
International Journal of Parallel Programming (2019) 47:388–402
https://doi.org/10.1007/s10766-018-0617-3

ASW: Accelerating Smith–Waterman Algorithm on Coupled
CPU–GPU Architecture

Huihui Zou1 · Shanjiang Tang1 · Ce Yu1 · Hao Fu1 · Yusen Li2 ·Wenjie Tang3

Received: 24 September 2018 / Accepted: 16 November 2018 / Published online: 1 December 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
Smith–Waterman algorithm (SW) is a popular dynamic programming algorithm
widely used in bioinformatics for local biological sequence alignment. Due to the
O(n2) high time and space complexity of SW and growing size of biological data, it is
crucial to accelerate SW for high performance. In view of the GPU high efficiency in
science computation, many existing studies (e.g., CUDAlign, CUDASW++) speedup
SWwithGPU.However, the strong data dependencymakes SWcommunication inten-
sive, and the previous works fail to fully leverage the heterogeneous capabilities of
the GPU machine for either the neglect of the CPU ability or the low bandwidth of
PCI-e. In this paper, we propose ASW, which aims at accelerating SW algorithm with
accelerated processing unit (APU), a heterogeneous processor integrates CPU and
GPU in a single die and share the same memory. This coupled CPU–GPU architecture
is more suitable for frequent data exchanging due to the elimination of PCI-e bus. For
the full utilization of both CPU and GPU in APU system, ASW partitions the whole
SW matrix into blocks and dynamically dispatches each block to CPU and GPU for
the concurrent execution. A DAG-based dynamic scheduling method is presented to
dispatch the workload automatically. Moreover, we also design a time cost model
to determine the partition granularity in the matrix division phase. We have evalu-
ated ASW on AMD A12 platform and our results show that ASW achieves a good
performance of 7.2 GCUPS (gigacells update per second).

Keywords Smith–Waterman algorithm · Heterogeneous processors · APU · Load
balancing

B Shanjiang Tang
tashj@tju.edu.cn

B Ce Yu
yuce@tju.edu.cn

B Wenjie Tang
tangwenjie@nudt.edu.cn

Extended author information available on the last page of the article

123



International Journal of Parallel Programming (2019) 47:388–402 389

1 Introduction

Sequence alignment is a fundamental operation in bioinformatics, which can be used
to compute a similarity score between two DNA or RNA sequences. However, as
new bioinformatics techniques have been developed in the past decades, the size of
biological databases has increased at an unprecedented rate, and it is hard to align
those large size sequences in an acceptable time.

One approach is to globally compare two sequences using a dynamic programming
method called Needleman–Wunsch (NW) algorithm [10], in which all the residues
are compared to get a general similarity. A similarity matrix with the size of m · n is
calculated, where m and n are the length of the two sequences. Based on NW, authors
in [14] proposed the Smith–Waterman (SW) algorithm for local sequence alignment,
which searches the most similar region between the two sequences. However, the
computation complexity and the space complexity of theSWalgorithmare bothO(n2),
which makes it impractical to handle large-size sequences. In order to reduce the
execution time, two heuristic algorithms, FASTA [7] and BLAST [1] were proposed.
However, they do not guarantee that the finding region is the optimal alignment.

To improve the performance of SW, lots of efforts have been made on accelerat-
ing SW algorithms on various accelerator processors. Rucci [11,12] accelerates SW
algorithm using Intel/Alteras FPGA for long DNA sequences. SWAPHI-LS [8] adopts
Xeon-Phi to speedup the computation. CUDAlign [3,4] presents a GPU-accelerated
SW implementation, which supports single or multiple GPUs. However, in these
works, CPUs are only used to transfer data and launch GPU workloads, and are idle
during the computation. Co-running computation [16], has been proved to be an effi-
cient method to address this problem by partitioning workloads and executing them
on both CPUs and accelerators concurrently.

