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5 Abstract—With the explosive increase of big data in industry and academic fields, it is important to apply large-scale data processing

6 systems to analyze Big Data. Arguably, Spark is the state-of-the-art in large-scale data computing systems nowadays, due to its good

7 properties including generality, fault tolerance, high performance of in-memory data processing, and scalability. Spark adopts a flexible

8 Resident Distributed Dataset (RDD) programming model with a set of provided transformation and action operators whose operating

9 functions can be customized by users according to their applications. It is originally positioned as a fast and general data processing

10 system. A large body of research efforts have been made to make it more efficient (faster) and general by considering various

11 circumstances since its introduction. In this survey, we aim to have a thorough review of various kinds of optimization techniques on the

12 generality and performance improvement of Spark. We introduce Spark programming model and computing system, discuss the pros

13 and cons of Spark, and have an investigation and classification of various solving techniques in the literature. Moreover, we also

14 introduce various data management and processing systems, machine learning algorithms and applications supported by Spark.

15 Finally, we make a discussion on the open issues and challenges for large-scale in-memory data processing with Spark.

16 Index Terms—Spark, shark, RDD, in-memory data processing

Ç

17 1 INTRODUCTION

18 IN the current era of ‘big data’, the data is collected at
19 unprecedented scale in many application domains,
20 including e-commerce [112], social network [140], and
21 computational biology [146]. Given the characteristics of the
22 unprecedented amount of data, the speed of data produc-
23 tion, and the multiple of the structure of data, large-scale
24 data processing is essential to analyzing and mining such
25 big data timely. A number of large-scale data processing
26 frameworks have thereby been developed, such as MapRe-
27 duce [87], Storm [14], Flink [1], Dryad [102], Caffe [103],
28 Tensorflow [64]. Specifically, MapReduce is a batch process-
29 ing framework, while Storm is streaming processing sys-
30 tem. Flink is a big data computing system for batch and
31 streaming processing. Dryad is a graph processing frame-
32 work for graph applications. Caffe and Tensorflow are deep
33 learning frameworks used for model training and inference
34 in computer vision, speech recognition and natural lan-
35 guage processing.
36 However, all of the aforementioned frameworks are not
37 general computing systems since each of them can only

38work for a certain data computation. In comparison,
39Spark [160] is a general and fast large-scale data processing
40system widely used in both industry and academia with
41many merits. For example, Spark is much faster than Map-
42Reduce in performance, benefiting from its in-memory data
43processing. Moreover, as a general system, it can support
44batch, interactive, iterative, and streaming computations in
45the same runtime, which is useful for complex applications
46that have different computation modes.
47Despite its popularity, there are still many limitations for
48Spark. For example, it requires considerable amount of
49learning and programming efforts under its RDD program-
50ming model. It does not support new emerging heteroge-
51nous computing platforms such as GPU and FPGA by
52default. Being as a general computing system, it still does
53not support certain types of applications such as deep learn-
54ing-based applications [25].
55To make Spark more general and fast, there have been a
56lot of work made to address the limitations of Spark [63],
57[94], [115], [121] mentioned above, and it remains an active
58research area. A number of efforts have been made on per-
59formance optimization for Spark framework. There have
60been proposals for more complex scheduling strate-
61gies [137], [150] and efficient memory I/O support (e.g.,
62RDMA support) to improve the performance of Spark.
63There have also been a number of studies to extend Spark
64for more sophisticated algorithms and applications (e.g.,
65deep learning algorithm, genomes, and Astronomy). To
66improve the ease of use, several high-level declarative [23],
67[129], [156] and procedural languages [49], [54] have also
68been proposed and supported by Spark.
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69 Still, with the emergence of new hardware, software and
70 application demands, it brings new opportunities as well
71 as challenges to extend Spark for improved generality and per-
72 formance efficiency. In this survey, for the sake of better
73 understanding these potential demands and opportunities sys-
74 tematically, we classify the study of Spark ecosystem into six
75 support layers as illustrated in Fig. 1, namely, Storage Support-
76 ing Layer, Processor Supporting Layer, Data Management
77 Layer, Data Processing Layer, High-level Language Layer and
78 ApplicationAlgorithmLayer. The aim of this paper is two-fold.
79 We first seek to have an investigation of the latest studies on
80 Spark ecosystem.We review relatedwork on Spark and classify
81 them according to their optimization strategies in order to serve
82 as a guidebook for users on the problems and addressing tech-
83 niques in data processing with Spark. It summarizes existing
84 techniques systematically as a dictionary for expert researchers
85 to look up. Second, we show and discuss the development
86 trend, new demands and challenges at each support layer of
87 Spark ecosystem as illustrated in Fig. 1. It provides researchers
88 with insights and potential study directions on Spark.
89 The rest part of this survey is structured as follows. Section 2
90 introduces Spark system, including its programming model,
91 runtime computing engine, pros and cons, and various opti-
92 mization techniques. Section 3 describes new caching devices
93 for Spark in-memory computation. Section 4 discusses the
94 extensions of Spark for performance improvement by using
95 new accelerators. Section 5 presents distributed data manage-
96 ment, followed by processing systems supported by Spark in
97 Section 6. Section 7 shows the languages that are supported by
98 Spark. Section 8 reviews the Spark-based machine learning
99 libraries and systems, Spark-based deep learning systems, and

100 the major applications that the Spark system is applied to.
101 Section 9 makes some open discussion on the challenging
102 issues. Finally, we conclude this survey in Section 10.

103 2 CORE TECHNIQUES OF SPARK

104 This section first describes the RDD programming model,
105 followed by the overall architecture of Spark framework.

106Next it shows the pros and cons of Spark, and various opti-
107mization techniques for Spark.

1082.1 Programming Model

109Spark is based on Resilient Distributed Dataset (RDD) [159]
110abstraction model, which is an immutable collection of
111records partitioned across a number of computers. Each
112RDD is generated from data in external robust storage sys-
113tems such as HDFS, or other RDDs through coarse-grained
114transformations including map, filter and groupByKey that use
115identical processing to numerous data records. To provide
116fault tolerance, each RDD’s transformation information is
117logged to construct a lineage dataset. When a data partition
118of a RDD is lost due to the node failure, the RDD can recom-
119pute that partition with the full information on how it was
120generated from other RDDs. It is worthy mentioning that
121the transformation is a lazy operation that only defines a
122new RDD instead of calculating it immediately. In order to
123launch the computation of RDD, Spark offers another group
124of action operations such as count, collect, save and reduce,
125which either return a data result to an application program
126or store the RDD’s data to an external storage system. More-
127over, for the data of a RDD, they can be persisted either in
128memory or in disk, controlled by users.

1292.2 Spark Architecture

130Fig. 2 overviews the architecture of Spark on a cluster. For
131each Spark application, it spawns one master process
132called driver, which is responsible for task scheduling. It
133follows a hierarchical scheduling process with jobs, stages
134and tasks, where stages refer to as smaller sets of tasks
135divided from interdependent jobs, which resemble map
136and reduce phases of a MapReduce job. There are two
137schedulers inside it, namely, DAGScheduler and TaskSchedu-
138ler. The DAGScheduler figures out a DAG of stages for a
139job and keeps track of the materialized RDDs as well as
140stage outputs, whereas TaskScheduler is a low-level sched-
141uler that is responsible for getting and submitting tasks
142from each stage to the cluster for execution.
143Spark provides users with three different cluster modes
144(i.e., Mesos [97], YARN [149], and standalone mode) to run
145their Spark applications by allowing driver process to con-
146nect to one of existing popular cluster managers including
147Mesos, YARN and its own independent cluster manager. In

Fig. 1. Overview of Spark ecosystem from the bottom up. We classify it
into six layers for improved generality and performance efficiency.

Fig. 2. Architecture overview of Spark.
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148 each worker node, there is a slave process called executor
149 created for each application, which is responsible for run-
150 ning the tasks and caching the data in memory or disk.

151 2.3 Pros and Cons of Spark

152 MapReduce and Flink are two powerful large-scale data
153 processing systems widely used for many data-intensive
154 applications. In this section, we take MapReduce and Flink
155 as baselines to discuss the pros and cons of Spark.

156 2.3.1 Spark versus MapReduce

157 Compared to MapReduce, Spark has the following merits:
158 Easy to Use. Spark provides users with more than 80 high-
159 level simple operators (e.g., map, reduce, reduceByKey, filter)
160 that allow users to write parallel applications at the applica-
161 tion level with no need to consider the underlying complex
162 parallel computing problems like data partitioning, task
163 scheduling and load balancing. Moreover, Spark allows
164 users to write their user-defined functions with different
165 programming languages like Java, Scala, Python by offering
166 corresponding APIs.
167 Faster Than MapReduce. Due to its in-memory computing,
168 Spark has shown to be 10� � 100� faster than MapReduce
169 in batch processing [13].
170 General Computation Support. First, from the aspect of
171 processing mode, Spark is an integrated system that sup-
172 ports batch, interactive, iterative, and streaming processing.
173 Second, Spark has an advanced DAG execution engine for
174 complex DAG applications, and a stack of high-level APIs
175 and tools including Shark [156], Spark SQL [129], MLlib and
176 Graphx [94] for a wide range of applications.
177 Flexible Running Support. Spark can run in a standalone
178 mode or share the cluster with other computing systems
179 like MapReduce by running on YARN or Mesos. It also pro-
180 vides APIs for users to deploy and run on the cloud (e.g.,
181 Amazon EC2). Moreover, it can support the access of vari-
182 ous data sources including HDFS, Tachyon [115], HBase,
183 Cassandra [111], and Amazon S3 [21].
184 Albeit many benefits, there are still some weakness for
185 Spark, compared with MapReduce as follows:
186 Heavy Consumption of Storage Resources. As an in-memory
187 data processing framework, Spark is superior to MapRe-
188 duce in performance, achieved by reducing the redundant
189 computations at the expense of storage resources, especially
190 memory resource. Similar to existing popular in-memory
191 caching systems like Memcached [134], [163] and Redis [78],
192 it saves RDD data in memory and keeps it there for data
193 sharing across different computation stages. More memory
194 resources are needed when there are a large volume of RDD
195 data to be cached in computation.
196 Poor Security. Currently, Spark supports authentication
197 through a shared secret [12]. In comparison, Hadoop has
198 more security considerations and solutions, including
199 Knox [10], Sentry [16], Ranger [11], etc. For example, Knox
200 provides the secure REST API gateway for Hadoop with
201 authorization and authentication. In contrast, Sentry and
202 Ranger offer access control and authorization over Hadoop
203 data and metadata.
204 Learning Curve. Although Spark is faster and more gen-
205 eral than MapReduce, the programming model of Spark is

206much more complex than MapReduce. It requires users to
207take time to learn the model and be familiar with provided
208APIs before they can program their applications with Spark.

