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a b s t r a c t 

Dynamic programming is an important technique widely used in many scientific applica- 

tions. Due to the massive volume of applications’ data in practice, parallel and distributed 

DP is a must. However, writing a parallel and distributed DP program is difficult and error- 

prone because of its intrinsically strong data dependency. In this paper, we present DPX10, 

a DAG-based distributed X10 framework aiming at simplifying the parallel programming 

for DP applications. DPX10 enables users to write highly efficient parallel DP programs 

without much effort. For DPX10 programming, users only need to do two things: 1) In- 

stantiating a DAG pattern by indicating the dependency between vertices of the DAG; 2) 

Implementing the DP application’s logic in the compute method of the vertices. DPX10 

provides eight commonly used DAG patterns and a simple API to allow users to customize 

their own DAG patterns. All the tiresome work of DP parallelization including DAG distri- 

bution, tasks scheduling, and tasks communication are hidden from users and covered by 

DPX10. Moreover, DPX10 is fault-tolerant and has a mechanism to handle the problem of 

straggler tasks, which run much slower than other tasks due to unexpected resource con- 

tention. Finally, we use four DP applications with up to 2 billion vertices running on 240 

cores to demonstrate the simplicity, efficiency, and scalability of our proposed framework. 

© 2016 Elsevier B.V. All rights reserved. 

 

 

 

 

 

 

 

1. Introduction 

In many application domains such as economics and bioinformatics, dynamic programming is a practical and efficient

solution. However, due to the huge volume of data, parallelizing DP in a distributed manner is necessary and crucial to

keep the computation time at acceptable levels. But the intrinsically strong data dependency of DP makes it difficult for

programmers to write a correct and efficient parallel and distributed DP program. 

There have been a number of parallelization proposals [1–6] on DP. Many of them are targeting a specific problem. For

example, the Smith–Waterman (SW) algorithm, based on dynamic programming, is one of the most fundamental algorithms

in bioinformatics. Some work [1,2] implement it on a single general purpose microprocessor. They parallelized the algorithm

with SIMD method at the instruction level. SparkSW [3] is a distributed implementation of SW algorithm based on Apache
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Spark [3]. These studies only work for a single DP algorithm and lack generality and simplicity for supporting other DP

algorithms parallelization. 

On the other hand, to ease parallel programming for DP applications, some runtime systems and frameworks are pro-

posed in recent years [5,6] . They can be classified according to two classic parallel computing models, i.e., shared memory

model (favors the data communication but its scalability is a problem) [7] and distributed memory model (it has good scal-

ability, but the communication cost is high) [8] . For example, EasyPDP [5] is a shared memory based runtime system for DP

algorithms. It allows users to write parallel DP program easily and run them in a single machine consisting of multiple CPU

cores. In contrast, EasyHPS [6] is a distributed runtime system for DP algorithms based on the distributed memory model.

However, there is a lack of a general purpose system for DP algorithms that combines the shared memory model and the

distributed memory model together for better data communication and scalability. 

In this paper, we present DPX10, a DAG-based X10 [9] framework for DP applications. DPX10 is a vertex-centric and

fine-grained system for the simplicity, reliability, efficiency and scalability of parallel DP programming and execution. It is

based on X10 language and APGAS (Asynchronous Partitioned Global Address Space) [10] model, which combines the shared

memory model with distributed memory model. The vertices of DAG are distributed to all computing nodes and on each

node, one worker is responsible for scheduling those vertices. Multi-threads are spawned by each worker to execute the

vertices. The data is accessed through shared memory model if it is stored on a local node, otherwise, distributed memory

model is used. 

DPX10 can express the DP computations and hides the messy details of parallelization, data distribution and fault tol-

erance. Users can specify the computation in terms of a DAG pattern and a compute method. DPX10 coordinates the dis-

tributed execution of a set of data-parallel tasks arranged according to the data-flow DAG. Eight commonly used DAG pat-

terns are provided in the DAG pattern library, which covers a wide range of DP problems. Moreover, several DP applications

are utilized to demonstrate DPX10’s simplicity, efficiency and scalability. 

Specifically, we make the following major contributions: 

1. Propose a straightforward and powerful abstraction to express DP computations, combined with an X10 implementation

of this abstraction that achieves high performance on commodity clusters. To our knowledge, this is the first program-

ming framework for DP problems based on APGAS model. 

2. Propose a new recovery mechanism for distributed arrays instead of the periodicity snapshot method provided by X10. 

3. Present the implementation of our framework, showing its simplicity, efficiency, reliability, scalability and the ability to

solve straggler problems. 

The rest of the paper is structured as follows. Section 2 briefly describes some background information. The model of

computation is discussed in Section 3 . Section 4 introduces DPX10 framework and the implementation of it, including the

DAG pattern library, worker implementation, and fault-tolerance, etc. In Section 5 we present two applications to show the

process of writing DP programs with DPX10. In Section 6 we report our experimental evaluation of the system. We conclude

in Sections 7 and 8 with a discussion of the related literatures and future research directions. 

2. Background 

2.1. Parallel programming models 

In traditional parallel computing, there are two classic programming models, i.e., distributed memory model (e.g., MPI),

and shared memory model (e.g., Pthread, OpenMP). 

Distributed memory refers to a multiprocessor computer system in which no processor has direct access to all the sys-

tem’s memory. Computational tasks can only operate on local data, and if remote data is required, the computational task

must communicate with one or more remote processors. In contrast, a shared memory multiprocessor offers a single mem-

ory space used by all processors. Processors do not have to be aware of where data reside. Each model has its merit. Specifi-

cally, shared memory model is good for communication-intensive computing, but its scalability is a big problem. Distributed

memory model has good scalability but the cost of data communication is high. 

Many studies [10–14] have been presented to take advantage of both models and at the same time, make it easier for

developers to write efficient parallel and distributed applications. Partitioned global address space (PGAS) [14] is a parallel

programming model that attempts to combine the advantages of a SPMD programming style for distributed memory systems

with the data referencing semantics of shared memory systems. It assumes a global memory address space that is logically

partitioned, and a portion of it is local to each process or thread. The novelty of PGAS is that the parts of the shared memory

space may have an affinity for a particular process, thereby exploiting locality of reference. 

2.2. X10 and APGAS 

X10 is a high-performance and high-productivity programming language developed by IBM Research. It aims to enable

users to write highly efficient parallel and distributed programs easily and quickly. 

X10 is based on the asynchronous partitioned global address Space (APGAS) [10] model, a variant of the PGAS model.

APGAS model permits both local and remote asynchronous task creation. It introduces two key concepts: places and asyn-
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chronous . A place is a collection of data and worker threads operating on the data. Places are typically realized as operating

system processes, which is a coarse-grained parallelism. Asynchronous is fundamental to the language which is denoted by

the keyword async . Statement async S is a fine-grained parallelism, which tells X10 to run S as a separate and concurrent

activity , similar to threads in the operating system. 