The emergency of Accelerated Processing Unit (APU) [2,13] brings new oppor-
tunities for SW algorithm acceleration. APU is coupled CPU–GPU architecture that
combines CPU and GPU on a single chip. Compared to discrete CPU–GPU archi-
tectures, APU removes the PCI-e bus and instead unifies the memory address space
between CPU and GPU, which can help accelerate the communication between them.
It is aimed at achieving scalable and power-efficient high performance computing.
APU is quite beneficial for communication-intensive applications and co-running
computation systems that use both CPU and GPU for concurrent execution. SW is a
communication-intensive algorithm based on dynamic programming that has a strong
dependency for intermediate data during the computation [17]. It implies that it is
suitable and efficient to run SW on APU system for high performance.

To implement SW algorithm on APUs, there are three challenges needed to be
addressed. (1) Workload partition [20] To do the computation concurrently and effi-
ciently, the score matrix is normally divided into blocks. A large block size can bring
high utilization of CPU or GPU and reduce the communication. However, it will affect
the cooperation between CPU and GPU, and decrease the overall utilization. In con-
trast, a small size will lead to opposite effects. (2) Load balancing Given the coupled
CPU–GPUarchitecture, the performance canonly bemaximizedby enabling thework-
load computation on both CPU and GPU simultaneously. However, it is difficult to
achieve load balancing between CPU and GPU because of various factors, such as the

123



390 International Journal of Parallel Programming (2019) 47:388–402

difference in computing ability, the intrinsically strong data dependency of dynamic
programming and the additional overhead of CPU for controlling and scheduling.
(3) Memory optimization Due to the special memory model in APU, memory access
pattern should be carefully designed to reduce the latency.

In this paper, we propose ASW, an efficient method that accelerates SW algorithm
forAPUs.To the best of our knowledge, this is thefirst design for acceleratingSWalgo-
rithm on this platform based on co-running computation approach. (1) To address the
workload partition and load balance, we propose a time cost model to obtain a suitable
partition size; (2) we also design a dynamic scheduling method based on the directed
acyclic graph (DAG) to dispatch workloads based on the difference between CPU and
GPU; (3) in addition, we exploit the on chip shared memory of GPU, called local data
store (LDS), to reduce thememory access latency ofGPUcores.We have implemented
ASW on an AMDA12 APU, and the experimental results show that ASW can achieve
a performance of 7.2GCUPS. By utilizing cost based block partition approach, it helps
improve ASW’s performance by 2.3x over that of the default in experience.

2 RelatedWork

2.1 SW Acceleration

There are a lot of studies (e.g., [3,4,8,9,11,12]) on accelerating SW on heterogeneous
computing platforms (e.g., FPGA, Intel Xeon Phi, GPU). Enzo Rucci et al. [11,12] uti-
lizeFPGA to speedupSWalgorithmwithOpenCL, inwhich the scorematrix is divided
into vertical blocks and each block is executed row by row. Compared to SW acceler-
ation on GPUs, this work can achieve a good power efficiency. SWAPHI-LS [8] aligns
long sequences on Xeon Phi co-processor. It has explored the instruction-level paral-
lelism within 512-bit SIMD instructions and thread-level parallelism over the many
cores within a single Xeon Phi. It also achieves good performance onXeon Phi clusters
using MPI. CUDAlign [3,4] is a GPU-based SW implementation for comparing two
sequences by exploiting CUDA and NVIDIA GPUs. In this work, a big score matrix
is split into blocks and a wavefront-based method is used to execute each block. Addi-
tionally, a block pruning strategy is proposed to further reduce the number of blocks
to be calculated. In the latest version, CUDAlign is implemented with supporting
multiple GPUs. Yongchao Liu et al. [9] proposed a protein database search algorithm
which carries out concurrent CPU and discrete GPU computation. A static workload
distributing method in their work according to the computing power of CPU and GPU,
which is inflexible and cannot achieve a good load balance between these two kinds
of devices. However, these work cannot be directly applied to a coupled CPU–GPU
architecture and the efficiency of co-running computation in these work is restrained
by the high latency of PCI-e bus and the synchronization between CPU and GPU.