2092.3.2 Spark versus Flink

210As the biggest competitor of Spark, Flink [1] is a stateful in-
211memory big data computing system for batch, streaming
212and interactive data processing. The two frameworks learn
213from each other and have many similarities in their func-
214tions, which are compared and summarized as follows:
215Data Abstraction Model and Performance. The two frame-
216works are based on different programming models for
217batch and streaming applications. For Spark, it is based on
218RDD abstraction model for batch computation and DStream
219model for streaming computation. Since DStream is inter-
220nally RDD itself, the streaming computation of Spark is
221indeed a near realtime streaming processing system
222achieved by emulating the streaming process through a
223serial of micro-batch computations. In contrast, Flink lever-
224ages Dataset abstraction for batch applications and Data-
225Stream for streaming applications, which is the real event-
226based streaming system.
227Compared to MapReduce, Spark and Flink can achieve
228higher performance efficiency for batch and streaming
229applications due to their in-memory computation. Particu-
230larly, for iterative batch applications and streaming applica-
231tions, Flink is faster than Spark due to its incrementally
232iterative computation and streaming architecture that only
233handle portion of data that have actually changed [126].
234Generality. Like Spark, Flink is also a general computing
235system that 1) supports a variety of computations including
236batch, streaming, iterative, interactive computation as well
237as graph, machine learning computation, etc, and 2) has a
238number of programming language supports such as SQL,
239Java, Scala, Python, R, etc. Moreover, both Spark and Flink
240are fully compatible to Hadoop Ecosystem, which can run
241in YARN and process data in HDFS, HBase, Cassandra,
242Hive, etc. All of these make Spark and Flink become flexible
243and easy-to-use in practice.
244Fault Tolerance. Spark and Flink are both fault tolerant but
245on the basis of different mechanisms. Spark achieves fault
246tolerance based on the lineage recovery mechanism, which
247is an efficient fault tolerance mechanism that only needs to
248recompute the lost data through lineage information with
249no extra storage cost. In constrat, Flink is based on Chandy-
250Lamport distributed snapshots [76] acting as consistent
251checkpoints, which is a lightweight fault tolerance mecha-
252nism that can achieve high throughput while offer strong
253consistency guarantees at the same time.
254Maturity and Popularity. Spark is relatively more mature
255and popular than Flink in the big data community. First, the
256documents of Spark arewellwritten andmaintained by Spark
257community whereas for Flink it is still under documenting.
258Because of this, the number of active users for Spark is much
259larger than Flink. Second, like Spark, the security of Flink is
260poor and not mature. It only supports user-level authentica-
261tion viaHadoop/Kerberos authentication.
262Summary. For the sake of better understanding Spark’s
263characteristics, we make a summary of Spark, Flink and
264MapReduce in Table 1 with respect to different metrics.
265First, the three frameworks have a good usability, flexibility,
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266 scalability, and fault tolerance properties. All of complex
267 details of distributed computation are encapsulated and
268 well considered by frameworks and are transparent to
269 users. Second, both Spark and Flink outperform MapRe-
270 duce in performance and generality, attributing to Spark
271 and Flink’s in-memory computation and their flexible pro-
272 gramming models. Reversely, MapReduce has a stronger
273 security and easy-to-learn property than Spark and Flink.
274 Compared to Spark and Flink, the programming model of
275 MapReduce is more simple and mature. Moreover, the three
276 frameworks have the problem of high memory consump-
277 tion, due to the heavy memory usage of JVMs. Finally, due
278 to the strong merits and well-written documentation of
279 Spark, it has become the most popular project among the
280 three frameworks.

281 2.4 Spark System Optimization

282 Performance is the most important concern for Spark sys-
283 tem. Many optimizations are studied on top of Spark in
284 order to accelerate the speed of data handling. We mainly
285 describe the major optimizations proposed on the Spark
286 system in this section.

287 2.4.1 Scheduler Optimization

288 The current Spark has a centralized scheduler which allo-
289 cates the available resources to the pending tasks according
290 to some policies (e.g., FIFO or Fair). The design of these
291 scheduling policies can not satisfy the requirements of cur-
292 rent data analytics. In this section, we describe different
293 kinds of schedulers that are especially optimized for large-
294 scale distributed scheduling, approximate query process-
295 ing, transient resource allocation and Geo-distributed set-
296 ting, respectively.
297 Decentralized Task Scheduling. Nowadays, more and more
298 Big Data analytics frameworks are with larger degrees of
299 parallelism and shorter task durations in order to provide
300 low latency. With the increase of tasks, the throughput and
301 availability of current centralized scheduler can not offer
302 low-latency requirement and high availability. A decentral-
303 ized design without centralized state is needed to provide
304 attractive scalability and availability. Sparrow [137] is the-
305 state-of-art distributed scheduler on top of Spark. It pro-
306 vides the power of two choices load balancing technique for
307 Spark task scheduling. The power probes two random

308servers and places tasks on the server with less load. Spar-
309row adapts the power of two choices technique to Spark so
310that it can effectively run parallel jobs running on a cluster
311with the help of three techniques, namely, Batch Sampling,
312Late Binding and Policies and Constraints. Batch Sampling
313reduces the time of tasks response which is decided by the
314finishing time of the last task by placing tasks of one job in a
315batch way instead of sampling for each task individually.
316For the power of two choices, the length of server queue is a
317poor norm of latency time and the parallel sampling may
318cause competition. Late binding prevents two issues hap-
319pening by delaying allocation of tasks to worker nodes
320before workers get ready to execute these tasks. Sparrow
321also enforces global policies using multiple queues on
322worker machines and supports placement constraints of
323each job and task.
324Data-Aware Task Scheduling. For machine learning algo-
325rithms and sampling-based approximate query processing
326systems, the results can be computed using any subset of the
327data without compromising application correctness. Cur-
328rently, schedulers require applications to statically choose a
329subset of the data that the scheduler runs the task which
330aviods the scheduler leveraging the combinatorial choices of
331the dataset at runtime. The data-aware scheduling called
332KMN [150] is proposed in Spark to take advantage of the
333available choices. KMN applies the “late binding” technique
334which can dynamically select the subset of input data on
335the basis of the current cluster’s state. It significantly increases
336the data locality even when the utilization of the cluster is
337high. KMN also optimizes for the intermediate stages which
338have no choice in picking their input because they need all the
339outputs produced by the upstream tasks. KMN launches a
340few additional jobs in the previous stage and pick choices that
341best avoid congested links.
342Transient Task Scheduling. For cloud servers, due to vari-
343ous reasons, the utilization tends to be low and raising the
344utilization rate is facing huge competitive pressure. One
345addressing solution is to run insensitive batch job work-
346loads secondary background tasks if there are under-uti-
347lized resources and evicted them when servers’s primary
348tasks requires more resources (i.e., transit resources). Due to
349excessive cost of cascading re-computations, Spark works
350badly in this case. Transient Resource Spark (TR-Spark) [157]
351is proposed to resolve this problem. It is a new framework
352for large-scale data analytic on transient resources which
353follows two rules: data scale reduction-aware scheduling
354and lineage-aware checkpointing. TR-Spark is implemented
355by modifying Spark’s Task Scheduler and Shuffle Manager,
356and adding two new modules Checkpointing Scheduler
357and Checkpoint Manager.
358Scheduling in a Geo-Distributed Environment. Geo-distrib-
359uted data centers are deployed globally to offer their users
360access to serviceswith low-latency. InGeo-distributed setting,
361the bandwidth of WAN links is relatively low and heteroge-
362neous compared with the intra-DC networks. The query
363response time over the current intra-DC analytics frameworks
364becomes extreme high in Geo-distributed setting. Irid-
365ium [139] is a system designed for Geo-distributed data ana-
366lytics on top of Spark. It reduces the query response time by
367leveraging WAN bandwidth-aware data and task placement
368approaches. By observing that network bottlenecks mainly

TABLE 1
The Comparison of Spark, Flink and MapReduce

Metrics Spark Flink MapReduce

Usability Easy-to-use Easy-to-use Easy-to-use
Performance High

Efficiency
High

Efficiency
Low

Efficiency
Generality Yes Yes No
Flexibility Yes Yes Yes
Scalability Yes Yes Yes
Fault Tolerance Yes Yes Yes
Memory
Consumption

Heavy Heavy Heavy

Security Poor Poor Strong
Learning hard-to-learn hard-to-learn easy-to-learn
Popularity Yes No No

4 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
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369 occur in the network connecting the data centers rather than
370 in the up/down links of VMs as assumed by Iridium, Hu
371 et al. [98] designed and implemented a new task scheduling
372 algorithm called Flutter on top of Spark. which reduces both
373 the completion time and network costs by formulating the
374 optimization issue as a lexicographicalmin-max integer linear
375 programming (ILP) problem.

376 2.4.2 Memory Optimization

377 Efficient memory usage is important for the current in-
378 memory computing systems. Many of these data processing
379 frameworks are designed by garbage-collected languages
380 like C#, Go, Java or Scala. Unfortunately, these garbage-col-
381 lected languages are known to cause performance overhead
382 due to GC-induced pause. To address the problem, current
383 studies either improvement the GC performance of these
384 garbage-collected language or leverage application seman-
385 tics to manage memory explicitly and annihilate the GC
386 overhead of these garbage-collected languages [2], [4], [122],
387 [123]. In this section, we introduce these optimizations from
388 these two aspects.
389 Spark run multiple work processes on different nodes
390 and the Garbage Collection (GC) is performed indepen-
391 dently in each node at run. Works communicate data
392 between different nodes (e.g, shuffle operation). In this case,
393 no node can continue until all data are received from all the
394 other nodes. GC pauses can lead to unacceptable long wait-
395 ing time for latency-critical applications without the central
396 coordination. If even a single node is stuck in GC, then all
397 the other nodes need wait. In order to coordinate the GC
398 from the central view, Holistic Runtime System [122], [123]
399 is proposed to collectively manages runtime GC across mul-
400 tiple nodes. Instead of making decisions about GC indepen-
401 dently, such Holistic GC system allows the runtime to make
402 globally coordinated consensus decision through three
403 approaches. First, it let applications choose the most suit-
404 able GC policy to match the requirement of different appli-
405 cations (e.g., throughput versus pause times). Second,
406 Holistic system performs GC by considering the applica-
407 tion-level optimizations. Third, the GC system is dynami-
408 cally reconfigured at runtime to adapt to system changes.
409 Instead of replying the memory management of such
410 managed languages. Spark also tries to manage the memory
411 by itself to leverage the application semantic and eliminate
412 the GC overhead of these garbaged-collected languages.
413 Tungsten [4] improves the memory and CPU efficiency of
414 spark applications to make the performance of Spark reach
415 the limits of modern hardware. This work consists of three
416 proposes. First, it leverages the off-heap memory, a feature
417 provided by JAVA to allocate/deallocate memory like c
418 and c++, to manage memory by itself which can take advan-
419 tage of the application semantics and annihilate the over-
420 head of JVM and GC. Second, it proposes cache-obvious
421 algorithms and data structures to develop memory hierar-
422 chical structure. Third, it uses the code generation to avoid
423 the overhead the expression evaluation on JVM (e.g., too
424 many virtual functions calls, extensive memory access and
425 can not take advantage modern CPU features such as
426 SIMD, pipeline and prefetching). Recently, Spark further
427 optimizes its performance by integrating the techniques
428 proposed in Modern parallel database area [132]. Spark 2.0

429leverages whole process code generation and vectorization
430to further ameliorate the code generation at runtime [2].