The latest major release of X10 is X10 2.5.3. It has been constructed via source-to-source compilation to either C++ or

Java (termed as Native X10 or Managed X10) [15] . Since we are more interested in performance than portability, the current

version of DPX10 only targets the Native X10. 

An X10 program consists of at least one class definition with a main method. The number of places and the mapping

from places to nodes can be specified by users at launch time. The execution starts with the main method at Place (0). 

2.3. The Dynamic Programming (DP) algorithm 

Dynamic programming is a powerful technique widely used for many scientific applications. DP problem is solved by

decomposing the problem into a set of interdependent subproblems, and using their results to solve larger subproblems

until the entire problem is solved [5] . There are two key attributes that a problem must have in order to make dynamic

programming applicable: optimal substructure and overlapping sub-problems. Optimal substructure means that the solution

to a given optimization problem can be obtained by the combination of optimal solutions to its sub-problems. Such optimal

substructures are usually described by means of recursion. Overlapping sub-problems means that the space of sub-problems

must be small, that is, any recursive algorithm solving the problem should solve the same sub-problems over and over,

rather than generating new sub-problems. 

DP problems can be classified in terms of the matrix dimension and the dependency relationship of each cell on the

matrix [16] : A DP algorithm is called a tD / eD algorithm if its matrix dimension is t and each matrix cell depends on O ( n e )

other cells. It takes time O (n t+ e ) provided that the computation of each term takes constant time. For example, three DP

algorithms are defined as follows: 

Algorithm 3.1 (2 D /0 D ): Given D [ i , 0] and D [0, j ] for 1 ≤ i , j ≤ n , 

D [ i, j] = min { D [ i − 1 , j] + x i , D [ i, j − 1] + y i } 
where x i , y i are computed in constant time. 

Algorithm 3.2 (2 D /1 D ): Given w (i, j) for 1 ≤ i, j ≤ n ; D [ i, i ] = 0 for 1 ≤ i , 

D [ i, j] = w (i, j) + min i ≤k ≤ j { D [ i, k − 1] + D [ k, j] } 
Algorithm 3.3 (2 D /2 D ): Given w (i, j) for 1 ≤ i , j ≤ 2 n ; D [ i , 0] and D [0, j ] for 0 ≤ i , j ≤ n , 

D [ i, j] = min 0 ≤ j ′ ≤ j, 0 ≤i ′ ≤i { D [ i 
′ 
, j 

′ 
] + w (i 

′ + j 
′ 
, i + j) } 

In this paper, we concentrate on the distribution and parallelization of DP algorithms of the type 2 D /0 D , which are

important DP algorithms for many applications, e.g., 0/1 knapsack problem, longest substring problem, and Smith–Waterman

algorithm, etc. We leave the consideration of 2 D/iD (i > = 1) to future work. 

2.4. The vertex-centric framework 

The vertex-centric frameworks (e.g., Pregel [17] , GraphLab [18] ) are platforms that iteratively execute a user-defined pro-

gram over vertices of a graph. The vertex program is designed from the perspective of a vertex, receiving as input the ver-

tex’s data as well as data from adjacent vertices and incident edges. The vertex program is executed across vertices of the

graph synchronously, or may also be performed asynchronously. Execution halts after either a specified number of iterations

or all vertices have converged. The vertex-centric programming model is less expressive than conventional graph-omniscient

algorithms but is easily scalable with more opportunity for parallelism [19] . 

Based on the granularity of the tasks, a graph processing program has two parallel scheduling models, i.e., fine-grained

and coarse-grained. Fine-grained parallelism means individual tasks are relatively small regarding code size and execution

time. The data is transferred among processors frequently in amounts of one or a few memory words. Coarse-grained is the

opposite: nodes are infrequently communicated, after larger amounts of computation. The finer the granularity, the greater

the potential for parallelism and hence speed-up, but the greater the overheads of synchronization and communication [20] .

In order to attain the best parallel performance, the best balance between load and communication overhead needs to be

found. If the granularity is too fine, the performance can suffer from the increased communication overhead. On the other

side, if the granularity is too coarse, the performance can suffer from load imbalance. 

3. DPX10 parallel programming model 

DPX10 focuses on the DP algorithms of type 2 D /0 D as we discussed in Section 2.3 . The computation is a process of filling

the DP matrix. The dependency between cells in the matrix can be different in different DP algorithms. So we use the DAG

to represent the DP matrix and the dependency relationship between cells. 
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Fig. 1. An example DAG. 

Fig. 2. An example DAG of longest common substring problem. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A directed graph is denoted as D = { V, E} , where V = { V 1 , V 2 , · · · , V n } is a set of n vertices and E is a set of directional

edges, as shown in Fig. 1 . A path in a directed graph can be described by a sequence of edges having the property that

the ending vertex of each edge in the sequence is the same as the starting vertex of the next edge in the sequence; a path

forms a cycle if the starting vertex of its first edge equals the ending vertex of its last edge. A DAG is a directed graph that

has no cycles. 

In the DAG, each vertex represents a cell on the matrix as discussed above. The edge describes the dependency between

cells and determines the execution order of them. For example, e pq = (v p , v q ) ∈ E suggests that v q can start computing only

when v p completes. 

There are often some applications whose DAG diagrams are almost the same except for their sizes. For simplicity and

reuse purposes, we could make those frequently used DAGs as DAG patterns and establish a DAG pattern library to classify

and store them. The library will be discussed in Section 4.2.2 . 

A typical DPX10 computation consists of inputting a DAG pattern, where the vertices are distributed and initialized,

followed by an execution phase where all vertices are scheduled and computed until the algorithm terminates, and the final

stage for users to process the result. 

In the execution phase, the vertices with in-degree of zero compute in parallel, each executing the same user-defined

compute method that expresses the logic of a given algorithm. When a vertex completes, the in-degree of each of its

children decreases by one. The whole execution continues until all vertices completed. When the program terminates, the

result of each vertex can be accessed by using the system APIs, provided in Section 4.1 . 

We use the longest common substring(LCS) problem to illustrate these concepts. Given two strings S and T , the LCS

problem is to find their longest common substring. Its DP formulation is: 

F [ i, j] = 

{
F [ i − 1 , j − 1] + 1 x i = y j 

max { F [ i − 1 , j] , F [ i, j − 1] } x i � = y j 

where F [ i , j ] records the length of LCS of S 0 ... i and T 0 ... j . So F [ m , n ] would be the length of LCS of S and T , where m and n

are the length of S and T . 