2.2 APU Computation

Many works have been done on performance optimization on APU platforms. He
et al. [5] proposed a hash-join algorithm for APU platforms. In order to maximize

123



International Journal of Parallel Programming (2019) 47:388–402 391

the device efficiency and reduce memory stalls, they presented a cost model to esti-
mate the execution time of different algorithmmodules. Moreover, they also proposed
an in-cache query co-processing paradigm [6] to optimize main memory On-Line
Analytical Processing (OLAP) database queries. Zhang et al. [18] given APU-based
implementations of algorithms in the Rodinia benchmark, which can be categoried
into three types, CPU-only, GPU-only and co-running friendly algorithms. DIDO [19]
is an in-memory key-value store system on APUs by split the system workflow into
fine-grained tasks and pipeline them on both CPU and GPU. To balance workloads
between these two parts, several optimization methods, including dynamic pipeline
partitioning, flexible index operation assignment and work stealing, have been inte-
grated into it. Nevertheless, the aforementioned works mainly focus on optimizing
algorithms in database systems, which have a distinct abstract with the SW algorithm.

3 Background

3.1 Smith–Waterman Algorithm

Let S and T denote the sequences to get aligned. Let m and n denote the lengths
of S and T , respectively. Denote by Hi, j the maximal alignment score of S0 . . . Si
and T0 . . . Tj . Denote by E , F the matrices to record the horizontal and vertical gap
extending penalty. The first row and column of the score matrix are initialized to 0.
Let c(Si , Tj ) denote the score of Si aligned to Tj . The SW algorithm is described as
below.

Ei, j = max

{
Ei, j−1 − Gext ,

Hi, j−1 − G f irst
(1)

Fi, j = max

{
Fi−1, j − Gext ,

Hi−1, j − G f irst
(2)

Hi, j = max

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0,

Ei, j ,

Fi, j ,

Hi−1, j−1 − c(Si , Tj )

(3)

3.2 Coupled CPU–GPU Architecture

Figure 1 shows two kinds of heterogeneous CPU–GPU architecture, discrete CPU–
GPU architecture and coupled CPU–GPU architecture. In Fig. 1a, CPU and GPU are
designed with a separated memory space and CPU is responsible for exchanging data
with GPU through PCI-e bus. Programmers are required to handle the communication
between CPU and GPU carefully to obtain a better performance. In addition, duplicate
data may be kept both in the host and GPU memory. In Fig. 1b, CPU and GPU are
integrated on the same die and share the same memory space. These features make
the data exchange between CPU and GPU more efficient. Also, GPU can share the

123



392 International Journal of Parallel Programming (2019) 47:388–402

CPU

Main Memory

GPU

Device Memory

PCI-e

(a) (b)

CPU

Main Memory

GPU

Fig. 1 An overview of hetergenerous CPU–GPU architecture. a Discrete CPU–GPU architecture and b
coupled CPU–GPU architecture

big memory with CPU. It is better for co-running computation. Numerous products
have been produced in recent years, such as AMD APU [2,13].

3.3 OpenCL

In AMD OpenCL [15] programming, threads are grouped into workgroups, each of
which executes entirely on a compute unit (CU). Within a workgroup, threads run in
groups of 64 consecutive threads calledwavefronts. Threadswithin awavefront always
execute the same instruction at the same time. If threads in a wavefront need to run dif-
ferent instructions, the instruction executions are serialized. The situation mentioned
above is called divergence, which should be avoided to achieve high performance.
Each compute unit has 32KB of LDS, which is shared among all active work-groups.
LDS is allocated on a per-work-group granularity, which allows multiple wavefronts
to share the same local memory allocation. However, large LDS allocations eventually
reduce the number of workgroups that can be active.

4 Implementation

In this section, we first present the data partition method adopted in the ASW, and then
show the scheduling algorithm for workload distribution and load balance. Addition-
ally, we also give an introduction to the memory optimization strategy.