4312.4.3 I/O Optimization

432For large-scale data-intensive computation in Spark, the
433massive data loading (or writing) from (or to) disk, and
434transmission between tasks at different machines are often
435unavoidable. A number of approaches are thereby proposed
436to alleviate it by having a new storage manner, using data
437compression, or importing new hardware.
438Data Compression and Sharing. One limitation for Spark is
439that it can only support the in-memory data sharing for tasks
440within an application, whereas not for tasks from multiple
441applications. To overcome this limitation, Tachyon [115],
442[116] is proposed as a distributed in-memory file system that
443achieves reliable data sharing at memory speedup for tasks
444from different processes. The Spark applications can then
445share their data with each other by writing (or reading) their
446data to (or from) Tachyon atmemory speedup, which is faster
447than disk-based HDFS file system. Moreover, to enable more
448data saved in memory for efficient computation, Agarwal
449et al. [65] proposed and implemented a distributed data store
450system called Succinct in Tachyon that compresses the input
451data and queries can be executed directly on the compressed
452representation of input data, avoiding decompression.
453Data Shuffling. Besides the performance degradation from
454the disk I/O, the network I/Omay also be a serious bottleneck
455for many Spark applications. Particularly, shuffle, a many-to-
456many data transfer for tasks across machines, is an important
457consumer of network bandwidth for Spark. Zhang et al. [164]
458observed that the bottleneck for shuffle phase is due to large
459disk I/O operations. To address it, a framework called Riffle
460is proposed to improve I/O efficiency through combining
461fragmented intermediate shuffle files into larger block files
462and converting small and random disk I/O operations into
463large and sequential ones. Davidson et al. [63] proposed two
464approaches to optimize the performance in data shuffling.
465One is to apply the Columnar compression technique to
466Spark’s shuffle phase in view of its success in a column-ori-
467entedDBMS calledC-Store [144], so as to offload some burden
468from the network and disk to CPU. Moreover, they observe
469that Spark generates a huge number of small-size shuffle files
470on both the map and reduce phase, which introduces a heavy
471burden on operating system in filemanagement. A shuffle file
472consolidation approach is thereby proposed to reduce the
473number of shuffle files on eachmachine.
474Moreover, prefetching is an effective technique to hide
475shuffling cost by overlapping data transfers and the shuf-
476fling phase. Current state-of-the-art solutions take simple
477mechanisms to determine where and how much data to
478acquire from, resulting in the performance of sub-optimal
479and the excessive use of supplemental memory. To address
480it, Bogdan et al. [133] proposed an original adaptive shuffle
481data transfer strategy by dynamically adapting the prefetch-
482ing to the calculation. It is achieved by taking into account
483load balancing for request extraction using executor-level
484coordination, prioritization according to locality and
485responsiveness, shuffle block aggregation, elastic adjust-
486ment of in-flight restrictions, static circular allocation of ini-
487tial requests, and dispersal using in-flight increment.

TANG ET AL.: SURVEY ON SPARK ECOSYSTEM: BIG DATA PROCESSING INFRASTRUCTURE, MACHINE LEARNING, AND... 5
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488 There are also somework focusing on optimizing shuffling
489 under a certain circumstance. Kim et al. [107] considered the
490 I/O optimization for Spark under large memory servers. It
491 can achieve better data shuffling and intermediate storage by
492 replacing the existing TCP/IP-based shuffle with a large
493 shared memory approach. The communication cost of map
494 and reduce tasks can be reduced significantly through
495 referencing to the global sharedmemory compared with data
496 transferring over the network. Liu et al. [120] studied the data
497 shuffling in a wide-area network, where data transfers occur
498 between geographically distributed datacenters. It designed
499 and implemented a data aggregation spark-based system by
500 aggregating the output of map tasks to a subset of worker
501 datacenters strategically and proactively, which replaces the
502 original passive fetch mechanisms used in Spark across data-
503 centers. It can avoid repetitive data transfers, which can
504 thereby improve the utilization of inter-datacenter links.
505 RDMA-Based Data Transfer. Lu et al. [121] accelerated the
506 network communication of Spark in big data processing
507 using Remote Direct Memory Access (RDMA) technique.
508 They proposed a RDMA-based data shuffle engine for
509 Spark over InfiniBand. With RDMA, the latency of network
510 message communication is dramatically reduced, which
511 improves the performance of Spark significantly.

512 2.4.4 Provence Support

513 Data-intensive scalable computing (DISC) systems such as
514 Hadoop and Spark, provide a programming model for
515 users to authorize data processing logic, which is converted
516 to a Directed Acyclic Graph (DAG) of parallel comput-
517 ing [101]. Debugging data processing logic in DISC systems
518 is difficult and time consuming. A library, Titian [101], pro-
519 vides data provenance support at the velocity of interactive
520 based on Apache Spark. The contributions of Titian are
521 summarized as follow: A data lineage capture and query
522 support system while minimally impacting Spark job per-
523 formance. Interactive data provenance query support the
524 expansion of a conversant programming model Spark RDD
525 with less overhead. Titian extends the native Spark RDD
526 interface with tracing capabilities and returns a Linea-
527 geRDD, traveling by dataflow transformations at stage
528 boundaries. The user is able to retrospect to the intermedi-
529 ate data of the program execution from the given RDD, then
530 leverage local RDD transformations to reprocess the refer-
531 enced data.
532 Currently, researchers use cloud computing platforms to
533 analyse Big Data in parallel, but debugging massive parallel
534 computations is time consuming and infeasible for users.
535 To meet the low overhead, scalability and fine-grained
536 demands of big data processing in Apache Spark, a group
537 of interactive and real-time debugging primitives were
538 developed. BIGDEBUG [95] provides simulated break-
539 points and guarded watchpoints with the trifling influence
540 of performance, which indicates less than 19 percent over-
541 head for crash monitoring, 24 percent overhead for record-
542 level tracing, and 9 percent overhead for watchpoint on
543 average. BIGDEBUG supports a real-time rapid repair and
544 recovery to prevent re-running the job from the beginning.
545 Besides, BIGDEBUG offers the provenance of the culprit
546 and fine-grained tracking of records in distributed pipes to
547 track intermediate results back and forth.

548An improved version of the original Titian system is
549designed to reduce the lineage query time [100]. The two key
550features of Titian are crash culprit determination and auto-
551mated fault localization. The culprit information is packaged
552and dispatch to users with other run-time records. The delta
553debugging technique diagnose whether mistakes in code and
554data. To promote the performance of lineage queries, they
555extend Sparkwith an availableway to retrieve lineage records
556more pragmatically. For large-scale data, small tracing queries
557generate remarkable overhead from jobs that make little con-
558tribution to the result. Therefore, it proposes Hyperdrive, a
559customized Spark scheduler, which utilizes partition statistics
560to exclude the situation. Moreover, Hyperdrive decouples
561task operations from partitions and dispenses multiple parti-
562tions to one task.

5633 STORAGE SUPPORTING LAYER

564Spark takes DRAM as caches in its in-memory computation.
565Although DRAM has a much higher bandwidth and lower
566latency compared with HDD in data communication, its
567capacity is often limited due to the high cost of DRAM as
568well as its high power consumption [70]. It can significantly
569constrain large-scale data applications from gaining high
570in-memory hit-rates that is essential for high-performance
571on Spark. The new emerging storage devices in recent years
572give us a chance to alleviate it in the following ways:
573SSD-Based In-Memory Computing. Solid-State Disk (SSD)
574is a new storage device that provides much higher access
575speed than traditional HDD. Instead of using HDD, one
576approach is to adopt SSD as persistent storage by setting up
577a multi-tier storage system as illustrated in Fig. 3. In com-
578parison to HDD, the data movement between memory and
579SSD is much faster. We can improve Spark performance by
580spilling RDDs to SSD when the memory cache is full. By
581using SSDs, there can be up to 10� performance improve-
582ment over HDD-based caching approach for Spark [59].
583NVM-Based In-Memory Computing. Compared to DRAM,
584the latency of SSD is still very large (i.e., about 500� slower
585than DRAM) although it is much faster than HDD [81].
586Emerging Non-Volatile Memory (NVM), such as PCM,
587STT-RAM and ReRAM, is considered as an alternative to

Fig. 3. Multi-tier storage system consisting of DRAM and SSD.
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588 SSD [119] due to its much lower latency and higher band-
589 width than SSD. We can integrate DRAM, NVM and SSD to
590 establish a multi-tier caching system by first caching the
591 data in DRAM, or putting into NVM when DRAM is full, or
592 in the SSD when both DRAM and SSD are full.

593 4 PROCESSOR SUPPORTING LAYER

594 Since the limited performance and energy efficiency of gen-
595 eral-purpose CPUs have impeded the performance scaling
596 of conventional data centers, it becomes more and more
597 popular to deploy accelerators in data centers, such as GPU
598 and FPGA. Therefore, accelerator-based heterogeneous
599 machine has become a promising basic block of modern
600 data center to achieve further performance and efficiency.
601 In this section, we first provide a summary of Spark systems
602 integrating with GPU to accelerate the computing task. Sec-
603 ond, we make a survey of Spark systems with FPGA.

604 4.1 General Purpose Computation on Graphics
605 Processors (GPGPU)

606 While Graphics Processing Units (GPU) is originally designed
607 for graphics computation, it now has been widely evolved as
608 an accelerator todealwith general computing operations tradi-
609 tionally handled by CPU,which is referred to as GPGPU [138].
610 GPU has been widely integrated into modern datacenter for
611 its better performance and higher energy efficiency over CPU.
612 However, the modern computing framework like Spark can-
613 not directly leverage GPU to accelerate its computing task.
614 Several related projects reach out to fill the gap.

615 1) HeteroSpark. Li et al. [118] present an novel GPU-
616 enabled Spark HeteroSpark which leverages the com-
617 pute power of GPUs and CPUs to accelerate machine
618 learning applications. The proposed GPU-enabled
619 Spark provides a plug-n-play design so that the cur-
620 rent Spark programmer can leverage GPU computing
621 powerwithout needing any knowledge about GPU.
622 2) Vispark. Choi et al. [82] propose an extension of Spark
623 called Vispark, which leverages GPUs to accelerate
624 array-based scientific computing and image process-
625 ing applications. In particular, Vispark introduces
626 Vispark Resilient Distributed Dataset (VRDD) for
627 handling the array data on the GPU so that GPU
628 computing abilities can be fully utilized.
629 3) Exploring GPU Acceleration of Apache Spark. Manzi
630 et al. [125] explore the possibilities and benefits of
631 offloading the computing task of Spark to GPUs. In
632 particular, the non-shuffling computing tasks can be
633 computed on GPU and then the computation time
634 is significantly reduced. The experimental result
635 shows that the performance of K-Means clustering
636 application was optimized by 17X. Its implementa-
637 tion is publicly available (https://github.com/
638 adobe-research/spark-gpu).
639 4) Columnar RDD. Ishizaki [43] proposes one prototype
640 which saves the inner data in a columnar RDD, com-
641 pared with the conventional row-major RDD, since
642 the columnar layout is much easier to benefit from
643 using GPU and SIMD-enabled CPU. Therefore, the
644 performance of the applicatin logistic regression is
645 improved by 3.15X.

6464.2 FPGA

647FPGA is integrated into the computing framework Spark to
648accelerate inner computing task. In particular, there are two
649related projects: FPGA-enabled Spark and Blaze.

6501) FPGA-enabled Spark [80]. It explores how to efficiently
651integrate FPGAs into big-data computing framework
652Spark. In particular, it designs and deploys an
653FPGA-enabled Spark cluster, where one representa-
654tive application next-generation DNA sequencing is
655accelerated with two key technologies. The first one
656is that they design one efficient mechanism to effi-
657ciently harness FPGA in JVM so that the JVM-FPGA
658communication (via PCIe) overhead is alleviated.
659The other one is that one FPGA-as-a-Service (FaaS)
660framework is proposed where FPGAs are shared
661among multiple CPU threads. Therefore, the com-
662puting abilities of FPGAs can be fully utilized and
663then the total execution time is significantly reduced.
6642) Blaze [83]. It provides a high-level programming
665interface (e.g., Java) to Spark and automatically lev-
666erages the accelerators (e.g., FPGA and GPU) in the
667heterogeneous cluster to speedup the computing
668task without the interference of programmer. In
669other words, each accelerator is abstracted as the
670subroutine for Spark task, which can be executed on
671local accelerator when it is available. Therefore, the
672computation time can be significantly reduced. Oth-
673erwise, the task will be executed on CPU.

6745 DATA MANAGEMENT LAYER

675In the age of Big Data, data is generally saved and managed
676in distributed filesystems or databases. This sections gives a
677survey of widely used data storage and management sys-
678tems for Spark.