Fig. 2 shows a simple example: finding the LCS of string ABC and string DBC . At the initial stage, the DAG is constructed

and nine vertices are initialized with zero. The computation starts from the zero in-degree vertex (0, 0) and terminates

when all vertices are completed. The sequence of computation may be different since the vertices without dependency
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Fig. 3. The DPX10App and Vertex API foundations. 

Fig. 4. Logical flow of DPX10’s execution. 

 

 

 

 

 

 

 

 

 

 

 

relationship execute in parallel. For example, vertex (0, 2) can be computed before vertex (0, 1). Finally, the result can be

processed by using backtracking method to get the substring BC . 

4. DPX10 framework 

We start by introducing the interface of DPX10. Then we describe our system design and implementation. 

4.1. The programming interface 

Writing a DPX10 application involves implementing the predefined DPX10App interface (see Fig. 3 ). Its template argu-

ment defines the value type associated with vertices. Each vertex has an associated computing result of the specified type. 

The compute method should be implemented by users. It performs on each vertex at runtime. Parameter (i, j) is a unique

identifier indicating which vertex is computing. The communication between vertices is hidden from users. The dependen-

cies are resolved automatically by DPX10 and passed as a parameter vertices . Users can inspect the value associated with

these vertices via getResult method in Vertex class. 

When the program terminates, the appFinished method is invoked where the final result should be processed. The

argument dag can be used to access the results of all vertices. 

4.2. System design and implementation 

The goal of DPX10 is to support efficient execution on multiple nodes and multiple cores without burdening programmers

with concurrency management. DPX10 consists of a DAG pattern library to represent a DP algorithm, some useful APIs and

the runtime that handle distribution, scheduling and fault recovery. 

4.2.1. Execution overview 

Fig. 4 shows the overall flow of a DPX10 operation in our implementation. The gray curves with double-headed arrow in-

dicate data communications between workers in different places. In the absence of faults, the execution of a DPX10 program

consists of several stages: 

1. The DPX10 runtime first distributes and initializes all vertices of the input DAG across available places in parallel. Then

it examines vertices on each place and inserts those with zero in-degree into a local ready list to wait for scheduling. 
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Fig. 5. The DAG API foundations. 

Fig. 6. Eight built-in DAG patterns. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. DPX10 spawns one worker on each place. Each worker is responsible for scheduling local vertices and executing users

compute method on vertices. Once all local vertices are finished the worker exits. 

3. When all workers complete, the computation is finished. DPX10 then invokes the user-defined appFinished method to

notify the user. 

4.2.2. DAG pattern library 

The DAG pattern is an abstract for a set of DP algorithms which excepts the size, has the same data dependency between

vertices. All DAG patterns are subclasses of DAG class. Some important APIs of the DAG class are shown in Fig. 5 . Its template

argument is the same as Vertex class. The constructor takes two parameters height and width to determine the size of the

DAG. 

Two key methods are getDependency and getAntiDependency which describe the dependency between vertices. They 

are used by DPX10 runtime to resolve the dependencies automatically. They need to be implemented by the user when

creating a custom DAG pattern. The getDependency method returns a list of identifiers that represent vertices that should

be completed before the vertex (i, j) . Another method returns a list of identifiers of vertices that is dependent on the given

vertex (i, j) . The indegree of these vertices will decrement when vertex (i, j) is finished. 

The DAG pattern library is a major component in DPX10. It provides built-in DAG patterns and exposes a simple API

for users to customize their own DAG patterns. As described above, the optimal substructure of each DP problem can be

represented as a DP formulation. Therefore, we can build a corresponding DAG for each DP problem. In the current imple-

mentation, the DAG pattern library contains eight built-in DAG patterns, as shown in Fig. 6 . For example, the LCS algorithm

we used in Section 3 is a classical DP algorithm. And its DAG is shown in Fig. 6 (b). 

Each vertex in a DAG has a unique 2D coordinate marked as ( i , j ), and an indegree field indicates the unfinished number

of its predecessors. Vertices with zero in-degree are schedulable. In addition, a finish flag is kept for each vertex to identify

its status and to help recover the result after a node failure. 

Users can define the partition and distribution of the DAG through a Dist structure to achieve a better locality. At the

current stage, three type of distributions are supported by DPX10, which can be configured by command line. Fig. 7 demon-
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Fig. 7. Three type of distributions. 

Fig. 8. An LCS example to show the DAG distribution and communications between workers. All vertices are divided by columns and distributed into three 

places. Vertices with a check marker below their coordinates are finished vertices. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

strates these three distributions on 4 places. The first two are BLOCK_COLUMN and BLOCK_ROW, which split vertices into

columns and rows. The last one is BLOCK_BLOCK, which divides vertices into blocks of equal size. The number of partitions

is equal to the number of places. The DAG distribution and assignment play a vital role in achieving high performance. It

involves many factors, including the dependencies between the vertices, the dimensions of the graph and the number of

computing nodes. 

We use the LCS example again to demonstrate the DAG distribution and communications between workers. Fig. 8 shows a

DAG consisting of nine vertices which are distributed (BLOCK_COLUMN) into three places. Vertices with a check marker be-

low their coordinates are finished vertices. And those without a parent indicate an in-degree of zero. As shown in Fig. 8 (b),

when vertex (0,0) completes, the in-degrees of vertices(0,1) and (1,0) decrease to zero. To compute vertex (0,1), worker 1

needs to communicate with worker 0 and copy the result of vertex (0,0) from it. When computations of vertices (0,1) and

(1,0) are done (shown in Fig. 8 (c)), vertices (0,2), (1,1) and (2,0) become schedulable and the program goes on as the same.

The default initialization method can be overridden to initialize the vertices on demand such as setting the unneeded

vertices as finished. For example, as in the longest palindromic subsequence problem (will be discussed in Section 6 ), all

the vertices below the diagonal are useless. Consequently, these vertices are marked as finished at the initialization phase. 

4.2.3. Worker computation 

On each place, a portion of vertices are assigned in the initial stage. The worker on each place is responsible for com-

puting all its local vertices. There is a ready list that contains executable and uncompleted vertices. Workers repeatedly pull

vertices from the list and execute them until all local vertices are finished. A finished vertices counter is used to determine

the termination of the worker. 

When a vertex is ready for computation, the worker spawns a new activity which is parallel with the current one. In this

activity, the worker first retrieves its parent vertices through getDependency method that we discussed in Section 4.2.2 and

passes them along with the identifier of the current vertex to user-defined compute method. So users can implement the

logic of the algorithm without considering dependencies and communications. After the compute method returned, the

worker updates the value of the computing vertex and decreases the in-degree of vertices which rely on the current one. If

a vertex’s in-dgree goes to zero, it is then ready for computation and is inserted into the ready list on its local place. Finally,

the worker marks the vertex as finished and increases the finished vertices counter . 