4.1 Data Partition

In order to calculate the score matrix concurrently and efficiently, we need to partition
this matrix into blocks and then process these blocks with both CPU and GPU. Con-
sidering the limited size of APU’s LDS and the difference in the computing capability
between CPU andGPU, it is crucial to determine a suitable block size. To some extent,
a large block size can help improve the utilization of GPU, but it may generate too

123



International Journal of Parallel Programming (2019) 47:388–402 393

Fig. 2 Block partition. The whole score matrix is split into a block matrix. Cells in blocks are executed as
wavefront method. Area where all the threads are busy named by Saturated Computing Area, corresponds
to the gray cells. The area where existing idle threads called Non-Saturated Computing Area

Table 1 Notations in the time cost model

Notation Description

m The width of the score matrix

n The length of the score matrix

w The width of a score block

l The length of a score block

o The overhead of maintaining the DAG graph and data communication

Tc The average time of computing one matrix cell

TB The time of computing a score block

c The concurrency degree

Ot The proportion of non-saturated period. Ot = w/(l + w − 1)

many intermediate results, which can not be maintained in the LDS, and further leads
to a memory performance degradation. On the contrary, a small block size may result
in a low utilization of GPU cores. An example of this partition phase is shown in Fig. 2.
A SW score matrix is split into a 4× 4 block matrix, and each block is assigned with
a id according to the Cartesian coordinate. These blocks can be categoried into three
computing areas: two non-saturated computing areas and a saturated computing area.
In the saturated domain, all processing units can be fully utilized.

To better understand how the block size affect the overall performance, we present
a theoretical analysis and notations adopted can be found in Table 1.

1. The execution time of computing a score block TB is:

TB = (w/Ot ) · Tc (4)

123



394 International Journal of Parallel Programming (2019) 47:388–402

2. Suppose that m is divisible by w and n is divisible by l, the total computing time
Tcomputing can be obtained by:

Tcomputing = m · n
w · l · TB (5)

3. And the total overhead Toverhead is defined as:

Toverhead = m · n
w · l · o (6)

4. Finally, we can calculate the total execution cost Tmatri x as:

Tmatri x = (Tcomputing + Toverhead) · c
= m · n · c

w · l · ((l + w − 1) · Tc + o) (7)

4.2 DAG-Based Dynamic SchedulingMethod

Given the data partition results, it is important to design and implement a schedul-
ing algorithm to balance workloads between CPU and GPU. Traditional scheduling
method is to dispatch and execute blocks on the same diagonal at the same time in
a wavefront manner, which is adopted in [3,18]. All the blocks in the same anti-
diagonal are assigned to the CPU or GPU for further processing, but not both of them.
To achieve the load balance and improve the resource utilization of APU platforms, a
new scheduling algorithm is proposed in this section (Fig. 3).

Block0

Block4 Block1

Block8 Block5 Block2

Block12 Block9 Block6 Block3

Block13 Block10 Block7

Block14 Block11

Block15

Block0

Block4 Block1

Block8 Block5 Block2

Block12 Block9
Block6 Block3

Block13 Block10
Block7

Block14 Block11

Block15

Time Line

Fig. 3 The benefit of DAG-based scheduling method. Blocks in Fig. 2 map into two methods, left is the
wavefront methods and right is the DAG method. It is clear that DAG-based scheduling method estimates
the synchronization

123



International Journal of Parallel Programming (2019) 47:388–402 395

Fig. 4 The entire procedure of
scheduling method

global task queue

Algorithm 1: Traditional DAG-based task generator
Procedure Task Generator(QueueC/QueueG, task Queue)
1: while !isEmpty(QueueC/QueueG) do
2: A = taskQueue. f ront()
3: taskQueue.pop()

4: if A = m · n
l · w − 1 then

5:
6: return f inished
7: end if
8: changeState(A)
9: changeNeigbourState(A)
10: end while
11: Traverse(DAG)
End Procedure

DAG-based dynamic schedulingmethod includes three parts, DAG-based task gen-
erator, Task Scheduler and CPU/GPU executor as illustrated in Fig. 4. CPU executor
and GPU executor are responsible for the executing on CPU and GPU. Initially, the
first block is pushed into task scheduler and then dispatched to CPU/GPU executor.
Once the tasks are finished, task scheduler will dispatch other tasks to them. If there
is no task in task scheduler, the DAG-based task generator will be notified to generate
new computing tasks until the last one is finished. To further improve the performance,
we have optimized the task generating method. The traditional DAG-based Task Gen-
erator method (Algorithm 1) needs to traverse the entire DAG to generate the tasks. It
may waste lots of time. Therefore, we propose an optimized task generating method
(Algorithm 2) according to SW algorithm to reduce the traverse time. Note that, the
block computation order is from left to right, from upper to bottom in a wavefront
manner. We follow this order in our method and there is no need to traverse all blocks.