6795.1 Distributed File Systems

6801) Hadoop Distributed File System (HDFS). Hadoop Dis-
681tributed File System is proposed to be deployed on
682low-cost commodity hardware. It is highly scalable
683and fault-tolerant, enabling it to run on a cluster
684includes hundreds or thousands of nodes where the
685hardware failure is normal. It takes a master-slave
686architecture, which contains a master called Name-
687Node to manage the file system namespace and regu-
688lating access to files by users, and a number of slaves
689called DataNodes each located at a machine for stor-
690ing the data. Data uploaded into HDFS are parti-
691tioned into plenty of blocks with fixed size (e.g.,
69264 MB per data block) and the NameNode dis-
693patched the data blocks to different DataNodes that
694save and manage the data assigned to them. To
695improve data reliability, it replicates each data block
696three times (the replicator is 3 by default and users
697can change it) and saves each replica in a different
698rack. HDFS data access has been originally sup-
699ported by Spark with its provided native interface,1

1. Spark provides users the ’spark-submit’ script to launch applica-
tions, which supports hdfs.
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700 which enables Spark applications to read/write data
701 from/to HDFS directly.
702 2) Ceph. The centralized nature inherent in the client/
703 server model has testified a important barrier to scal-
704 able performance. Ceph [153] is a distributed file sys-
705 temwhich offers high performance and dependability
706 while promising unprecedented expansibility. Ceph
707 uses generating functions replacing file allocation
708 tables to decouple the operations of data and meta-
709 data. Ceph is allowed to distribute the complexity
710 around data access, update sequence, duplication and
711 dependability, fault detection, and resume by using
712 the intelligence in OSDs. Ceph uses a highly adaptive
713 distributed metadata cluster architecture that greatly
714 enhances the scalability of metadata access and the
715 scalability of thewhole system.
716 3) Alluxio. With the rapid growth of today’s big data,
717 storage and networking pose themost challenging bot-
718 tlenecks since data writes can become network or disk
719 binding, especially when duplication is responsible
720 for fault-tolerance. Alluxio [19], used to be considered
721 as Tachyon, is a fault-tolerant, memory-centric virtual
722 distributed file system that can address the bottleneck.
723 It enables reliable operation of memory speed and
724 data sharing between different applications and clus-
725 ter computing frameworks. To obtain high throughput
726 writes without impairing fault-tolerance, Alluxio lev-
727 erages the notion of lineage [74] to recover the lost out-
728 put by re-implementing output tasks, without the
729 need of replicating the data. With Alluxio, users can
730 do transformations and explorations on large datasets
731 in memory for high performance while enjoying its
732 high data reliability.
733 Fig. 4 illustrates the memory-centric architecture of
734 Alluxio. It manages data access and fast storage for user
735 applications and computing frameworks by unifying the
736 computing frameworks (e.g., MapReduce, Spark and Flink),
737 and traditional storage systems (e.g., Amazon S3, Apache

738HDFS and OpenStack Swift), which facilitates data sharing
739and locality between jobs no matter whether they are run-
740ning on the same computing system. It serves as a unifying
741platform for various data sources and computing systems.
742There are two key functional layers for Aullxio: lineage
743and persistence. The lineage layer offers high throughput
744I/O and tracks the information for tasks which produced a
745specific output. In contrast, the persistent layer materializes
746data into storage, which is mainly used for checkpoints.
747Aullxio employs a stand master-slave architecture. That
748master mainly manages the global metadata of the entire
749system, tracks lineage information and interacts with a
750cluster resource manager to distribute resources for recal-
751culation. The slaves manage local storage resources allo-
752cated to Alluxio, and storing data and serving requests
753from users.

7545.2 Cloud Data Storage Services

755Cloud storage system is able to be typically viewed as a net-
756work of distributed data centers that provides storage ser-
757vice to users for storing data by using cloud computing
758techniques such as virtualization. It often saves the same
759data redundantly at different locations for high data avail-
760ability, which is transparent to users. The cloud storage ser-
761vice can be accessed by a co-located cloud computer
762service, an application programming interfaces (API) or by
763applications that use the API [27]. There are two popular
764cloud storage services: Amazon S3 and Microsft Azure.
7651). Amazon Simple Storage Service (S3). Amazon S3 is a
766web-based storage service that allows the user to save and
767fetch data at any time and any place through web services
768interfaces such as REST-style HTTP interface, SOSP inter-
769face and BitTorrent protocol [21]. It charges users for on-
770demand storage, requests and data transfers.
771The data in Amazon S3 is managed as objects with an
772object storage architecture, which is opposed to file systems
773that manage data as a file hierarchy. Objects are organized
774into buckets, each of which is owned by an AWS account.
775Users can identify objects within each bucket by a unique,
776user-assigned key.
777Spark’s file interface can allow users to access data in
778Amazon S3 by specifying a path in S3 as input through the
779same URI formats2 that are supported for Hadoop [40].
780However, the storage of Spark dataframe in Amazon S3 is
781not natively supported by Spark. Regarding this, users can
782utilize a spark s3 connector library [50] for uploading data-
783frames to Amazon S3.
7842). Microsft Azure Blob Storage (WASB). Azure Blob stor-
785age (WASB) [35] is a cloud service for users to save and
786fetch any amount of unstructured data like text and binary
787data, in the form of Binary Large Objects (BLOBs). Three
788types of blobs are supported, namely, block blobs, append
789blobs and page blobs. Block blobs are suitable for storing
790and streaming cloud objects. Append blobs are optimized
791for append operations. In contrast, page blobs are improved
792to represent IaaS disks and support random writes. Multi-
793ple Blobs are grouped into a container and a user storage
794account can have any number of containers. The saved data
795can be accessed via HTTP, HTTPS, or REST API.

Fig. 4. The Alluxio architecture.

2. The form of URI is: s3n://< bucket> /path.
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796 Spark is compatible with WASB, enabling the data saved
797 in WASB to be directly accessed and processed by Spark via
798 specifying an URI of the format ‘wasb://path’ that represents
799 the path where the data is located.

800 5.3 Distributed Database Systems

801 1). Hbase. Apache Hbase [9] is an open-source implementa-
802 tion of Google’s BigTable [79], which is a distributed key-
803 value database with the features of data compression, in-
804 memory operation and bloom filters on a per-column basis.
805 It runs on top of Hadoop that leverages the high scalability
806 of HDFS and strong batch processing capabilities of MapRe-
807 duce to enable massive data analysis, and provides real-
808 time data access with the speed of a key/value store for
809 individual record query.
810 It is a column-oriented key-value database that each table
811 is saved as a multidimensional sparse map, having a time-
812 stamp for each cell tagged by column family and column
813 name. A cell value can be identified and retrieved by speci-
814 fying (Table Id, Row Key, Column-Family:Column, Time-
815 stamp). A Hbase table consists of regions, each of which is
816 defined by a startKey and endKey. Except for parent col-
817 umn families being fixed in a schema, users can add col-
818 umns to tables on-the-fly. All table accesses are achieved by
819 the primary key through the Java API, REST, Avro or Thrift
820 gateway APIs.
821 There are a number of libraries and tools emerged that
822 enable Spark to interact with HBase. Spark-HBase Connec-
823 tor [44] is such a library that provides a simple and elegant
824 API for users’ Spark applications to connect to HBase for
825 reading and writing data. To enable native and optimized
826 SQL access to HBase data via SparkSQL/Dataframe interfa-
827 ces, a tool called Spark-SQL-on-HBase [51] is developed by
828 Huawei. Moreover, for efficient scanning, joining and
829 mutating HBase tables to and from RDDs in a spark envi-
830 ronment, there is a generic extension of spark module called
831 spark-on-hbase [46] developed.
832 2). Dynamo. Amazon Dynamo [88] is a decentralized dis-
833 tributed key-value storage system with high scalability and
834 availability for Amazon’s applications. It has characteristics
835 of both databases and distributed hash tables (DHTs) [28]. It
836 is built to control the state of Amazon’s application pro-
837 grams which require high reliability over the trade-offs
838 between availability, consistency, cost-effectiveness and
839 performance. Several Amazon e-commerce services only
840 need primary-key access to a data store, such as shopping
841 carts, customer preferences and sales rank. For these serv-
842 ices, it caused inefficiencies and limited size and availability
843 by using relational databases. In comparison, Dynamo is
844 able to fulfill these requirements by providing a simple pri-
845 mary-key only interface.
846 Dynamo leverages a number of efficient optimization tech-
847 niques to achieve high performance. It first uses a variant of
848 consistent hashing to divide and replicate data across
849 machines for overcoming the inhomogeneous data andwork-
850 load distribution problem. Second, the technology is similar
851 to arbitration and decentralized replication synchronization
852 protocols to ensure data consistency during the update. Third,
853 it employs a gossip-style membership protocol that enables
854 eachmachine to learn about the arrival (or departure) of other
855 machine for the decentralized failure detection.

8563). DynamoDB. Amazon DynamoDB [20] is a new fast,
857high reliability, cost-effective NoSQL database service
858designed for Internet applications. It is based on strong dis-
859tributed systems principles and data models of Dynamo. In
860contrast to Dynamo that requires users to run and manage
861the system by themselves, DynamoDB is a fully managed
862service that frees users from the headaches of complex
863installation and configuration operations. It is built on Solid
864State Drives which offers fast and foreseeable performance
865with very low latency at any scale. It enables users to create
866a database table that can store and fetch any amount of data
867through the ability to disperse data and traffic to a sufficient
868number of machines to automatically process requests for
869any level of demand.
870Medium company [36] creates a library called Spark-
871DynamoDB [30] that provides DynamoDB data access for
872Spark. It enables to read an DynamoDB table as a Spark
873DataFrame, and allows users to run SQL quries against
874DynamoDB tables directly with SparkSQL.
8754). Cassandra. Apache Cassandra [111] is a highly scal-
876able, distributed structured key-value storage system
877designed to deal with large-scale data on top of hundreds
878or thousands of commodity servers. It is open sourced by
879Facebook in 2008 and has been widely deployed by many
880famous companies.
881Cassandra integrates together the data model from
882Google’s BigTable [79] and distributed architectures of
883Amazon’s Dynamo [88], making it eventually consistent
884like Dynamo and having a columnFamily-based data model
885like BigTable. Three basic database operations are sup-
886ported with APIs: insert(table, key, rowMutation), get(table,
887key, columnName) and delete(table, key, columnName). There
888are four main characteristics [22] for Cassandra. First, it is
889decentralized so that every node in the cluster plays the
890same role without introducing a single fault point of the
891master. Second, it is highly scalable that read/write
892throughput both increase linearly as the increasement of
893new machines and there is no downtime to applications.
894Third, each data is replicated automatically on multiple
895machines for fault tolerance and the failure is addressed
896without shutdown time. Finally, it offers a adjustable level
897of consistency, allowing the user to balance the tradeoff
898between read and write for different circumstances.
899To enable the connection of Spark applicaitons to Cas-
900sandra, a Spark Cassandra Connector [42] is developed and
901released openly by DataStax company. It exposes Cassan-
902dra tables as Spark RDDs and can save RDDs back to Cas-
903sandra with an implicit saveToCassandra call. Moreover, to
904provide the python support of pySpark [49], there is a
905module called pyspark-cassandra [38] built on top of Spark
906Cassandra Connector.

9075.4 Comparison

908Table 2 shows the comparison of different storage systems
909supported by Spark. We summarize them in different ways,
910including the type of storage systems they belong to, the
911storage places where it supports to store the data, the data
912storing model, the data accessing interface and the licence.
913Similar to Hadoop, Spark has a wide range support for vari-
914ous typed storage systems via its provided low-level APIs
915or SparkSQL, which is crucial to keep the generality of
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917 memory computation, the in-memory data caching/storing
918 is also very important for achieving high performance.
919 HDFS, Alluxio and Cassandra can support in-memory and
920 in-disk data storage manners, making them become most
921 popular and widely used for many big data applications.