The dependent vertices retrieved before calling the compute method may be located at remote places, which means

network communications may occur. To reduce the overhead of data transmission, the worker maintains a cache list that

caches recently transmitted vertices. For efficiency, the cache list is implemented by a static array and its size can be spec-
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ified by users. We adopt a simple FIFO replacement mechanism for the cache, considering that the DP algorithm normally

has a regular DAG pattern and each vertex may only be needed for a short period. 

4.2.4. Fault tolerance 

Fault tolerance is important because hardware and software faults are ubiquitous [21] . The X10 team has been extending

X10 to “Resilient X10”, where a node failure is reported as a DeadPlaceException . 

Three basic methods are introduced by X10 to handle the node failures: (a) Ignoring failures and using the results from

the remaining nodes, (b) Reassigning the failed nodes work to the remaining nodes, or (c) Restoring the computation from

a periodic snapshot [22] . The first method is suitable for problems where the loss of some portion of results may only have

minor impacts on accuracy, which is unacceptable for our scenario since users usually need all data to compute the final

result accurately. The second method is often adopted in iterative computations, such as the KMeans algorithm [23] , for

which in each iteration step the master dispatches tasks to workers. The master maintains the computation status and the

intermediate results. Once a worker node fails, the master can dispatch tasks to remaining workers. But this method is not

fit for DPX10. The reason is that the intermediate result isn’t possessed by the master. In contrast, every worker in DPX10

holds a partition of the DAG and is responsible for scheduling the local vertices. The third method is checkpoint, which

uses a periodic snapshot to rearrange and restore the distributed array among remaining places after a node failure. The

ResilientDistArray class implements this function as a fault-tolerant extension of the DistArray [22] . However, the checkpoint

mechanism is infeasible because a large volume of intermediate results may be produced in the progress of computing. To

address it, we propose a new fault tolerant approach as follows. 

Algorithm 1 is a pseudo-code that demonstrates this recovery process. Once a DeadPlaceException raised, the program

stops and enters the recovery mode. Data stored in dead nodes is now inaccessible. DPX10 then creates a new distributed

array among remaining places (Line 1), which has the same distribution manner as the old one. We denote the new dis-

tributed array as newArray and the old distributed array as oldArray. DPX10 visits all accessible vertices (stored in living

places) of oldArray and copies the results of finished vertices into newArray (Line 4 - 10). Then we initialize all unfinished

vertices in newArray by estimating in-degrees of them with the getDependency method (Line 12 - 14). Next, we revisit the

finished vertices and decrease the in-degrees of unfinished vertices by the size of vertices returned by the getAntiDepen-

dency method (Line 16 - 21). Finally, we replace ODA with NDA (Line 23). 

Algorithm 1: Recovery Procedure 

1 newArray ← create a new distributed array; 

2 oldArray ← the old distributed array; 

3 // Resotre accessible and finished vertices from oldArray 

4 foreach accessible vertex of oldArray do 

5 if vertex is finished then 

6 i ← vertex. i ; 

7 j ← vertex. j; 

8 newArray( i, j) ← vertex; 

9 end 

10 end 

11 // Set in-degree of vertices in newArray 

12 foreach vertex of newArray do 

13 vertex. indegree ← getDependency( vertex ) . size() ; 

14 end 

15 // Decrease the in-degree of unfinished vertices in newArray 

16 foreach vertex of newArray do 

17 if vertex is finished then 

18 depVertices ← getAntiDependency( vertex ) ; 

19 foreach v of depVertices do decreaseIndegree ; 

20 v; 

21 end 

22 end 

23 // Replace oldArray with newArray 

24 oldArray ← newArray; 

Fig. 9 demonstrates this recovery process with an example containing a DAG matrix of 3 × 6 partitioned into 3 parts for

three places. As shown in Fig. 9 (a), the old distributed array (the old DAG) divides the vertices by the column and distributes

them into 3 places (0, 1, 2). Gray vertices denote completed tasks, whereas white vertices represent pending tasks. Assuming
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Fig. 9. An example of recovery process. Gray vertices denote completed vertices. When a failure occurs, a new DAG with the same size as the old one is 

constructed. All completed vertices except the inaccessible or remote ones are restored into the new DAG. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

place 2 failed, DPX10 creates a new DAG with the same size as the old one and creates a new distributed array to store the

new DAG. The vertices are also divided by the column and distributed into remaining places (0, 1), as shown in Fig. 9 (b). The

vertices of oldArray stored in place 2 become inaccessible, which means the results of finished vertex (1, 5) and vertex (1, 6)

are lost. Other finished vertices of oldArray stored in place 0 and place 1 can be copied to newArray, as shown in Fig. 9 (c).

Notice that the results of vertex (1, 3) and vertex (2, 3) are not restored. The vertices of the third column was stored in

place 1 before the failure occurs. And now they are stored in place 0. By default, DPX10 will not restore finished vertices

in remote places, such as in this case, the results of vertex (1, 3) and (2, 3) are dropped. The recovery process performs in

parallel on all alive places. 

4.2.5. Straggler mitigation strategy 

In practice, due to many unexpected factors such as faulty hardware and software misconfiguration, it often occurs that

some tasks run much slower than other tasks (named as straggler tasks). These tasks can slow down the whole process

since other tasks have to wait for the result of them. The straggler is prone to occur and become a thorny issue when a

program is executed on a heterogeneous cluster or a cloud environment, such as Amazon’s Elastic Compute Cloud(EC2) [24] .

These environments offer an economic advantage - the ability to own large amounts of computing power only when needed

- but they come with the caveat of having to run on virtualized resources with potentially uncontrollable variance. 

We classify the straggler tasks into two types, namely, Hard Straggler and Soft Straggler , defined as follows: 

• Hard straggler: A task that goes into a deadlock status due to endless waiting for certain resources (e.g. the network is

broken). It cannot stop and complete unless we kill it. 
• Soft straggler: A task that can complete its computation successfully, but will take much longer time than common

tasks. 

For a hard straggler, we should kill it and run another equivalent task, or called backup task, immediately once it was

detected. And for a soft straggler, there are two possibilities: 

• P1). Soft straggler completes before its backup task, which means there is no need to run a backup task at the beginning.
• P2). Soft straggler finishes later than its backup task. So we should kill it when the backup task is completed. In that

way, the straggler task would not occupy the resources to do useless work. 

In Hadoop [25] , each task keeps track of a progress score, which then can be used to estimate the finish time and to

determine straggler tasks. Once a straggler task is detected, a backup task is spawned to run concurrently with the straggler

(i.e., speculative execution) [24] . The task killing operation occurs when either of two tasks complete. The drawback of

this solution is, no matter which possibility (P1 or P2) takes place, the backup task and the straggler are always running

concurrently for a period of time. In other words, it leads to some unnecessary cost, especially for the case of P2. Instead,

in DPX10 we do not run a backup task right away. We put it in the end of the ready list, which means some extra time is

given to allow the straggler task to earn its second chance. Moreover, a task in DPX10 is a block of vertices. And due to the

characteristics of DP applications, the execution time of a vertex in the DAG is usually very short, which makes it expensive

for a node to keep a progress score and notify other nodes during the computations. 

