple re-
source types.” in NSDI, 2011.

[8] W. Wang, C. Feng, B. Li, and B. Liang, “On the fairness-efficiency
tradeoff for packet processing with multiple resources,” in CoNEXT,
2014.

[9] S. Tang, B.-S. Lee, B. He, and H. Liu, “Long-term resource fairness:
towards economic fairness on pay-as-you-use computing systems,” in
ICS, 2014.

[10] J. Tan, A. Chin, Z. Z. Hu, Y. Hu, S. Meng, X. Meng, and L. Zhang,
“Dynmr: Dynamic mapreduce with reducetask interleaving and maptask
backfilling,” in EuroSys, 2014.

[11] X. Bu, J. Rao, and C.-z. Xu, “Interference and locality-aware task
scheduling for mapreduce applications in virtual clusters,” in HPDC,
2013.

[12] C. Delimitrou and C. Kozyrakis, “Quasar: Resource-efficient and qos-
aware cluster management,” in Asplos, 2014.

[13] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and A. Gold-
berg, “Quincy: fair scheduling for distributed computing clusters,” in
SOSP, 2009.

[14] A. Ghodsi, M. Zaharia, S. Shenker, and I. Stoica, “Choosy: Max-min fair
sharing for datacenter jobs with constraints,” in EuroSys, 2013.

[15] W. Wang, B. Liang, and B. Li, “On fairness-efficiency tradeoffs for multi-
resource packet processing,” in ICDCSW, 2013.

[16] C. Joe-Wong, S. Sen, T. Lan, and M. Chiang, “Multiresource allocation:
Fairness-efficiency tradeoffs in a unifying framework,” in TON, 2013.

[17] “Google cluster data,” https://code.google.com/p/googleclusterdata.
[18] J. Polo, C. Castillo, D. Carrera, Y. Becerra, I. Whalley, M. Steinder,

J. Torres, and E. Ayguadé, “Resource-aware adaptive scheduling for
mapreduce clusters,” in Middleware, 2011.

[19] Z. Niu, B. He, and F. Liu, “Not all joules are equal: Towards energy-
efficient and green-aware data processing frameworks,” The IEEE Inter-
national Conference on Cloud Engineering (IC2E), 2016.

[20] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker, and
I. Stoica, “Delay scheduling: a simple technique for achieving locality
and fairness in cluster scheduling,” in EuroSys, 2010.

[21] M. Y. Eltabakh, Y. Tian, F. Özcan, R. Gemulla, A. Krettek, and
J. McPherson, “Cohadoop: flexible data placement and its exploitation
in hadoop,” in VLDB, 2011.

[22] A. Rasmussen, M. Conley, G. Porter, R. Kapoor, A. Vahdat et al.,
“Themis: an i/o-efficient mapreduce,” in SoCC, 2012.

[23] S. Ibrahim, H. Jin, L. Lu, B. He, and S. Wu, “Adaptive disk i/o scheduling
for mapreduce in virtualized environment,” in ICPP, 2011.

[24] A. Shieh, S. Kandula, A. G. Greenberg, C. Kim, and B. Saha, “Sharing
the data center network.” in NSDI, 2011.

[25] M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan, and I. Stoica, “Managing
data transfers in computer clusters with orchestra,” in SIGCOMM, 2011.

[26] “Hadoop mapreduce 1.0 - fair scheduler,”
http://hadoop.apache.org/docs/r1.2.1/fair scheduler.html.

[27] W. Wang, B. Li, and B. Liang, “Dominant resource fairness in cloud
computing systems with heterogeneous servers,” in INFOCOM, 2014.

[28] H. Liu and B. He, “Reciprocal resource fairness: Towards cooperative
multiple-resource fair sharing in iaas clouds,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE Press, 2014, pp. 970–981.

[29] ——, “F2c: Enabling fair and fine-grained resource sharing in multi-
tenant iaas clouds,” in IEEE TPDS, 2015.

[30] Z. Niu, S. Tang, and B. He, “Gemini: An adaptive performance-fairness
scheduler for data-intensive cluster computing,” in IEEE International
Conference on Cloud Computing Technology and Science, 2015.

[31] J. Frey, T. Tannenbaum, M. Livny, I. Foster, and S. Tuecke, “Condor-g:
A computation management agent for multi-institutional grids,” Cluster
Computing, vol. 5, no. 3, pp. 237–246, 2002.

13



1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2016.2635133, IEEE
Transactions on Services Computing

[32] E. Huedo, R. S. Montero, and I. M. Llorente, “A framework for adaptive
execution in grids,” Software-Practice and Experience, vol. 34, no. 7, pp.
631–652, 2004.

[33] S. K. Garg, S. Venugopal, and R. Buyya, “A meta-scheduler with auction
based resource allocation for global grids,” in Parallel and Distributed
Systems, 2008. ICPADS’08. 14th IEEE International Conference on.
IEEE, 2008, pp. 187–194.

[34] C. Smith, “Open source metascheduling for virtual organizations with the
community scheduler framework (csf),” Technical whitepaper, Platform
Computing, 2003.

[35] K. Chard and K. Bubendorfer, “A distributed economic meta-scheduler
for the grid,” in Cluster Computing and the Grid, 2008. CCGRID’08. 8th
IEEE International Symposium on. IEEE, 2008, pp. 542–547.