922 6 DATA PROCESSING LAYER

923 As a general-purpose framework, Spark supports a variety
924 of data computation, including Streaming Processing,
925 Graph Processing, OLTP and OLAP Queries Processing,
926 and Approximate Processing. This section discusses about
927 research efforts on them.

928 6.1 Streaming Processing

929 Spark Streaming provides users to deal with real-time data
930 from different sources such as Kafka, Flume, and Amazon
931 Kinesis. Spark is built upon the data parallel computing
932 model and offers reliable real-time streaming data process-
933 ing. Spark streaming converts the processing into a series of
934 deterministic micro-batch calculations, and then utilizes dis-
935 tributed processing framework of Spark to implement. The
936 key abstraction is a Discretized Stream [161] which distrib-
937 utes data stream into tiny batches. The Spark Streaming
938 works as follows, it partitions the live data stream into
939 batches (called microbatches) of a pre-defined interval (N
940 seconds). Next it takes each batch of data as Resilient Dis-
941 tributed Datasets (RDDs) [159]. Spark Streaming can incor-
942 porate with any other Spark components such as MLlib and
943 Spark SQL seamlessly. Due to the popularity of spark
944 streaming, research efforts are devoted on further improv-
945 ing it. Das et al. [85] study the relationships among batch
946 size, system throughput and end-to-end latency.
947 There are also efforts to extend spark streaming
948 framework.

949 1) Complex Event Processing. Complex event processing
950 (CEP) is a type of event stream processing that
951 assembles various sources data to find patterns and
952 complex relationships among various events. By
953 analyzing many data sources, CEP system can help
954 identify opportunities and threats for providing real-
955 time alerts to act on them. Over the last decades,
956 CEP systems have been successfully utilized in diffi-
957 dent fields such as recommendation, stock market
958 monitoring, and health-care. There are two open-
959 source projects on building CEP system on Spark.
960 Decision CEP engine [3] is a Complex Event

961Processing platform which combines Spark Stream-
962ing framework with Siddhi CEP engine. Spark-
963cep [5] is another stream processing engine built on
964top of Spark supporting continuous query language.
965Comparing to the existing Spark Streaming query
966engines, it supports more efficient windowed aggre-
967gation and “Insert Into” query.
9682) Streaming Data Mining. In this big data era, the grow-
969ing of streaming data motivates the fields of streaming
970data mining. There are typically two reasons behind
971the need of evolving from traditional data mining
972approach. First, streaming data has, in principle, no
973volume limit, and hence it is often impossible to fit the
974entire training dataset into main memory. Second, the
975statistics or characteristics of incoming data are contin-
976uously evolving, which requires a continuously re-
977training and evolving. Those challenges make the tra-
978ditional offline model approach no longer fit. To this
979end, open-sourced distributed streaming data mining
980platforms, such as SOMOA [130] and StreamDM [6]
981are proposed and have attractedmany attentions. Typ-
982ically, StreamDM [6], [73] uses Spark Streaming as the
983provider of streaming data. A list of datamining librar-
984ies are supported such as SGDLearner and Perception.

9856.2 Graph Processing

986For graph processing, it can be easily out of the computation
987and memory capacities of machines when it become larger
988in scale and more ambitious in their complexity for graph
989problems. To this end, distributed graph processing frame-
990works like GraphX [94] are proposed. GraphX is a library
991atop of Spark, which encodes graphs as collections and
992expresses the GraphX APIs using standard dataflow opera-
993tors. In GraphX, a number of optimization strategies are
994developed, and we briefly mention a few here.

995� GraphX contains a series of built-in partitioning
996functions suach as the vertex collection and edge col-
997lection. A routing table is co-divided with the vertex
998collection which is hash-partitioned by vertex ids.
999The edge collection can be split horizontally by users
1000and offers vertex-cut partition.
1001� To maximize index reuse, the subgraph operation
1002generates subgraphs thatwhich share all graph
1003indexes, and utilizes a bitmask to represent which
1004items are contained.
1005� In order to reduce join operation, GraphX resolves
1006which attributes a function accesses by analysising
1007JVM bytecode. Using triple unrealized views that are

TABLE 2
The Comparison of Different Storage Systems

Storage System Type Supported Layer Data Model Spark Query Interface License

HDFS Distributed File System In Memory, In Disk Document-Oriented Store Low-Level API Open source- Apache
Ceph Distributed File System In Disk Document-Oriented Store Low-Level API Open source- LGPL
Alluxio Distributed File System In Memory, In Disk Document-Oriented Store Low-Level API Open source- Apache
Amazon S3 Cloud Storage System In Disk Object Store Low-Level API Commercial
Microsoft WASB Cloud Storage System In Disk Object Store Low-Level API Commercial
Hbase Distributed Database In Disk Key-Value Store SparkSQL, Low-Level API Open source- Apache
DynamoDB Distributed Database In Disk Key-Value Store SparkSQL, Low-Level API Commercial
Cassandra Distributed Database In Memory, In Disk Key-Value Store SparkSQL, Low-Level API Open source- Apache
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1008 not yet implemented, only one attribute accessed
1009 GraphX will involve a two-way join. In the absence
1010 of attribute access, Gracx can completely eliminate
1011 the join.
1012 In contrast to many specialized graph processing system
1013 such as Pregel [124], PowerGraph [93], GraphX is closely
1014 integrated into modern general-purpose distributed data-
1015 flow system (i.e., Spark). This approach avoids the need of
1016 composing multiple systems which increases complexity
1017 for a integrated analytics pipelines, and reduces unneces-
1018 sary data movement and duplication. Furthermore, it natu-
1019 rally inherited the efficient fault tolerant feature from Spark,
1020 which is usually overlooked in specialized graph processing
1021 framework. The experimental evaluation also shows that
1022 GraphX is close to or faster than specialized graph process-
1023 ing systems.

1024 6.3 OLTP and OLAP Queries Processing

1025 Hybrid Transaction/Analytical Processing (HTAP) systems
1026 respond to OLTP and OLAP queries by keeping data in dual
1027 formats and it provides streaming processing by the utiliza-
1028 tion of a streaming engine. SnappyData [141] enable stream-
1029 ing, transactions and interactive analytics in a unitary system.
1030 It exploits AQP techniques and multiple data summaries at
1031 true interactive speeds. SnappyData include a deep integra-
1032 tion of Spark and GemFire. An operation of in-memory data
1033 storage is combined with the model of Spark computation. It
1034 will make all available CPU kernels busy when tasks are
1035 implmneted in partition mode. Spark’s API are extended to
1036 uniformAPI for OLAP, OLTP and streaming.

1037 6.4 Approximate Processing

1038 Modern data analytics applications demand near real-time
1039 response rates. However, getting exact answer from
1040 extreme large size of data takes long response time, which
1041 is sometimes unacceptable to the end users. Besides utiliz-
1042 ing extra resources (i.e., memory and CPU) to reduce data
1043 processing time, approximate processing provides faster
1044 query response by reducing the amount of work need to
1045 perform through techniques such as sampling or online
1046 aggregation. It has been widely observed that users can
1047 accept some inaccurate answers which come quickly, espe-
1048 cially for exploratory queries.
1049 1). Approximate Query Processing. In practice, having a low
1050 response time is crucial for many applications such as web-
1051 based interactive query workloads. To achieve that, Sameer
1052 et al. [67] proposed a approximate query processing system
1053 called BlinkDB atop of Shark and Spark, based on the distrib-
1054 uted sampling. It can return the query result for a large queries
1055 of 17 full data terabytes within 2 seconds while keeping
1056 substantial error bounds bound to results with 90–98 percent.
1057 The strength of BlinkDB comes from two meaningful ideas:
1058 (1) an adaptive optimization framework which keeps a series
1059 of multi-dimensional samples from raw data based on time
1060 (2) a dynamic sample selection strategy based on the accuracy
1061 and response time of queries. Moreover, to evaluate the accu-
1062 racy of BlinkDB, Agarwal et al. [66] proposed an effective
1063 error estimation approach by extending the prior diagnostic
1064 algorithm [108] to checkwhenbootstrap-based error estimates
1065 are not reliable.

1066Considering that the join operation is a key building
1067block for any database system, Quoc et al. [114] proposed a
1068new join operator called APPOXJOIN that approximates
1069distributed join computations on top of Spark by interweav-
1070ing Bloom filter sketching and stratified sampling. It first
1071uses a Bloom filter to prevent non-joinable data shuffling
1072and then uses a stratified sampling approach to get a repre-
1073sentative sample of the joined output.
10742). Approximate Streaming Processing. Unlike the batch
1075analysis method in which the input data keeps unchanged
1076during the sampling process, the data for streaming analyt-
1077ics is changing over time. Quoc et al. [113] shows that the
1078traditional batch-oriented approximate computing are not
1079well-suited for streaming analytics. To address it, they pro-
1080posed a streaming analytics system called STREAMAPROX
1081by designing an online stratified reservoir sampling methed
1082to generate approximate output with tight margins of error.
1083It implements STREAMAPROX on Apache Spark Streaming
1084and experimental results show that there can be a accelerate
1085rate of 1:1��2:4� while keeping the same accuracy over
1086the baseline of Spark-based approximate calculation system
1087utilizing the existing sampling modules in Apache Spark.
10883). Approximate Incremental Processing. Incremental proc-
1089essing refers to a data computation that is incrementally sched-
1090uled by involving the same application logic over the input
1091data [96] so as to avoid recomputing everything from scratch.
1092Like approximate computation, it works over a subset of data
1093items but differ in their choosing means. Krishnan et al. [110]
1094observe that the two paradigms are complementary and pro-
1095posed a new paradigm called approximate incremental proc-
1096essing that leverages the approximation and incremental
1097techniques in order for a low-latency execution. They proposed
1098an online stratified sampling algorithm by leveraging adapta-
1099tion calculation to generate an incremental updated approxi-
1100mation with bounded error and executed it in Apache Spark
1101Streaming by proposing a system called INCAPPROX. The
1102experimental evaluation shows that benefits of INCAPPROX
1103equippingwith incremental and approximate computing.

11047 HIGH-LEVEL LANGUAGE LAYER

1105Spark is designed in Scala [41], which is an object-oriented,
1106functional programming language running on a JVM that can
1107call Java libraries directly in Scala code and vice versa. Thus, it
1108natively supports the Spark programming with Scala and
1109Java by default. However, some users might be unfamiliar
1110with Scala and Java but are skilled in other alternative lan-
1111guages like Python and R. Moreover, Spark programming is
1112still a complex and heavy work especially for users that are
1113not familiar with Spark framework. Thereby, having a high-
1114level language like SQL declarative language on top of Spark
1115is crucial for users to denote tasks while leave all complicated
1116implementing majorization details to the backend Spark
1117engine, which alleviates users’ programming burdens signifi-
1118cantly. In next section, we indicate the research work which
1119has been proposed to address problems.

11207.1 R and Python High-Level Languages Support

11211) SparkR. In the numeric analysis and machine learn-
1122ing domains, R [39] is a popular programming
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1123 language widely used by data scientists for statistical
1124 computing and data analysis. SparkR [53], [151] is a
1125 light-weight frontend system that incorporates R
1126 into Spark and enables R programmers to perform
1127 large amount of data analysis from the R shell. It
1128 extends the single machine implementation of R to
1129 the distributed data frame implementation on top of
1130 Spark for large datasets. The implementation of
1131 SparkR is on the basis of Spark’s parallel DataFrame
1132 abstraction [129]. It supports all Spark DataFrame
1133 analytical operations and functions including aggre-
1134 gation, filtering, grouping, summary statistics, and
1135 mixing-in SQL queries.
1136 2) PySpark. PySpark [48] is the Python API for Spark,
1137 which exposes the Spark programming model to
1138 Python. It allows users to write Spark applications in
1139 Python. There are a few differences between PySpark
1140 and Spark Scala APIs. First, Python is a dynamically
1141 typed language so that the RDDs of PySpark have the
1142 capability to save objects of multiple types. Second, the
1143 RDDs of PySpark support the same functions as that
1144 of ScalaAPIs but leverage Python functions and return
1145 Python collection types. Third, PySpark supports
1146 anonymous functions, which can be passed to the
1147 PySparkAPI by using Python’s lambda functions.