123



396 International Journal of Parallel Programming (2019) 47:388–402

Algorithm 2: SW-specific DAG-based task generator
Procedure Task Generator(QueueC/QueueG, task Queue)
1: while !isEmpty(QueueC/QueueG) do
2: A = taskQueue. f ront()
3: taskQueue.pop()

4: if A = m × n

l × w
− 1 then

5: return f inished
6: else if A%n/l == 0 then
7: taskQueue.push(A + 1)
8: taskQueue.push(A + n/l)
9: else if (A + 1)%n/l == 0 then
10: break;
11: else
12: taskQueue.push(A + 1)
13: end if
14: end while
End Procedure

4.3 Memory Optimized Design

Two kinds of memory can be accessed by GPU in the APU, the host main memory and
local data store (LDS). LDS is much more faster but smaller than the host memory,
which can be treated as an user-controlled GPU cache. Taking the memory access
pattern of the SW algorithm into account, the computation of most cells will require
data from its upper, left and left-upper cells. It may result in a high latency if all
data needed for the computation of a score block on the GPU are stored in the main
memory.

First, we adopt a method to fit the computing inner a block into LDS. For conve-
nience, an anti-diagonal line is referred as a line. As showed in Fig. 5, the computation
of cells in the current line (CL) only depends on cells in the second preceding line(SPL)
and the preceding line (PL). It means that it is safe to free or reuse the memory space
of lines before the second preceding line.

Second, since the computation of a data block need the results from the upper,
left and left-upper blocks, it is expensive to maintain all of them. On the contrary, as

SPL PL CL SPL PL CL

Fig. 5 Solution of reducing memory cost in block execution. Only the SPL, PL, CL are kept in LDS

123



International Journal of Parallel Programming (2019) 47:388–402 397

Block0 Block1 Block2 Block3

Block4 Block5 Block6 Block7

Block12 Block13 Block14 Block15

Block8 Block9 Block10 Block11 LDS

T0 T1 T2 Tn

kernel

Main Memory
VDHD

LDS

T0 T1 T2 Tn

kernel

(a) (b)

Fig. 6 Solution of solving the dependency between blocks. Results in the right-most column and the bottom
row in finished blocks, which called VD and HD, will be flush into the main memory buffer. And they will
be accessed in the subsequent execution. Block execution is deployed in LDS. a Data transfer procedure
and b buffer deployment

showed in Fig. 6, only the bottom row and the rightmost column will be referred in the
computation of other data blocks, thus we only design and utilize two buffers to save
them. Figure 6a shows the data transfer procedure. Once a block is finished, results
in its rightmost column and bottom row which we called vertical dependency (VD)
and horizontal dependency (HD), will be flushed into the main memory to solve the
dependency. Blocks in subsequent execution will access the main memory to obtain
the results before execution. Figure 6b shows the deployment of data. It is better to
transfer data between blocks by using the main memory since the amount of data is
large. While, LDS is used for data sharing between threads.

5 Evaluation

5.1 Experimental Setup

Platform: All experiments are performed on an AMD A12-9800 APU. The GPU part
has eight computing units (CUs) running at 1GHz and each of them consists of four
lanes with 16 ALUs. Each CU has its own LDS (32KB) and L1 caches whereas a
L2 cache is shared among all the CUs. The CPU part has 4 cores running at 4.2GHz.
There is an 8GB main memory shared by the CPU and GPU. The thermal design
power is merely 65W. Device specification are described in Table 2.

Dataset: Real DNA sequences from the NCBI site (www.ncbi.nlm.nih.gov) are
used. As shown in Table 3, the sizes of the real sequences range from 10 KBP to 3
MBP. The best scores and their ending positions obtained from the comparison are
listed.