[36] A. Foltzer, A. Kulkarni, R. Swords, S. Sasidharan, E. Jiang, and R. New-
ton, “A meta-scheduler for the par-monad: composable scheduling for the
heterogeneous cloud,” in ACM SIGPLAN Notices, vol. 47, no. 9. ACM,
2012, pp. 235–246.

[37] S. Sotiriadis, N. Bessis, F. Xhafa, and N. Antonopoulos, “From meta-
computing to interoperable infrastructures: A review of meta-schedulers
for hpc, grid and cloud,” in Advanced Information Networking and
Applications (AINA), 2012 IEEE 26th International Conference on.
IEEE, 2012, pp. 874–883.

[38] M. Banikazemi, D. Poff, and B. Abali, “Pam: a novel performance/power
aware meta-scheduler for multi-core systems,” in High Performance
Computing, Networking, Storage and Analysis, 2008. SC 2008. Inter-
national Conference for. IEEE, 2008, pp. 1–12.

[39] S. K. Garg, C. S. Yeo, A. Anandasivam, and R. Buyya, “Environment-
conscious scheduling of hpc applications on distributed cloud-oriented
data centers,” Journal of Parallel and Distributed Computing, vol. 71,
no. 6, pp. 732–749, 2011.

[40] S. Sadhasivam, N. Nagaveni, R. Jayarani, and R. V. Ram, “Design and
implementation of an efficient two-level scheduler for cloud computing
environment,” in Advances in Recent Technologies in Communication
and Computing, 2009. ARTCom’09. International Conference on. IEEE,
2009, pp. 884–886.

[41] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and J. Wilkes,
“Omega: flexible, scalable schedulers for large compute clusters,” in
Proceedings of the 8th ACM European Conference on Computer Systems.
ACM, 2013, pp. 351–364.

[42] A. Rrnyi, “On measures of entropy and information,” in Fourth Berkeley
symposium on mathematical statistics and probability, 1961.

[43] H. Arabnejad and J. Barbosa, “Fairness resource sharing for dynamic
workflow scheduling on heterogeneous systems,” in ISPA, 2012.

[44] H. Zhao and R. Sakellariou, “Scheduling multiple dags onto hetero-
geneous systems,” in Parallel and Distributed Processing Symposium,
2006.

[45] S. R. Safavian and D. Landgrebe, “A survey of decision tree classifier
methodology,” IEEE transactions on systems, man, and cybernetics,
vol. 21, no. 3, pp. 660–674, 1991.

[46] J. R. Quinlan, “Induction of decision trees,” Machine learning, vol. 1,
no. 1, pp. 81–106, 1986.

[47] L. E. Raileanu and K. Stoffel, “Theoretical comparison between the gini
index and information gain criteria,” Annals of Mathematics and Artificial
Intelligence, vol. 41, no. 1, pp. 77–93, 2004.

[48] I. Hayashi, T. Maeda, A. Bastian, and L. Jain, “Generation of fuzzy
decision trees by fuzzy id3 with adjusting mechanism of and/or oper-
ators,” in Fuzzy Systems Proceedings, 1998. IEEE World Congress on
Computational Intelligence., The 1998 IEEE International Conference
on, vol. 1. IEEE, 1998, pp. 681–685.

[49] “Facebook swim trace,” https://github.com/SWIMProjectUCB/SWIM.
[50] “Hive performance benchmarks,” https://issues.apache.org/jira/browse/HIVE-

396.
[51] T. Fawcett, “An introduction to roc analysis,” Pattern recognition letters,

vol. 27, no. 8, pp. 861–874, 2006.
[52] D. G. Luenberger, Introduction to linear and nonlinear programming.

Addison-Wesley Reading, MA, 1973, vol. 28.

Zhaojie Niu is a Ph.D candidate in the Interdis-
ciplinary Graduate School (IGS), Nanyang Tech-
nological University, Singapore. He received his
master’s and bachelor’s degrees from Huazhong
University of Science and Technology (HUST),
China, in Jan 2012 and July 2009 respectively.
He is insterested in big data processing plat-
forms, distributed systems, resource manage-
ment in the data centers and high-concurrency
systems.

Shanjiang Tang is an assistant Professor in
the School of Computer Science & Technology,
Tianjin University. He received his Ph.D degree
from Nanyang Technological University in 2015.
He received the B.Eng. and M.Sc. degrees from
School of Software Engineering and School of
Computer Science & Technology at Tianjin Uni-
versity in 2008 and 2011, respectively. His gen-
eral research interests primarily focus on large-
scale computing systems, big data, and cloud
computing, with special emphasis on the re-

source management and job scheduling for Hadoop/YARN system.

Bingsheng He received the bachelor degree
in computer science from Shanghai Jiao Tong
University (1999-2003), and the PhD degree in
computer science in Hong Kong University of
Science and Technology (2003-2008). He is an
Associate Professor in School of Computing,
National University of Singapore. His research
interests are high performance computing, dis-
tributed and parallel systems, and database sys-
tems. Since 2010, he has (co-)chaired a number
of international conferences and workshops, in-

cluding IEEE CloudCom 2014/2015 and HardBD2016. He has served
in editor board of international journals, including IEEE Transactions on
Cloud Computing (IEEE TCC) and IEEE Transactions on Parallel and
Distributed Systems (IEEE TPDS).

14