Adaptive timeout-based straggler mitigation strategy. The intuitive way to detect a straggler is to use a time-out mech-

anism. Once the execution time of a currently running block exceeds the time limit, the block is marked as a straggler task.

However, it is hard for users to choose a proper time-out value since the execution time of a block differs in different

computing resources. The time-out value that is too large or too small could fail to detect a straggler or detect too many

unnecessary straggler tasks. In DPX10, we adopt an adaptive time-out mechanism. Every node keeps track of three values

t i , b , T i and T a v g . 

• t i , b is the elapsed time of the current running block b on node i . 

• T i is the average computation time of the latest m blocks completed on node i ; T i = 

T i 1 + T i 2 + ···+ T im 
m 

, where T ij (1 ≤ j ≤ m ),

is the execution time of the latest j th block. The reason that we use the average time instead of a single latest execution

time is based on the consideration that the computing power might have a sudden change in a short moment. 
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• T a v g is the average of T i ; T a v g = 

T 1 + T 2 + ···+ T n 
n , where n is the number of computing nodes. 

For each node, these three values are updated after a block completes. During the computation of a block b on node i ,

there are two possibilities: (a) t i,b > xT a v g ; (b) t i,b ≤ xT a v g , where x is an empirical value which is set to 1.4 in DPX10. We

consider b as a straggler task only for case (a) since it has slowed down other computing nodes. 

5. Case study 

This section uses two DP applications to demonstrate the process of writing DP programs with DPX10. 

From a user’s perspective, it only takes three steps to implement a DP application with DPX10. 

1. Choose a built-in DAG pattern or write a customized one. 

2. Implement the compute and appFinished method by inheriting the DPX10App class. 

3. Launch the DPX10 program. 

The number of places and the mapping from places to nodes can be set as arguments or environment variables as regular

X10 programs. 

5.1. Smith–Waterman algorithm 

The Smith–Waterman algorithm is a widely used dynamic programming algorithm in computational biology, with sev-

eral important variants and improvements. It performs local sequence alignment that is for determining similar regions

between two strings or nucleotide or protein sequences. For simplicity, we only take adjacent elements into account in the

calculation. The scoring matrix H is built as follows: 

H(i, 0) = 0 , 0 ≤ i ≤ m 

H(0 , j) = 0 , 0 ≤ j ≤ m 

H(i, j) = max 

{ 

0 

H(i − 1 , j − 1) + s (a, b) 
max { H(i − 1 , j) , H(i, j − 1) } + p 

(1) 

where: 

• a , b are strings over the Alphabet 
• m , n is the length of a and b 
• s ( a , b ) is the similarity function on the alphabet, s (a, b) = +2 if a = b(match), −1 if a � = b (mismatch) 
• p = −1 is the gap penalty 
• H ( i , j ) is the maximum Similarity-Score between a suffix of a [1 . . . i ] and a suffix of b[1 . . . j] 

The DAG pattern is the same as the LCS algorithm, which is already provided by the DAG pattern library, as shown in

Fig. 6 (b). An implementation of the Smith–Waterman algorithm is shown in Fig. 10 , omitting some irrelevant details. 

The SWApp class inherits from DPX10App class. The value type of the vertex is Int , which is enough for storing the

similarity score. The compute method implements the logic of the algorithm, each vertex calculates three values and returns

the maximum one based on the Eq. (1) . The dependent vertices are provided as the parameter vertices , for example, when

computing (2, 2), vertices is a list of vertices (1, 1), (2, 1), (1, 2). 

The backtracking is performed in appFinished() method. It is very straightforward as users can use the given dag like a

normal 2D array. 

5.2. 0/1 Knapsack problem 

The Knapsack problem is about combinatorial optimization: Given a set of items, each with a mass and value, determines

the number of each item to include in a collection so that the total weight is less than or equal to a given limit and the

total value is as large as possible. 

The most common Knapsack problem is the 0/1 Knapsack problem, which can be formulated as: Given n items 〈 z 1 , ���,

z n 〉 where each item z i has a value v i and weight w i . x i is the copies of item z i , which is zero or one. The goal is to maximize∑ 

v i subject to 
∑ 

w i x i ≤ W, where W is the maximum weight that we can carry in the bag. 

We use 0/1 Knapsack problem to show the process of implementing a new DAG pattern. The user extends from DAG

class and then implements two methods: getDependency and getAntiDependency , as discussed in Section 4.1 . 

Assume w 1 , w 2 , · · · , w n and W are strictly positive integers. Define m ( i , j ) to be the maximum value that can be attained

with a weight less than or equal to j using items up to i (first i items). Thus, m ( i , j ) can be defined recursively as follows: 

m (i, j) = 

{
m (i − 1 , j) w i > j 
max { m (i − 1 , j) , m (i − 1 , j − w i ) + v i } w i ≤ j 

(2) 
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Fig. 10. Smith–Waterman algorithm implemented in DPX10. 

Fig. 11. The DAG pattern for 0/1 Knapsack problem. 
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Fig. 12. The implementation of 0/1 Knapsack problem’s DAG Pattern. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We can conclude the DAG pattern from the recursive formulation, as shown in Fig. 11 . Its DAG pattern class is shown in

Fig. 12 . The KnapsackDag class inherits from Dag class. In getDependency method, each vertex specifies its dependencies.

Vertices (0, j ) and ( i , 0) are initialized with zero and have no dependencies so we return an empty list. Based on the Eq. (2) ,

two vertices (i − 1 , j) and (i − 1 , j − w i ) are returned if the bag can carry the i th item or one vertex (i − 1 , j) is returned

if the capacity is not enough for the i th item. As in getAntiDependency method, vertices (i + 1 , j) and (i + 1 , j + w i ) are

returned if 0 < i < n and j < W . And another three boundary conditions are considered as following. 

• return an empty list, if i = 0 or i = n, j + w i > W 

• return vertex (i + 1 , j) , if 0 < i < n, j + w i > W 

• return vertex (i + 1 , j + w i ) , if i = n, j + w i < = W 

Due to space limitations, the compute method and appFinished method are skipped. 

6. Experiments 

In this section, we evaluate the performance of DPX10 by running four different DP applications on Tianhe-1A [26] .

Each computing node of Tianhe-1A system is a multi-core SMP server which has dual 2.93Ghz Intel Xeon 5670 six-core

processors (total 12 cores per node/24 hardware threads). Each node has 24GB memory and 120GB SSD, connected with

Infiniband QDR. The Kylin Linux system is deployed. We used the latest X10 release version, X10 2.5.1. The X10 distribution

was built to use Socket runtime. 