1148 7.2 SQL-Like Programming Language and System

1149 1). Shark. Apache Shark [91], [156] is the first SQL-on-Spark
1150 effort. It is built on top of Hive codebase and uses Spark as
1151 the backend engine. It leverages the Hive query compiler
1152 (HiveQL Parser) to analysis a HiveQL query and produce
1153 an abstract syntax tree followed by turning it into the logical
1154 plan and optimization. Shark then generates a physical plan
1155 of RDD operations and finally executes them in Spark sys-
1156 tem. A number of performance optimizations are consid-
1157 ered. To reduce the large memory overhead of JVM, it
1158 executes a columnar memory storage based on Spark’s
1159 native memory store. A cost-based query optimizer is also
1160 implemented in Shark for choosing more efficient join order
1161 according to table and column statistics. To reduce the
1162 impact of garbage collection, Shark saves all columns of
1163 primitive types as JVM primitive arrays. Finally, Shark is
1164 completely compatible with Hive and HiveQL, but much
1165 faster than Hive, due to its inter-query caching of data that
1166 eliminates the need to read/write repeatedly on disk. It can
1167 support more complex queries through User Defined Func-
1168 tions (UDFs) that are referenced by a HiveQL query.
1169 2). Spark SQL. Spark SQL [129] is an evolution of SQL-
1170 on-Spark and the state-of-art new module of Spark that
1171 has replaced Shark in providing SQL-like interfaces. It is
1172 proposed and developed from ground-up to overcome the
1173 difficulty of performance optimization and maintenance of
1174 Shark resulting from inheriting a large, complicated Hive
1175 codebase. Compared to Shark, it adds two main capabili-
1176 ties. First, Spark SQL provides much tighter hybrid of rela-
1177 tional and procedural processing. Second, it becomes easy
1178 for users to do some extensions, including adding compos-
1179 able rules, controling code generation, and defining exten-
1180 sion points. It is compatible with Shark/Hive that supports
1181 all existing Hive data formats, user-defined functions

1182(UDF) and the Hive metastore, while providing the state-
1183of-the-art SQL performance.
1184Fig. 5 presents the programming interface to Spark SQL
1185containing two main cores of DataFrame API and Catalyst
1186Optimizer, and its interaction with Spark. It exposes SQL
1187interfaces through a command line console such as JDBC or
1188ODBC, and the DataFrame API implemented in Spark’s
1189procedural programming languages. The DataFrame is the
1190main abstraction in Spark SQL’s API. It is a distributed sets
1191of records that enable to execute with Spark’s supported
1192API and new relational APIs. The Catalyst, in contrast, is a
1193scalable query optimizer with functional programming con-
1194structs. It simplifies the addition of new optimization tech-
1195niques and characteristics of Spark SQL and enables users
1196to expand the optimizer for their application needs.
11973). Hive/HiveQL. Apache Hive [147] is an open-source
1198data warehousing method based on Hadoop by the Face-
1199book Data Infrastructure Team. It aims to incorporate the
1200classical relational database notion as well as high-level
1201SQL language to the unstructured environment of Hadoop
1202for those users who were not familiar with map-reduce.
1203There is a mechanism inside Hive that can project the struc-
1204ture of table onto the data saved in HDFS and enable data
1205queries using a SQL-like declarative language called
1206HiveQL, which contains its own type system with support
1207for tables, collections and nested compositions of the same
1208and data definition language (DDL). Hive compiles the
1209SQL-like query expressed in HiveQL into a directed acyclic
1210graph of map-reduce jobs that are executed in Hadoop.
1211There is a metastore component inside Hive that saves the
1212metadata about underlying tables, which is particular dur-
1213ing the creation and reused whenever the table is referenced
1214in HiveQL. The DDL statements supported by HiveQL
1215enable to create, drop and alter tables in Hive databases.
1216Moreover, the data manipulation statements of HiveQL can
1217be used to import data from external sources such as HBase
1218and RCFile, and put query results into Hive tables.
1219Hive has been widely used by many organizations/users
1220for their applications [8]. However, the default backend exe-
1221cution engine for Hive is MapReduce, which is less power-
1222ful than Spark. Adding Spark as an alternative backend
1223execution engine to Hive is thus an important way for Hive
1224users to migrate the execution to Spark. It has been realized
1225in the latest version of Hive [23]. Users can now run Hive
1226on top of Spark by configuring its backend engine to Spark.
12274). Pig/Pig Latin. Apache Pig [24] is an open source data-
1228flow processing system developed by Yahoo!, which serves

Fig. 5. Interfaces to Spark SQL [129].
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1229 for experienced procedural programmers with the prefer-
1230 ence of map-reduce style programming over the pure
1231 declarative SQL-style programming in pursuit of more con-
1232 trol over the execution plan. It consists of a execution engine
1233 and high-level data flow language called Pig Latin [136],
1234 which is not declarative but enables the expression of a
1235 user’s task with high-level declarative queries in the SQL
1236 spirit and low-level procedural programming with MapRe-
1237 duce. Fig. 6 gives a instance of SQL query and the Pig Latin
1238 program which has the same function, which is a sequence
1239 of transformation steps each of which is carried out using
1240 SQL-like high-level primitives such as filtering, grouping
1241 and aggregation. Given a Pig Latin program, the Pig execu-
1242 tion engine generates a logic query plan, compiles it into a
1243 DAG of MapReduce jobs, and finally submitted to Hadoop
1244 cluster for execution.
1245 There are several important characteristics for Pig Latin
1246 in casual ad-hoc data analysis, including the support of a
1247 nested data model as well as a set of predefined and cus-
1248 tomizable UDFs, and the capability of operating over raw
1249 data without the schema. The basic data type is Atom (e.g.,
1250 integer, double, and string) in Pig Latin. Multiple Automs
1251 can be integrate into several Tuples which can form a Bag.
1252 Map is a complex data type supported by Pig Latin, which
1253 contains a key and a set of items that can be searched with
1254 its associated key.
1255 Like Hive, the default backend execution engine for Pig
1256 is MapReduce. To enable the execution of Pig jobs on Spark
1257 for performance improvement, there is a Pig-on-Spark proj-
1258 ect called Spork [54] that plugs in Spark as an execution
1259 engine for Pig. With Spork, users can choose Spark as the
1260 backend execution engine of the Pig framework optionally
1261 for their own applications.

1262 7.3 Comparison

1263 Table 3 illustrates the comparison of different programming
1264 language systems used in Spark. To be compatible, it sup-
1265 ports Hive and Pig by allowing users to replace the backend
1266 execution engine of MapReduce with Spark. To make the
1267 query efficient, Shark is first developed and later evolves to
1268 SparkSQL. Moroever, SparkR and PySpark are provided in
1269 Spark in order to support R and Python languages which

1270are widely used by scientific users. Among these languages,
1271the major differences lie in their supported language types.
1272SparkR and PySpark can support Dataflow and SQL-like
1273programming. In contrast, Shark, SparkSQL and Hive are
1274SQL-like only languages, while Pig is a dataflow language.

12758 APPLICATION/ALGORITHM LAYER

1276As a general-purpose system, Spark has been widely used
1277for various applications and algorithms. In this section, we
1278first review the support of machine learning algorithms on
1279Spark. Next we show the supported applications on Spark.

12808.1 Machine Learning Support on Spark

1281Machine learning is a powerful technique used to develop
1282personalizations, recommendations and predictive insights
1283in order for more diverse and more user-focused data prod-
1284ucts and services. Many machine learning algorithms
1285involve lots of iterative computation in execution. Spark is
1286an efficient in-memory computing system for iterative proc-
1287essing. In recent years, it attracts many interests from both
1288academia and industry to build machine learning packages
1289or systems based on Spark. We will discuss about research
1290efforts on it in this section.

12918.1.1 Machine Learning Library

12921). MLlib. The largest and most active distributed machine
1293learning library for Spark is MLlib [17], [128]. It contains
1294fast and scalable executions of common machine learning
1295algorithms and a variety of basic analytical utilities, low-
1296level optimization primitives and higher-level pipeline
1297APIs. It is a general machine learning library that provides
1298algorithms for most use cases and meanwhile allows users
1299to expand it for Professional utilization.
1300There are several core features for MLlib as follows. First,
1301it implements a number of classic machine learning algo-
1302rithms, including various linear models (e.g., SVMs, logistic
1303regression, linear regression), naive Bayes, and random for-
1304est for classification and regression problems; alternating
1305least squares for collaborative filtering; and k-means for
1306clustering and dimensionality reduction; FP-growth for fre-
1307quent pattern mining. Second, MLlib provides many opti-
1308mizations for supporting efficient distributed learning and
1309prediction. Third, It supports practical machine learning
1310pipelines natively by using a package called spark.ml inside
1311MLlib, which simplifies the adjustment of multi-stage learn-
1312ing pipelines by offering unified high-level APIs. Lastly,
1313there is a tight and seamless integration of MLlib with
1314Spark’s other components including Spark SQL, GraphX,
1315Spark streaming and Spark core, bringing in high

Fig. 6. A instance of SQL Query and its equivalent Pig Latin
program. [24].

TABLE 3
The Comparison of Different Programming Language Systems

System Language Type Data Model UDF Access Interface MetaStore

SparkR Dataflow, SQL-like Nested Supported Command line, web, JDBC/ODBC server Supported
PySpark Dataflow, SQL-like Nested Supported Command line, web, JDBC/ODBC server Supported
Shark SQL-like Nested Supported Command line Supported
SparkSQL SQL-like Nested Supported Command line, web, JDBC/ODBC server Supported
Hive SQL-like Nested Supported Command line, web, JDBC/ODBC server Supported
Pig Dataflow Nested Supported Command line Not supported
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1316 performance improvement and various functionality sup-
1317 port for MLlib.
1318 MLlib hasmany advantages, including simplicity, scalabil-
1319 ity, streamlined end-to-end and compatibility with Spark’s
1320 other modules. It has been widely used in many real applica-
1321 tions likemarketing, advertising and fraud detection.
1322 2). KeystoneML. KeystoneML [143] is a framework for ML
1323 pipelines, from the UC Berkeley AMPLab aimed to simplify
1324 the architecture of machine learning pipelines with Apache
1325 Spark. It enables high-throughput training in a distributed
1326 environment with a high-level API [58] for the end-to-end
1327 large-scale machine learning applications. KeystoneML has
1328 several core features. First, users can specify machine learn-
1329 ing pipelines in a system with high-level logical operators.
1330 Second, as the amount of data and the complexity of the
1331 problem change, it expands dynamically. Finally, it auto-
1332 matically improves these applications by a library of opera-
1333 tors and users resources. KeystoneML is open source and
1334 being applied in scientific applications about solar phys-
1335 ics [104] and genomics [31].
1336 3). Thunder. Thunder [55] is an open-source library devel-
1337 oped by Freeman Lab [32] for large-scale neural data analy-
1338 sis with Spark. It is desiged by PySpark APIs for robust
1339 numerical and scientific computing libraries (e.g., NumPy
1340 and SciPy), and offers the simplest front end for new users.
1341 Thunder provides a set of data structures and uses to load
1342 and storing data with a amount of input formats and classes
1343 for processing distributed data of spatial and temporal, and
1344 modular functions such as time series analysis, image proc-
1345 essing, factorization and model fitting [92]. It can be used in
1346 many fileds involving medical imaging, neuroscience, video
1347 processing, and geospatial and climate analysis.
1348 4). ADAM. ADAM [56] is a library and parallel frame-
1349 work that enables to work with both aligned and unaligned
1350 genomic data using Apache Spark across cluster/cloud
1351 computing environments. ADAM provides competitive
1352 performance to optimized multi-threaded tools on a single
1353 node, while enabling scale out to clusters with more than a
1354 thousand cores. ADAM is built as a modular stack where it
1355 supports a wide range of data formats and optimizes query
1356 patterns without changing data structures, which is differ-
1357 ent from traditional genomics tools that are not flexible and
1358 only targeted at a certain kind of applications or func-
1359 tions [61]. There are seven layers of the stack model from
1360 bottom to top: Physical Storage, Data Distribution, Material-
1361 ized Data, Data Schema, Evidence Access, Presentation,
1362 Application [127]. A “narrow waisted” layering model is
1363 developed for building similar scientific analysis systems to
1364 enforce data independence. This stack model separates
1365 computational patterns from the data model, and the data
1366 model from the serialized representation of the data on
1367 disk. They exploit smaller and less expensive machines,
1368 resulting in a 63 percent cost improvement and a 28�
1369 improvement in read preprocessing pipeline latency [135].