123



398 International Journal of Parallel Programming (2019) 47:388–402

Algorithm 3: Process Block
Procedure KERNEL(Bk )
1: (i, j) ← GetBlockCoordinate(Bk )
2: t x ← GetThreadCoordinate()
3: Dep ← LoadDepFromGtoL(i, j)
4: Seq ← LoadSeqFromGtoL(i, j)
5: Initialize(Levelll , Levell , Levelc, score)
6: for line = 0 → l + w − 1 do
7: i0 ← get_local_id(0)
8: j0 ← line − i
9: while j0 >= 0 and j0 <= line do
10: Levelc ← SW(Levelll , Levell , Dep, Seq, score, (i0, j0))
11: end while
12: Levelll ← Levell
13: Levell ← Levelc
14: end for
15: Barrier
16: UpdateDepFromLtoG(i, j)
17: return (score, Bk )
End Procedure

Table 2 Device specification GTX 750 A12

Stream processors 640 512

Core frequency 1.02 1.0

LDS (KB/CU) – 32

Performance (GFLOPS) 1306 930

Memory bandwidth (GB/S) 86.4 18

Table 3 Comparison of the real sequences

Cmp. Sequence 1 Sequence 2 Score Position

Accession Size Accession Size

10K AY352275.1 10K AF133821.1 10K 5027 (9418 , 9114)

50K NC 001715.1 57K AF494279.1 57K 51 (41,352 , 33,438)

160K NC_000898.1 162K NC_007605.1 172K 18 (41,058 , 44,353)

500K NC_003064.2 543K NC_000914.1 536K 48 (308,558 , 455,134)

1M CP000051.1 1044K AE002160.2 1073K 88,353 (1,072,950 , 722,725)

3M BA000035.2 3147K BX927147.1 3283K 4226 (2,991,493 , 2,689,488)

5.2 Effect of Partition Size

Wehave conducted a contrast experiment to show the difference between the estimated
execution time trend according to the cost model (Formula 7) and the real execution
time trend under different block sizes. The 160K sequence pair is used for testing.
Results are summarized in Fig. 7. The horizontal axis gives the block size and the
vertical axis shows the calculating time trend. The blue curve denotes the theoretical

123



International Journal of Parallel Programming (2019) 47:388–402 399

Fig. 7 Efficiency of data block partition. It shows the execution time trend between the real time trend and
theoretical trend under different Ot . The chosen Ot (40%) according to the cost model achieves 97% of
the best performance (Ot = 70%)

time according to the model. For simplicity, we do a normalization comparison with
the time cost when Ot is 10%. The overhead is taken into consideration. We can
clearly see that: First, the time cost is decreasing progressively within a certain range
and increasing suddenly at some block point. It is because the resource allocation
is dependent on the block size and has an influence on workgroup size in OpenCL
execution. For example, when Ot is in 85–90%, there is a sudden increase. Because
resource allocation reaches a bottleneck and the workgroup number on each core
decreases at that point; Secondly, the two curves are roughly the same. It verifies the
correctness of our simulation.

5.3 Load Balancing

This section comes to evaluate load balancing strategy by running ASW on CPU-
only, GPU-only and CPU–GPU. Table 4 shows the experimental results. Methods are
marked as APU, ASW_C and ASW_G, respectively. We can obtain that APU performs
better than ASW_C and ASW_G. It indicates that our ASW can achieve a good load
balancing between CPU and GPU.

5.4 Efficiency of ASW

In this section, comparison with CUDAlign and MASA-OpenCL are tested and listed
in Table 5. All experiments are performed on GTX 750. ASW_N refer to running
ASW under NVIDIA GTX 750. ASW_A represents it on APU A12 GPU. We can
obtain that:

123



400 International Journal of Parallel Programming (2019) 47:388–402

Table 4 Efficiency of load
balancing strategy

Cmp. ASW_C ASW_G ASW
CPU-only GPU-only CPU+GPU

10K 0.345 1.5 1.7

50K 0.434 5.05 5.27

160K 0.464 6.18 6.32

500K 0.457 6.81 7.19

1M 0.455 7.04 7.2

3M 0.46 6.9 7.11

Table 5 Efficiency of ASW

Cmp. CUDAlign MASA-OpenCL ASW_N ASW_A MASA-OpenMP
GTX750 GTX750 GTX750 A12 A12

10K 6.73 5.3 6.52 1.7 0.47

50K 15.45 14.29 17.6 5.27 1.11

160K 20.66 18.57 20.08 6.32 1.17

500K 19.73 17.91 17.12 7.19 1.14

1M 20.13 18.03 17.3 7.2 1.11

3M 19.59 18.30 17.9 7.11 1.05

1. In the same NVIDIA GPU, ASW almost has the same performance with CUD-
Align. And even more better when the size of sequences are small.