Two important environment variables needed to be set. X10_NPLACES specifies the number of places, which usually

equals to the number of processors. And X10_NTHREADS indicates the number of threads, which usually equals to the

number of cores. So here we set X10_NTHREADS to 6 in all our experiments. And X10_NPLACES was twice the number of

computing nodes used in the experiment. 

We carried out four DP applications with a different number of places and graph sizes to show the simplicity, scala-

bility, and efficiency of DPX10. The four DP applications were: (a) Smith–Waterman algorithm with linear and affine gap

penalty (SW), (b) Manhattan Tourists Problem (MTP), (c) Longest Palindromic Subsequence(LPS), and (d) 0/1 Knapsack Prob-

lem (0/1KP). Moreover, SW was utilized to demonstrate the performance of our new recovery method and the straggler

strategy. 

The Smith–Waterman algorithm and Knapsack problem are already discussed. The recursive formulation of another two

applications is as following. 



C. Wang et al. / Parallel Computing 60 (2016) 1–21 13 

Table 1 

The LOC of four DP applications. 

Applications X10 (Serial) X10 (Distributed) DPX10 

SW 44 147 42 

MLP 29 146 46 

LPS 28 172 33 

0/1KP 21 154 76 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• The Manhattan Tourists Problem: 

D (i, j) = max 

{
D (i − 1 , j) + w (i − 1 , j, i, j) 
D (i, j − 1) + w (i, j − 1 , i, j) 

where w (i 1 , j 1 , i 2 , j 2 ) is the length of the edge from ( i 1 , j 1 ) to ( i 2 , j 2 ). 
• Longest Palindromic Subsequence: 

D (i, i ) = 1 

D (i, j) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

2 , 
x i = x j , 
j = i + 1 

D (i + 1 , j − 1) + 2 , 
x i = x j , 
j � = i + 1 

max { D (i + 1 , j) , D (i, j − 1) } , x i � = x j 

where x i , x j is the i th and j th character of the string. 

The DAG pattern of four algorithms are shown in Figs. 6 (b), (a), (d) and 11 respectively. 

The time for initializing the cluster, generating test graphs, and verifying results were not included in the measurements.

6.1. Line of code 

One goal of DPX10 is to provide an easy way for developers to write distributed DP programs. Thus, we use the line of

code(LOC) to evaluate the simplicity of writing DP programs with DPX10. We compared the same applications written with

DPX10 and with X10 directly. The codes of pre-processing, post-processing, comments and blank lines were not included. 

The result is showing at Table 1 . With X10 used directly, a distributed program is about 4 times more than the LOC a

serial version. And there are many repeated codes in different distributed DP programs such as the distribution of vertices

and the communication between workers. DPX10 tries to handle these parts of work automatically and let developers focus

on the logic of the algorithm. As we can see, the LOC of four DPX10 programs are about one-third of the same programs

written with X10 directly. Moreover, the first three programs nearly have the same LOC with their serial versions. Unlike

the first three applications, 0/1KP wrote with DPX10 has fewer more lines. The reason is that the DAG of 0/1KP is not

provided by DPX10. So users need to implement it as we discussed in Section 5.2 , which costs 45 extra lines. Even though,

implementing a custom DAG is much easier since it doesn’t involve any parallel programming. 

6.2. Scalability 

As an indication of how DPX10 scales with places, Fig. 13 shows the runtime for SW, MTP, LPS, and 0/1KP with 1 billion

vertices. We run our experiments on up to 20 nodes(40 places) because that is all that we have permission to access. In

future work, we hope to study DPX10 using larger system/partition sizes to better understand its scalability. 

The execution time goes down quickly at first and then reaches a plateau as the number of places increases. The increase

of places can reduce the time for executing non-dependent vertices but can also increase the cost of data transmission.

Because of the strong data dependency, the speedup curves are not ideal. Figs. 13 (a)–(c) reveal a speedup of about 4 for a

5 fold increase in nodes and Fig. 13 (d) represents a speedup of about 2.5. In other words, SW, MTP and LPS have a better

acceleration performance than 0/1KP. One reason is that 0/1KP has non-deterministic dependencies. And another reason is

that given the same data distribution (divided by columns), 0/1KP requires more communications due to its dependency

relationship between vertices. 

To show how DPX10 scales with graph sizes, we keep the number of places unchanged (40 places on 20 nodes) and vary

the size of vertices from 200 million to 2 billion. The result is shown in Fig. 14 . LPS spend the minimum time since nearly

a half of its vertices are not computed as its DAG shows ( Fig. 6 (d)). 0/1KP take a little longer since it needs more time

to resolve the dependencies as we discussed above. From the four experiments, it can be observed that DPX10 provides a

linear scalability with graph sizes. 
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Fig. 13. Execution time of four DP applications with 1 billion vertices on different number of places (up to 40 places on 20 nodes). Figures (a,b,c) show a 

speedup of about 4 for a 5 fold increase in nodes and Figure (d) represents a speedup of about 2.5. 

Fig. 14. Execution time of four DP applications on 20 nodes (240 cores) with the number of vertices varying from 200 million to 2 billion. 
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Fig. 15. Execution time of four DP applications implemented by DPX10 and X10 on 10 nodes. The compared DPX10/X10 rate is between 1.0 to 1.2 in all 

four applications. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.3. Overhead 

To provide an easy-to-use interface and automatically handle the parallel complexity, a little sacrifice of the performance

is expected. But the balance between performance and simplicity must be maintained properly. The overhead of DPX10

mainly attributes to DAG operations, worker management, fault tolerance mechanism, etc. 

To evaluate DPX10’s overhead, we implemented the same four applications with native X10 and compared them with

DPX10’s implementation. For the sake of simplicity and fairness, the cache list was not used, and other configurations were

set to the same. 

We ran the programs on 10 nodes varying in graph sizes from 100 million to 1 billion. Fig. 15 shows that the native

X10 version slightly outperforms DPX10’s implementation. Moreover, the DPX10/X10 rate is about 1.0 to 1.2 in all four

applications, which indicates that the overhead of DPX10 is acceptable. 

6.4. Performance impact of varying cache sizes and block sizes 

Different cache sizes. In the process of DPX10 computations, workers need to communicate with others to get results

of dependent vertices. To alleviate the costs of frequent communications, in DPX10, we adopt a fixed-length FIFO cache

mechanism as discussed in Section 4.2.3 . It is based on the observation that adjacent vertices may rely on the same vertices,

implying that the network communication can be reduced for adjacent vertices on the same machine by caching those same

vertices. Users can set the length of the cache list. We use the SW algorithm with 1 billion vertices running on 20 nodes to

evaluate the performance impact of different cache sizes. Fig. 16 (a) shows the result. When cache is disabled (size of zero),

we get the worst performance. The minimum time is achieved by setting the cache size to 100. After that, the execution

time grows gradually since workers have to traverse the cache list every time they compute a vertex. 