1370 8.1.2 Machine Learning System

1371 In the current era of Artificial Intelligence (AI), there is a
1372 trend that data and AI should be unified together given that
1373 a large amount of constantly updated training data are often
1374 required to build state-of-the-art models for AI applications.

1375Spark is the only unified analytics system that integrates
1376large-scale data processing with sate-of-the-art machine
1377learning and AI algorithms so far [62].
13781). MLBase. The complexity of existing machine learning
1379algorithms is so overwhelming that users often do not
1380understand the trade off and difficults of parameterizing
1381and picking up between different learning algorithms for
1382achieving good performance. Moreover, existing distrib-
1383uted systems that support machine learning often require
1384ML researchers to have a strong background in distributed
1385systems and low-level primitives. All of these limits the
1386wide use of machine learning technique for large scale data
1387sets seriously. MLBase [109], [145] is then proposed to
1388address it as a platform.
13892). Sparkling Water. H2O [33] is a fast, scalable, open-
1390source, commercial machine learning system produced by
1391H2O.ai Inc. [34] with the implementation of many common
1392machine learning algorithms including generalized linear
1393modeling (e.g., linear regression, logistic regression), Naive
1394Bayes, principal components analysis and k-means cluster-
1395ing, as well as advanced machine learning algorithms like
1396deep learning, distributed random forest and gradient
1397boosting. It provides familiar programming interfaces like
1398R, Python and Scala, and a graphical-user interface for the
1399ease of use. To utilize the capabilities of Spark, Sparkling
1400Water [52] integrates H2O’s machine learning engine with
1401Spark transparently. It enables launching H2O on top of
1402Spark and using H2O algorithms and H2O Flow UI inside
1403the Spark cluster, providing an ideal machine learning plat-
1404form for application developers.
1405Sparking Water is designed as a regular Spark applica-
1406tion and launched inside a Spark executor spawned after
1407submitting the application. It offers a method to initialize
1408H2O services on each node of the Spark cluster. It enables
1409data sharing between Spark and H2O with the support of
1410transformation between different types of Spark RDDs and
1411H2O’s H2OFrame, and vice versa.
14123). Splash. It is efficient to address machine learning and
1413optimization problems with Stochastic algorithms. Splash
1414[165] is a framework for speeding up stochastic algorithms,
1415which are efficient approaches to address machine learning
1416and optimization problems, on distributed computing sys-
1417tems. Itmakes up of a programming interface and an execution
1418engine. Users can develop sequential stochastic algorithms
1419with programming interface and then the algorithm is auto-
1420matically parallelized by a communication-efficient execution
1421engine. It can call Splash framwork to construct parallel algo-
1422rithms by execution engine of Splash in a distributed manner.
1423With distributed versions of averaging and reweighting
1424approach, Splash can parallelize the algorithm by converting a
1425distributed processing task into a sequential processing task.
1426Reweighting scheme ensures the total load handled by indi-
1427vidual thread is same as the number of samples in full
1428sequence. It indicates a single thread to produce a complete
1429update of completely unbiased estimates. Splash automatically
1430discerns the optimal parallelism for this algorithmby using the
1431approach. The experiments show that Splash outperforms the
1432prior art algorithms of single-thread stochastic and batch by an
1433order ofmagnitude.
14344). Velox. BDAS(Berkeley Data Analytics Stack) contained
1435a data storage manager, a dataflow execution engine, a
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1436 stream processor, a sampling engine, and a set of advanced
1437 analytics packages. But BDAS has insufficiencies in the way
1438 to offer users actually data, and industrial users of the stack
1439 have come up with their solutions to model services and
1440 management. Velox [84] fills the gap which is a system for
1441 executing model services and model maintenance in pro-
1442 portion. It offers a low-latency, intuitive model interface for
1443 applications and services. Moreover, it transforms the origi-
1444 nal statistical model which is currently trained by offline
1445 computing frameworks into a complete end-to-end data rec-
1446 ommending products such as target advertisements and
1447 web content. Velox consists of two key element of construc-
1448 tion: Velox model predictor and manager. Velox model
1449 manager orchestrates the computation and maintenance of
1450 a set of pre-declared machine learning models, incorporat-
1451 ing feedback, evaluating the capability of models and
1452 retraining models if necessary.
1453 Deep Learning. As a class of machine learning algorithms,
1454 Deep learning has become very popular and been widely
1455 used in many fields like computer version, speech recogni-
1456 tion, natural language processing and bioinformatics due to
1457 its many benefits: accuracy, efficiency and flexibility. There
1458 are a number of deep learning frameworks implemented on
1459 top of Spark, such as CaffeOnSpark [25], DeepLear-
1460 ning4j [37], and SparkNet [131].
1461 5). CaffeOnSpark. In many existing distributed deep
1462 learning, the model training and model usage are often
1463 separated, as the computing model shown in Fig. 7a. There
1464 is a big data processing cluster (e.g., Hadoop/Spark clus-
1465 ter) for application computation and a separated deep
1466 learning cluster for model training. To integrate the model
1467 training and model usage as a united system, it requires a
1468 large amount of data and model transferred between two
1469 separated clusters by creating multiple programs for a typ-
1470 ical machine learning pipeline, which increases the latency
1471 and system complexity for end-to-end learning. In contrast,
1472 an alternative computing model, as illustrated in Fig. 7b, is
1473 to conduct the deep learning and data processing in the
1474 same cluster.
1475 Caffe [103] is a popular deep learning framework, which
1476 is developed in C++ with CUDA by Berkeley Vision and
1477 Learning Center (BVLC). According to the model of Fig. 7b,

1478Yahoo extends Caffe to Spark framework by developing
1479CaffeOnSpark [25], [26], which supports distributed deep
1480learning on a cluster consisting of GPU and CPU machines.
1481CaffeOnSpark is a Spark package for deep learning, as a
1482complementary to non-deep learning libraries MLlib and
1483Spark SQL.
1484The architecture of CaffeOnSpark is shown in Fig. 8. It
1485can launch Caffe engines within the Spark executor on GPU
1486or CPU devices by invoking a JNI layer with fine-grain
1487memory management. Moreover, to achieve similar perfor-
1488mance as dedicated deep learning clusters, CaffeOnSpark
1489takes Spark+MPI architecture, which leverages MPI allre-
1490duce style interface for the network communication across
1491CaffeOnSpark executors by TCP/Ethernet or RDMA/
1492Infiniband.
14936). Deeplearning4j/dl4j-spark-ml. Deeplearning4j [37] is the
1494first commercial grade but open source, distributed deep
1495learning library designed for Java and Scala, and a comput-
1496ing framework with the support and implementation of
1497many deep learning algorithms, including restricted Boltz-
1498mann machine, deep belief net, deep autoencoder, stacked
1499denoising autoencoder and recursive neural tensor net-
1500work, word2vec, doc2vec and GloVe. It integrates with
1501Spark via a Spark package called dl4j-spark-ml [47], which
1502provides a set of Spark components including DataFrame
1503Readers for MNIST, Labeled Faces in the Wild (LFW) and
1504IRIS, and pipeline components for NeuralNetworkClassifi-
1505cation and NeuralNetworkReconstruction. It supports het-
1506erogeneous architecture by using Spark CPU to drive GPU
1507coprocessors in a distributed context.
15087). SparkNet. SparkNet [29], [131] is an open-source, dis-
1509tributed system for training deep network in Spark released
1510by the AMPLab at U.C. Berkley in Nov 2015. It is based on
1511Spark and Caffe, where Spark works for distributed data
1512processing and Caffe framework is responsible for the core
1513learning process. SparkNet can read data from Spark RDDs
1514through interfaces which is compatible to Caffe. It achieves
1515a good scalability and tolerance of high-latency communica-
1516tion by utilizing a simple palatalization scheme for stochas-
1517tic gradient descent. It also allows Spark users to construct
1518deep networks using existing deep learning libraries or sys-
1519tems, such as TensorFlow [64] or Torch as a backend,
1520instead of building a new deep learning library in Java or
1521Scala. Such a new integrated model of combining existing

Fig. 7. Distributed deep learning computing model. [26].

Fig. 8. CaffeOnSpark Architecture. [26].
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1522 model training frameworks with existing batch frameworks
1523 is beneficial in practice. For example, machine learning
1524 often involves a set of pipeline tasks such as data retrieving,
1525 cleaning and processing before model training as well as
1526 model deployment and model prediction after training. All
1527 of these can be well handled with the existing data-process-
1528 ing pipelines in today’s distributed computational environ-
1529 ments such as Spark. Moreover, the integrated model of
1530 SparkNet can inherit the in-memory computation from
1531 Spark that data can be cached in memory to complete for
1532 fast computation, instead of writing to disk between opera-
1533 tions as a segmented approach does. It also allows machin-
1534 ing learning algorithm easily to pipeline with Spark’s other
1535 components such as Spark SQL and GraphX.
1536 Moreover, there are some other Spark-based deep learn-
1537 ing libraries and frameworks, including OpenDL [18],
1538 DeepDist [15], dllib [57], MMLSpark [60], and DeepSpark
1539 [106]. OpenDL [18] is a deep learning training library based
1540 on Spark by applying the similar idea used by DistBelief
1541 [86]. It executes the distributed training by splitting the
1542 training data into different data shards and synchronizes
1543 the replicate model using a centralized parameter server.
1544 DeepDist [15] accelerates model training by offering asyn-
1545 chronous stochastic gradient descent for data saved on
1546 HDFS. Dllib [57] is a distributed deep learning framework
1547 based on Apache Spark. It offers a simple interface for users
1548 to write and run deep learning algorithms on spark. For
1549 MMLSpark [60], it provides users with a set of deep learn-
1550 ing tools for Spark, For example, it enables seamless integra-
1551 tion of Spark Machine Learning pipelines with Microsoft
1552 Cognitive Toolkit (CNTK) and OpenCV as well as the crea-
1553 tion of powerful, highly-scalable predictive and analytical
1554 models for large image and text datasets quickly. Deep-
1555 Spark [106] is an alternative deep learning framework simi-
1556 lar to SparkNet. It integrates three components including
1557 Spark, asynchronous parameter updates, and GPU-based
1558 Caffe seamlessly for enhanced large-scale data processing
1559 pipeline and accelerated DNN training.

1560 8.2 Spark Applications

1561 As an efficient data processing system, Spark has been
1562 widely used in many application domains, including Geno-
1563 mics, Medicine&Healthcare, Finance, and Astronomy, etc.