2. ASW_A is worse than other methods.

We can summarize four reasons to explain that ASW_N is lower than CUDAlign.
First, the high overhead of OpenCL. CUDAlign and MASA-OpenCL use the same
strategies to achieve high performance. It is clear that MASA-OpenCL is not as good
as CUDAlign, which shows the high overhead of OpenCL. Second, the block partition
strategy. CUDAlign adopt the parallelogram wavefront methods, which has no Non-
Saturated Computing Area. The whole blocks are divided into two parts: long and
short phrase to make sure the correct answer. However, to run the workload on CPU
concurrently, ASW use the normal wavefront. There are two Non-Saturated Com-
puting Area (Fig. 2). Also, this is the reason why ASW do better in small sequence
comparison. Third, the device specification. ASW is designed to perform on APU.
Data is placed in LDS to avoid using the high latency memory (DDR3), so that the
number of workgroup reduces in a compute unit. And this strategy is not very suit-
able in discrete GPU with a high bandwidth memory. Forth, the parameter setting. In
CUDA, threads run in a groups of 32 consecutive threads. In OpenCL, there are 64
threads. There exists a difference. Due to the four reasons, ASW shows not as good
as CUDAlign. But it achieves a good performans in small size sequence comparison.

ComparedwithGTX750,A12 has fewer cores, a lowermemory bandwidth and per-
formance. The memory bandwidth is very low because of the DDR3, and the discrete
GPUs use GDDR5. Also, to integrate GPU on a same chip with CPU, the performance
of GPU is sacrificed. There are less cores and memory on the APU platform. But we

123



International Journal of Parallel Programming (2019) 47:388–402 401

have a lower TDP and price. But this is orthogonal to our ASW algorithm. Since
coupled CPU/GPU architecture is a trend for future chip. We believe its computing
capacity will catch up with or even exceed NVIDIA GPU in the future. Then there
will be a significant performance improvement by using ASW. To summarize, our
research is a leading attempt on future coupled CPU/GPU architecture.

6 Conclusion and Future work

The SWalgorithm is a critical application in bioinformatics and has become the base of
more sophisticated alignment technology. However, it is time consuming and there are
many work attempting to accelerate it in different platforms (e.g., GPU). In this paper,
we proposed ASW, the first method of communication-intensive SW algorithm for
APUs, in which CPU and GPU communicate data via a shared memory instead of low
bandwidth and high latency PCI-e bus. The experimental results show the efficiency
of ASW. Our research is a leading attempt on future coupled CPU–GPU architecture.
In future, we plan to extend our ASW for DNA or protein database searching problem.

Acknowledgements This work is supported by the Natural Science Foundation of Jilin Province (CN)
(61602336), National Natural Science Foundation of China (61370010, 61702527) and Natural Science
Foundation of Tianjin City (18JCZDJC30800).

References

1. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local alignment search tool. J.
Mol. Biol. 215(3), 403–410 (1990)

2. Branover, A., Foley, D., Steinman, M.: AMD fusion APU: Llano. IEEE Micro 32(2), 28–37 (2012)
3. DeOliveiraSandes,E.F.,Miranda,G.,Martorell,X.,Ayguade,E., Teodoro,G.,Melo,A.C.M.:Cudalign

4.0: incremental speculative traceback for exact chromosome-wide alignment in GPU clusters. IEEE
Trans. Parallel Distrib. Syst. 27(10), 2838–2850 (2016)

4. De Oliveira Sandes, E.F., Miranda, G., De Melo, A.C., Martorell, X., Ayguade, E.: CUDAlign 3.0:
parallel biological sequence comparison in large GPU clusters. In: 2014 14th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGrid), pp. 160–169. IEEE (2014)

5. He, J., Lu, M., He, B.: Revisiting co-processing for hash joins on the coupled CPU–GPU architecture.
Proc. VLDB Endow. 6(10), 889–900 (2013)