Different block sizes. Vertices of a DP DAG can be split into blocks. And each block has the same dependency relation-

ship as their vertices. Instead of scheduling each vertex, workers treat blocks as scheduling units. The latter approach is

usually called a block-based or a coarse-grained parallelization method, whereas the former one is a fine-grained approach.

We conducted an experiment for SW algorithm with different dimensions of blocks. The program contained 1 billion ver-

tices and ran on 20 nodes. The result is shown in Fig. 16 (b), the best performance is achieved by setting the block size to

100 × 100. It shows us that either too large or too small block sizes make a poor performance. There tends to be a medium

value that produces the optimal performance. The reason is that the block-based method can greatly reduce the time of

communications but result in less parallelism. 
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Fig. 16. Performance impact of different cache sizes and block sizes. 

Table 2 

Execution time of DPX10 and Z-align. 

Number of vertices DPX10 fine-grained DPX10 block-based Z-align 

200M 17 .355 4 .746 2 .091 

400M 29 .680 5 .594 3 .288 

600M 40 .952 8 .615 4 .41 

800M 52 .751 10 .602 5 .603 

1G 64 .264 13 .401 6 .836 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.5. Compare to a native MPI-based approach 

In this section, we compare the SW algorithm written with DPX10 to Z-align [27] , which is a specifically optimized SW

program based on MPI. Although there are other work [28–31] on accelerating SW algorithm, they are either not pairwise

algorithms or designed for specific devices like FPGA, GPU. Our SW program like Z-align, concentrates on pairwise (seq ×
seq) sequence alignment problems. 

Table 2 shows the comparison between DPX10 Fine-Grained, DPX10 Block-based and Z-align running on 20 computing

nodes. For the Block-based DPX10 implementation, the cache size was set to 100 and the block size was set to 100 × 100.

As shown in the table, both Z-align and DPX10 follow a good scalability. However, Z-align is twice as fast as block-based

DPX10 and eight times faster than fine-grained DPX10, which is an acceptable result since Z-align is an application-specific

algorithm and DPX10 is a general framework that introduces some overhead due to its extra methods calling, straggler

mechanism, fault tolerance, and etc. As we discussed in Section 6.3 , we have to compromise some performance to be a

general and easy-to-use framework. 

6.6. Fault tolerance evaluation 

A node failure might occur at an arbitrary point during the program execution. The vertices and other information on

that node would be lost, but the remaining nodes still keep their portion of the DAG. DPX10 catches the DeadPlaceException

and starts the recovery process. 

Fig. 17 shows three normal circumstances of node failures. The first one illustrates a scenario of a node failure before the

computation start. As shown in Fig. 17 (a). At that time, node 3 hasn’t been participating in the computation. Therefore, after

recovery the DAG is re-constructed and the parallelism is not diminished. Whereas the second circumstance is about the

failure that is occurred during the computation. As shown in Fig. 17 (b), the node 1 fails in the middle of the computation.

Almost a half of its vertices are finished and we need to re-compute those vertices. Worse, those finished vertices in node 1

are parents of vertices in node 2. In other words, the maximum parallelism cannot be achieved until those vertices in node

1 have been recovered. Fig. 17 (c) shows the third situation that the failure occurs after computations. Node 0 fails after it

completes all its vertices. And there are no unfinished vertices in other nodes that still rely on the vertices in node 0. Hence

the vertices in node 0 will be re-computed but no other nodes are infected. 

In those three circumstances, the second case does the most damage. So in this section, we try to simulate the second

situation. We evaluate the price of fault tolerance by using the SW algorithm on 4 and 8 nodes with the number of vertices

varying from 100 million to 500 million. The DAG is split by columns. The failure is triggered manually on node 1 in
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Fig. 17. Three different circumstances of node failures. Gray vertices are finished. 

Fig. 18. The fault tolerance evaluation results with SW algorithm running on 4 and 8 nodes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the middle of the execution. The program continues on the remaining nodes after the recovery. So a half of vertices are

computed on 4 and 8 nodes, and more than half of them are computed on 3 and 7 nodes. 

Fig. 18 (a) shows the time for recovering the distributed array. The time increases from 13 to 65 seconds on 4 nodes

and from 6 to 30 seconds on 8 nodes, of which the result shows that the recovery time follows a good linear growth. On

the other hand, the time for recovering on 8 nodes is half of it on 4 nodes since the recovery is processed in parallel, as

discussed in Section 4.2.4 . 

For one fault injection, Fig. 18 (b) presents the normalized execution time. It is apparent that the impact of one failure

reduces with the increase in the number of computing nodes. 

6.7. Straggler strategy evaluation 

The straggler condition is very likely to happen at runtime, in particular in a heterogeneous environment. Straggler tasks

can substantially slow down the whole program since the tasks in the DP matrix have a strong data dependency between

them. Fig. 20 is a regular DAG of DP algorithms. According to the number of computing vertices (tasks) and the number of

activities, we can classify the whole computation into three computing domains: two non-saturated computing domains and

one saturated computing domain. In the non-saturated computing domain, its maximum parallelization degree is less than

the number of computing activities. It implies that there must be some idle activities when the computation is going on. For

the saturated computing domain, its maximum parallelization degree is greater than or equal to the number of computing

activities. All activities should be busy, and no idle activities exist during the computation in this domain. Therefore, straggler

tasks in saturated domains would cause less damage than in non-saturated domain since the delay of saturated straggler

tasks is more likely to be hidden. 

We use the Smith–Waterman algorithm with 100 million vertices on 5 computing nodes to evaluate our straggler strat-

egy. To emulate a straggler task, a sleep method (10ms) is invoked before the real work starts. The number of straggler

tasks is set to 10 0 0. We vary the percent of non-saturated tasks in all straggler tasks to see the different impact of straggler

condition happening in the saturated region and the non-saturated region. The result is shown in Fig. 19 (a). The running

time is normalized to the program without straggler tasks. As the percent of non-saturated region increases from 0 to 1,
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Fig. 19. The compared performance results for DPX10 with straggler strategy to that without straggler strategy. 

Fig. 20. The computing distribution model for a regular DP algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

normalized time increases from 1.08 to 1.82, implying that the straggler tasks in the non-saturated domain have a larger

impact on the performance than those in the saturated domain. The explanation is that, in the non-saturated domain, the

number of computing tasks is less than the number of activities as we discussed above. More straggler tasks will make

idle activities waiting for a longer time for computing vertices, whereas in saturated domains there are sufficient comput-

ing vertices. With the straggler strategy enabled, the normalized time increases from 1.01 to 1.59, i.e., there is about 14%

performance improvement with straggler strategy. 