1564 8.2.1 Genomics

1565 Due to its computational efficiency and good adaptive capa-
1566 bility for simple and complex phenotypes, the effective scor-
1567 ing statistical method is widely applied for the inference of
1568 high-throughput genomic data. To solve the problem of
1569 resulting calculation for resampling based inference, it is
1570 need a scalable distributed computing approach. Cloud
1571 computing platforms are appropriate, because they allow
1572 users to analyze data at a modest cost without access to
1573 mainframe computer infrastructure. SparkScore [71] is a
1574 series of distributed computing algorithms executed in
1575 Spark. It uses the awkward parallel nature of genomic
1576 resampling inference based on effective score statistics. This
1577 calculation takes advantage of Spark’s fault-tolerant fea-
1578 tures and can be easily expanded to analyze DNA and RNA
1579 sequencing data such as expression of quantitative feature

1580loci (eQTL) and phenotypic association studies. Experi-
1581ments with synthetic datasets show the efficiency and scal-
1582ability of SparkScore, including large-capacity resampling
1583of Big Data, under Amazon Elastic MapReduce (EMR) clus-
1584ter. To study the utility of Spark in the genomic context,
1585SparkSeq [155] was proposed, which executes in-memory
1586computings on the Cloud via Apache Spark. It is a versatile
1587tool for RNA and DNA sequencing analysis for processing
1588in the cloud. Several operations on generic alignment for-
1589mat (e.g., Binary Alignment/Map (BAM) format and
1590Sequence Alignment/Map (SAM) format [117]) are pro-
1591vided, including filtering of reads, summarizing genomic
1592characteristics and basic statistical analyses operations.
1593Moreover, SparkSeq makes it possible to customize second-
1594ary analyses and iterate the algorithms of machine learning.
1595Spark-DNAligning [68] is an acceleration system for DNA
1596short reads alignment problem by exploiting Spark’s perfor-
1597mance optimizations, including caching, broadcast variable,
1598join after partitioning, and in-memory computations.
1599SPARK-MSNA [152] is a multiple sequence alignment
1600(MSA) system for massive number of large sequences,
1601which is promised to achieve a better alignment accuracy
1602and comparable execution time than state-of-the-art algo-
1603rithms (e.g., HAlign II).

16048.2.2 Medicine & Healthcare

1605In a modern society with great pressure, more and more
1606people trapped in health issues. In order to reduce the cost
1607of medical treatments, many organizations were devoted
1608to adopting big data analytics into practice so as to avoid
1609cost. Large amount of healthcare data is produced in
1610healthcare industry but the utilization of those data is low
1611without processing this data interactively in real-time [69].
1612Now it is possible to process real time healthcare data with
1613Spark given that Spark supports automated analytics by
1614iterative processing on large data set. But in some circum-
1615stances the quality of data is poor, which brings a big prob-
1616lem. To generate an accurate data mart, a spark-based data
1617processing and probability record linkage method is pro-
1618posed [72]. This approach is specifically designed to sup-
1619port data quality assessment and database connectivity by
1620the Brazilan Ministry of Health and the Ministry of Social
1621Development and Hunger Reduction. Moreover, to study
1622the sensitivity of drug, Hussain et al. [99] make a predic-
1623tion analysis of the drug targets in the base of cancer cell
1624line using various machine learning algorithms such as
1625support vector machine, logistic regression, random forest
1626from MLlib of Spark.

16278.2.3 Finance

1628Big data analytic technique is an effective way to provide
1629good financial services for users in financial domain. For
1630stock market, to have an accurate prediction and decision
1631on the market trend, there are many factors such as politics
1632and social events needed to be considered. Mohamed et al.
1633[142] propose a real-time prediction model of stock market
1634trends by analyzing big data of news, tweets, and historical
1635price with Apache Spark. The model supports the offline
1636mode that works on historical data, and real-time mode
1637that works on real-time data during the stock market
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1638 session. Li et al. [45] builds a quantitative investing tool
1639 based on Spark that can be used for macro timing and porti-
1640 folio rebalancing in the market.
1641 To protect user’s account during the digital payment and
1642 online transactions, fraud detection is a very important issue
1643 in financial service. Rajeshwari et al. [148] study the credit
1644 card fraud detection. It takes Spark streaming data process-
1645 ing to provide real-time fraud detection based on Hidden
1646 Markov Model (HMM) during the credit card transaction
1647 by analyzing its log data and new generated data. Carcillo
1648 et al. [77] propose a realistic and scalable fraud detection
1649 system called Real-time Fraud Finder (SCARFF). It uses a
1650 machine learning approach to integrate Big Data softwares
1651 including Kafka, Spark and Cassandra by dealing with class
1652 imbalance, nonstationarity and verification latency.
1653 Moreover, there are some other financial applications
1654 such as financial risk analysis [7], financial trading [90].

1655 8.2.4 Astronomy

1656 Considering the technological advancement of telescopes
1657 and the number of ongoing sky survey projects, it is safe to
1658 say that astronomical research is moving into the Big Data
1659 era. Sky surveys provide a huge data set that can be used
1660 simultaneously for various scientific researches. Kira [166],
1661 a flexible distributed astronomy image processing toolkit
1662 based on Spark, is proposed to execute a Source Extractor
1663 application and the extraction accuracy can be improved.
1664 To support the task of querying and analyzing arbitrarily
1665 large astronomical catalogs, AXS [162] is proposed. It first
1666 enables efficient online positional cross-matching in Spark.
1667 Second, it provide a Python library for commonly-used
1668 operations on astronomical data. Third, it implements
1669 ZONES algorithm for scalable cross-matching. Moreover,
1670 there are some other work on Astronomy such as spatial
1671 data analysis [154], [158].

1672 9 CHALLENGES AND OPEN ISSUES

1673 In this section, we discuss research issues and opportunities
1674 for Spark ecosystem.
1675 Memory Resource Management. As an in-memory process-
1676 ing platform built with Scala, Spark’s performance is sensi-
1677 tive to its memory configuration and usage of JVMs. The
1678 memory resource is divided into two parts. One is for RDD
1679 caching. The other is used for tasks’ working memory to
1680 store objects created during the task execution. The proper
1681 configuration of such memory allocation is non-trivial for
1682 performance improvement. Moreover, the overhead of JVM
1683 garbage collection can be a challenge when there are a
1684 amount of “churn” for cached RDDs, or due to serious inter-
1685 ference between the cached RDDs and tasks’ working mem-
1686 ory. For this, Maas et al. [122] have a detailed study for GC’s
1687 impact on Spark in distributed environment. The proper
1688 tuning of GC thus plays an important role in performance
1689 optimization. Currently, it is still at early stage and there are
1690 not good solutions for Spark. It opens an important issue on
1691 the memory resource management and GC tuning for
1692 Spark. Regarding this, recently, Spark community starts a
1693 new project for Spark called Tungsten [4] that places Spark’s
1694 memory management as its first concern.

1695New Emerging Processor Support. In addition to GPU and
1696FPGA, the recent advancement on computing hardware
1697make some new processors emerged, such as APU [75] and
1698TPU [105], etc. These can bring new opportunities to
1699enhance the performance of Spark system. For example,
1700APU is a coupled CPU-GPU device that incorporates the
1701CPU and the GPU into a single chip so that the CPU and the
1702GPU can communicate with each other by the shared physi-
1703cal memory via featuring shared memory space between
1704them [75]. It can improve the performance of existing dis-
1705crete CPU-GPU architecture where CPU and GPU commu-
1706nicate via PCI-e bus. TPU is a domain-specific processor for
1707deep neural network. It can give us a chance to speedup
1708Spark for deep learning applications by migrating Spark to
1709TPU platform.
1710Heterogenous Accelerators Support. Besides emerging pro-
1711cessors, it could be possible in practice that a Spark comput-
1712ing system consists of a number of diverse processors such
1713as CPU, GPU, FPGA and MIC as illustrated in Spark ecosys-
1714tem of Fig. 1. Rather than supporting a single processor
1715only, it is crucial to have a upgraded Spark that can utilize
1716all of the computing devices simultaneously for maximum
1717performance. Due to the fact that different accelerators are
1718based on different programming models (e.g., CUDA for
1719GPU, OpenCL for FPGA), it open us a new challenge on
1720how to support such different types of accelerators for
1721Spark at the same time.
1722RDDOperation and Sharing. There are several open issues
1723for current Spark’s RDD. First, it allows only coarse-
1724grained operations (i.e., one operation for all data) on
1725RDDs, whereas the fine-grained operations (e.g., partial
1726read) are supported. One work is to design some fine-
1727grained operations on partial data of RDD. Second, current
1728RDDs are immutable. Instead of modifying on existing
1729RDD, any update operation would generate new RDD,
1730some data of which can be redundant and thus results in a
1731wast of storage resource. Third, for a RDD, its data parti-
1732tions can be skewed, i.e., there are many small partitions
1733coupled with a few number of large-size partitions. More-
1734over, a Spark task computation generally involves a series
1735of pipelined RDDs. Thus, the skewed RDD partitions can
1736easily incur the chained unbalanced problem for tasks,
1737which causes some workers much busier than others.
1738Fourth, Spark itself does not support RDD sharing across
1739applications. For some applications that have the same
1740input data or redundant task computation, enabling RDD
1741sharing can be an approach to improve the performance of
1742the whole applications.
1743Failure Recovery. In contrast to MapReduce that provides
1744fault tolerance through replication or checkpoint, Spark
1745achieves failure recovery via lineage re-computation, which is
1746much more cost efficient since it saves costs caused by data
1747replication between network and disk storage. The lineage
1748information (e.g., input data, computing function) for each
1749RDD partition is recorded. Any lost data of RDDs can be
1750recovered through re-computation based on its lineage infor-
1751mation. However, there is a key assumption that all RDD line-
1752age information is kept and always available, and the driver
1753does not fail. It means that Spark is not 100 percent fault toler-
1754ance without overcoming this assumption. It thus remains us
1755an open issue on how to enhance fault tolerance for Spark.
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1756 5G Network. The upcoming of 5G is supposed to signifi-
1757 cantly improve the bandwidth and reduce the latency of
1758 communication network, bringing new opportunities for
1759 many research area and applications including Internet of
1760 Things (IoT), autonomous driving, augmented and virtual
1761 reality (AR/VR) services [89]. The high speed of 5G enables
1762 the application data from mobile devices to be transfered to
1763 remote servers directly for (realtime) computation. It
1764 implies that there can be more opportunities for Spark to
1765 handle streaming computation applications. In this situa-
1766 tion, one open issue is about the security enhancement of
1767 5G data during the Spark computation given the existing
1768 poor security mechanism of Spark. Another opportunity
1769 driven by 5G can be that we can establish a mobile Spark
1770 cluster for data computation using mobile devices such as
1771 smart phones and smart tablets under the 5G network. In
1772 this case, one open issue can be that the communication net-
1773 work would be no longer a bottleneck. Instead, the electric-
1774 ity power of mobile devices can then be the major concern.

1775 10 CONCLUSION

1776 Spark has gained significant interests and contributions
1777 both from industry and academia because of its simplicity,
1778 generality, fault tolerance, and high performance. However,
1779 there is a lack of work to summarize and classify them com-
1780 prehensively. In view of this, it motives us to investigate the
1781 related work on Spark. We first overview the Spark frame-
1782 work, and present the pros and cons of Spark. We then pro-
1783 vide a comprehensive review of the current status of Spark
1784 studies and related work in the literature that aim at
1785 improving and enhancing the Spark framework, and give
1786 the open issues and challenges regarding the current Spark
1787 finally. In summary, we hopefully expect to see that this
1788 work can be a useful resource for users who are interested
1789 in Spark and want to have further study on Spark.
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