6. He, J., Zhang, S., He, B.: In-cache query co-processing on coupled CPU–GPU architectures. Proc.
VLDB Endow. 8(4), 329–340 (2014)

7. Lipman, D.J., Pearson, W.R.: Rapid and sensitive protein similarity searches. Science 227(4693),
1435–1441 (1985)

8. Liu, Y., Tran, T.T., Lauenroth, F., Schmidt, B.: SWAPHI-LS: Smith–Waterman algorithm on Xeon Phi
coprocessors for long DNA sequences. In: IEEE International Conference on CLUSTER Computing,
pp. 257–265 (2014)

9. Liu, Y., Wirawan, A., Schmidt, B.: Cudasw++ 3.0: accelerating Smith–Waterman protein database
search by coupling CPU and GPU SIMD instructions. BMC Bioinform. 14(1), 117 (2013)

10. Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for similarities in the
amino acid sequence of two proteins. J. Mol. Biol. 48(3), 443–453 (1970)

11. Rucci, E., García, C., Botella, G., De Giusti, A., Naiouf, M., Prieto-Matias, M.: OSWALD:
OpenCL Smith–Waterman on Altera’s FPGA for large protein databases. In: 2015 IEEE Trust-
com/BigDataSE/ISPA, vol. 3, pp. 208–213. IEEE (2015)

123



402 International Journal of Parallel Programming (2019) 47:388–402

12. Rucci, E., Garcia, C., Botella, G., Giusti, A.D., Naiouf, M., Prieto-Matias, M.: Accelerating Smith–
Waterman alignment of long DNA sequences with OpenCL on FPGA. In: International Conference
on Bioinformatics and Biomedical Engineering, pp. 500–511 (2017)

13. Ryzen APU. https://www.amd.com/en/products/apu/amd-ryzen-5-2400g (2018). Accessed 12 Feb
2018

14. Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences. J. Mol. Biol. 147(1),
195–197 (1981)

15. Stone, J.E., Gohara, D., Shi, G.: OpenCL: a parallel programming standard for heterogeneous com-
puting systems. Comput. Sci. Eng. 12(3), 66–73 (2010)

16. Tang, S., He, B., Zhang, S., Niu, Z.: Elastic multi-resource fairness: balancing fairness and efficiency
in coupled CPU–GPU architectures. In: SC16: International Conference for High Performance Com-
puting, Networking, Storage and Analysis, pp. 875–886. IEEE (2016)

17. Tang, S., Yu, C., Sun, J., Lee, B.S., Zhang, T., Xu, Z., Wu, H.: EasyPDP: an efficient parallel dynamic
programming runtime system for computational biology. IEEE Trans. Parallel Distrib. Syst. 23(5),
862–872 (2012)

18. Zhang, F., Zhai, J., He, B., Zhang, S., Chen, W.: Understanding co-running behaviors on integrated
CPU/GPU architectures. IEEE Trans. Parallel Distrib. Syst. 28(3), 905–918 (2017)

19. Zhang,K.,Hu, J., He, B.,Hua, B.:DIDO: dynamic pipelines for in-memory key-value stores on coupled
CPU-GPU architectures. In: IEEE International Conference on Data Engineering, pp. 671–682 (2017)

20. Zhang, F., Wu, B., Zhai, J., He, B., Chen, W.: FinePar: irregularity-aware fine-grained workload par-
titioning on integrated architectures. In: Proceedings of the 2017 International Symposium on Code
Generation and Optimization, pp. 27–38. IEEE Press (2017)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Affiliations

Huihui Zou1 · Shanjiang Tang1 · Ce Yu1 · Hao Fu1 · Yusen Li2 ·Wenjie Tang3

Huihui Zou
zouhuihui@tju.edu.cn

Hao Fu
haofu@tju.edu.cn

Yusen Li
liyusen@nbjl.nankai.edu.cn

1 College of Intelligence and Computing, Tianjin University, Tianjin, China

2 School of Computing, Nankai University, Tianjin, China

3 College of Systems Engineering, National University of Defense Technology, Changsha,
Hunan, China

123