Moreover we conduct another experiment with a different number of straggler tasks. The percent of non-saturated tasks

is set to 0.2 and the number of straggler tasks increases from 10 0 0 to 50 0 0. The result is presented in Fig. 19 (b). As we

can see, our straggler strategy can reduce the execution time (average 20%) in the case of stragglers, especially when the

number of tasks is large. 

7. Related work 

In this section we review related work close to us from the following three aspects: 1) Graph Processing Framework; 2)

DP Parallelization; 3) X10 and APGAS. 

7.1. Graph processing framework 

Hadoop [25] is an open source implementation of MapReduce [32] . It has been a popular platform for batch-oriented ap-

plications, such as information retrieval. The computation is specified by the map and the reduce function. And some recent

systems add iteration capabilities to MapReduce. CGL-MapReduce is a new implementation of MapReduce that caches static

data in RAM across MapReduce jobs [33] . HaLoop extends Hadoop with the ability of evaluating a convergence function on

reducing outputs [34] . But neither CGL-MapReduce nor HaLoop provide fault tolerance across multiple iterations. Moreover,

the data flow of these systems is limited to a bipartite graph, which cannot represent the DP algorithms. 
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Pregel [17] is a computational model for processing large graphs. Programs are expressed as a sequence of supersteps.

Within each superstep the vertices compute in parallel, each executing the same user-defined function that expresses the

logic of a given algorithm [17] . DPX10 has a similar idea as Pregel, “think like a vertex”. But DPX10 is a tailored system

for DP applications. Different from Pregel, it contains a DAG pattern library to further simplify the graph programming

based on the observation that most of DP algorithms are of the same DAG structure except their data size. Moreover, the

implementation of Pregel adopts the distributed memory model, whereas DPX10 takes the APGAS model, which is a hybrid

model of the shared memory model and the distributed memory model. 

There are also some general-purpose DAG engine like Dryad [35] , DAGue [36] and CIEL [37] . They allow data flow to fol-

low a more general directed acyclic graph. These systems target on a large kind of problems which may have various DAGs.

So the programmer needs to explicitly express the algorithm as a DAG of tasks and have to handle the communications

on their own. In contrast, DPX10 provides a simple interface to express DP algorithms and handles all parallel complexities

automatically. In addition, eight commonly used DAG patterns are shipped with DPX10 for immediate use. 

Several recent projects [38,39] have proposed a task-based programming model. They mainly focus on the applications

that consist of dependent tasks where each task normally runs for a long time. They are not suitable for computing-intensive

DP problems, which consist of plenty of computing tasks but each of them has a relatively short execution time. 

7.2. DP parallelization 

There are an abundant of literature work for DP parallelization. Zheng et al. [40] introduced parallel DP based on stage

reconstruction and then applied it to solve the optimized operation of cascade reservoirs. Hamidouche et al. [41] proposed

a parallel BSP (Bulk Synchronous Parallel) strategy to execute Smith–Waterman algorithm on multiple multicore and many-

core platforms. The hardware like GPU and FPGA has also been used in work [28,29,42] to accelerate the DP algorithm that

is designed for sequence alignment problems. All those work target at a particular application so the features of the prob-

lem can be utilized to accelerate the program. DPX10 aims at a kind of DP algorithms. The goal of DPX10 is not only the

performance but also the simplicity and reliability. 

Maleki et al. [4] proposes a new parallel approach for a class of DP algorithms called “linear-tropical dynamic program-

ming (LTDP)”. It breaks data-dependencies across stages and fixes up incorrect values later in the algorithm, which allows

multiple stages to be computed in parallel despite dependencies among them. The drawback to this approach is it brings

more work to users to write DP programs. The closest match to DPX10 is EasyPDP [5] . It’s a parallel dynamic programming

runtime system designed for computational biology. The biggest limitation is that EasyPDP can only run on a single node.

Moreover, only one thread is used to schedule tasks, which can be a bottleneck when it comes to a lot of tasks. To address

this issue, we distribute vertices among all places, and each place has a worker that is responsible for scheduling the local

vertices. 

7.3. X10 and APGAS 

PGAS model assumes a global memory address space that is logically partitioned and a portion of it is local to each

process or thread [43] . The novelty of PGAS is that the portions of the shared memory space may have an affinity for a

particular process, thereby exploiting locality of reference. The PGAS model is the basis of Unified Parallel C [44] , UPC++ [45] ,

Co-Array Fortran [46] , Global Arrays [47] , SHMEM [48] , etc. APGAS model permits both local and remote asynchronous task

creation [10] . Two programming languages that use this model are Chapel [13] and X10 [9] . 

There have been few X10 libraries or frameworks built on top of APGAS. ScaleGraph is an X10 library targeting billion

scale graph analysis scenarios. Compared with non-PGAS alternatives, ScaleGraph defines concrete and simple abstractions

for representing massive graphs [49] . Acacia [50] is a distributed graph database engine for scalable handling of large graph

data. Acacia operates between the boundaries of private and public clouds. It will burst into the public cloud when the

resources of the private cloud are insufficient to maintain its service-level agreements. ClusterSs is a StarSs [51] member

designed to execute on clusters of SMPS. Tasks of ClusterSs are asynchronously created and assigned to available resources

with the support of the APGAS runtime [52] . 

Since X10 and APGAS are new for the HPC community, we believe a lot of libraries or frameworks need to be developed

to support the language to achieve its productivity goals [49] . 

8. Conclusion and future work 

This paper proposes DPX10, a simple and powerful abstraction for DP applications as well as an X10 implementation

of this abstraction. DPX10 uses both shared memory model and distributed memory model to achieve high utilization of

the distributed hardware environment. DPX10 lets developers easily create distributed DP applications without requiring

them to master any concurrency techniques beyond being able to choose or draw a DAG pattern of their algorithms. The

details of DP parallelization include vertices distribution, tasks scheduling and tasks communication are hidden from users

and taken care of by the framework. Two representative applications are given to describe how to write a DP program

with DPX10. Moreover, DPX10 provides a new recovery method for the distributed DAG which is more efficient than the

periodical snapshot mechanism provided by X10. 
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We have compared DP programs written with DPX10 and with X10 directly to show the simplicity of DPX10. We have

demonstrated excellent scalability and high efficiency for four DP algorithms with the number of vertices varying from 200

million to 2 billion. We’ve also evaluated the overhead of DPX10 and the performance of the new recovery method for

distributed arrays. 

Currently, the entire computation state resides in RAM. We are working on spilling some data to local disk to handle

larger scale of DP problems. Some sophisticated scheduling and cache techniques are considered to be developed to improve

efficiency and to support more scenarios [53,54] . 

Finally, the DPX10 source code is publicly available for downloading at http://github.com/wangvsa/DPX10/ . 
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