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ABSTRACT

Drawing pottery plays an important role in reporting archae-
ological findings. In addition to showing the form of a pot,
it is essential to show decorations around the pot’s body
by means of 2D drawing. However, the traditional way of
drawing pottery decorations in 2D plane involves intensive
manual labors and rich specialist skills. For archaeological
specialists, one major difficulty lies in manually unrolling
pottery decorations from 3D surface to 2D plane with less
distortions. In this paper, we address this problem by propos-
ing an automatic method to unroll decorations on 3D pottery
vessels into 2D planar space. As the first attempt to this
problem, our approach considers the decoration appearance
and utilizes geometry approximation to achieve piecewise un-
rolling. We validate our approach with different examples. As
demonstrated in experimental results, our approach is simple
to use, and is effective to generate unrolled 2D decorations.
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1 INTRODUCTION

In recent decades, computer graphics technologies have been
largely applied in the field of archaeology. A lot of effort has
been put in 3D digitalization of cultural heritages, ranging
from large-scale excavated sites to small-size mobile relics,
like pottery. On the other hand, archaeological specialists
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Figure 1: Illustration of archeological decoration
drawing. Left: a line drawing of the front-view of
a pottery. Right: the unrolled decorations in format
of line drawing.

utilize commercial image processing tools, including Adobe
Illustrator or Photoshop, to facilitate archaeological drawing.
Given a real pot or a scanned 3D pot model, drawing pottery
is to show the form of the pot, its cross-section and decoration
on the pot’s body, in terms of 2D line drawings. However,
the traditional way of drawing pottery decorations in 2D
planar space involves intensive manual labors and rich spe-
cialist skills [10]. As illustrated in Figure 1, the decorations
painted on the pot are to be piecewisely drawn in 2D space.
In the traditional way, a specialist has to inspect the pot from
surrounding different directions, and draws the line draw-
ings as projected from orthographic views, such that the 2D
drawings suffer less distortion. Mimicking the orthographic
projection is not an easy task for human begins, which can
be time consuming for even specialists.

The process of drawing archaeological decoration inspires
us to consider the interesting problem of automatically un-
rolling the decorations painted on 3D pottery into 2D planar
space, obeying archaeological drawing rules. To the best of
our knowledge, there is no academic publication reported on
this problem. The most close work was reported in the recent
news of the Metropolitan Museum of Art in New York [11],
which has tried to unroll the captured 3D models of ceramic
plates and cylindrical drinking vessels. However, the detailed
technique of unrolling was not disclosed. Although given a 3D
pottery model, graphics designers may apply UV mapping to
help unrolling, manual adjustment is necessary. In this paper,
we develop an automatic approach. Since the decorations
painted on pottery can be treated as textures, our basic idea
is approximating a 3D pot with a set of conical frustums, and
then unrolling the frustum’s surface into 2D space, which
mimics the orthographic projection.
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Figure 2: Our framework. Given a 3D pot, we segment it into portions with horizontal bases (the cutting
planes are shown in different colors). Then each segment is fit with a conical frustum. In this example, three
frustums are constructed (shown in different colors) and one frustum is unrolled for illustration. Finally the
unrolled pattern is laid out in 2D planar space by adjusting the layout to avoid overlapping.

Specifically, we first segment the pot model into non-
overlapped parts with parallel bases, by considering the
decoration appearance. We then perform conical frustum
fitting for each segmented part and unroll the approximated
conical frustum into 2D space. Finally the unrolled textures
are laid out in 2D space to obtain a pleasant unrolled re-
sult. By this way, we accomplish the piecewise unrolling by
taking into considerations of both decoration appearance
and geometry characteristics. Moreover, interactive merging
control is provided in the system to further facilitate user
operation. We validate our approach with different examples.
As demonstrated in experimental results, our approach is
simple to use and is effective to generate pleasant unrolled
2D decorations.

2 RELATED WORK

2.1 Surface Parameterization

Parameterization of geometric surfaces can be viewed as a
one-to-one mapping from a surface to a suitable parameter
domain [4]. As the parametrization is highly related to the
underlying geometry of the surface, the existing methods can
be roughly divided into two categories: 1) a direct mapping of
coordinates from one geometry surface to the other; 2) using
an auxiliary surface or geometric solid as an intermediate
parameterization [6].

In general cases, there is no perfect way to map a surface
to another without introducing some kinds of distortion, for
example, in terms of angles, areas, and lengths. Desbrun et
al. [3] defines the distortion as a combination of different
intrinsic measures of the surface. Many previous works have
been developed to minimize distortions in different ways. Gu
and Yau [5] find a basis of the solution space from which
all the parameteizations can be constructed. Hu et al. [7]
develop a feature-aligned surface parameterization algorithm
with the help of the SLO eigenfunctions and Loop subdivision
basis functions. Liao et al. [8] propose a structure-aligned
approach for surface parameterization using eigenfunctions
from the Laplace-Beltrami operator. Smith and Schaefer [15]
generate guaranteed bijective surface parameterizations from
triangulated 3D surfaces, by using a distortion metric that

prevents local folds of triangles in the parameterization and
a barrier function that prevents intersection of the chart
boundaries. In our work, we follow the archeologists’ rules
of drawing pottery decorations, using conical frustum as the
intermediate paratemerization surface.

2.2 Conical Frustum Approximation

In the literature, many researchers have investigated the
problem of computing the smallest enclosing cylinder (or
cylindrical segment) for a set of 3D points [14] [2] [19]. Using
cylinder only to fit the 3D model, like the pottery we deal
with, may lead to obvious approximation errors. A more
effective way is fitting 3D model with conical frustum.

To fit quadric surface such as cylinder and cone, Lukas et
al. [9] propose a simplified distance measure to approximate
the distance between the point cloud data and the model
surface. Pratt [13] applies the quasi-least-squares method to
do the fitting. An and Guan’s method [1] is able to suppress
noise in fitting point cloud data with cylinder and cone.
Sun et al. [16] propose a method to divide the points into
subsets, and approximate each subset with a conical frustum.
Tempero et al. [18] project the points onto four side views
and estimates the conical frustum based on the 2D convex
hull of projected points. In our work, we approximate conical
frustums by estimating the radius for the top and bottom
circular bases.

3 AUTOMATIC DECORATION
UNROLLING

3.1 Overview

By observing ancient pottery vessels, as demonstrated in
Figure 3, we can get two interesting findings: 1) most pottery
vessels are rotational symmetric; 2) most decorative patterns
painted on pottery can be separated into portions with par-
allel bases. These may be because artificial objects, such as
pottery, are made via rotation manufacturing process.

The textbook on archeological drawing [10] introduces the
rules of drawing pottery decorations: if the pottery vessel is
a simple geometry with developable surface (like a cone or a
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Figure 3: Examples of pottery vessels.

cylinder), drawing decoration is similar to flatten the surface,
which has no distortion; if the vessel is a geometry with
non-developable surface, drawing decoration can be achieved
by approximating the geometry with a cone or cylinder.

Following the two findings and the drawing rules, we de-
velop an effective framework for automatic decoration un-
rolling. As illustrated in Figure 2, our framework contains
three main steps: model segmentation which segments the pot
into portions with parallel bases, conical frustum fitting and
unrolling which maps each segment’s texture to 2D space,
and planar layout adjustment which generates a pleasant
unrolled result.

3.2 Model Segmentation

As most decorative patterns on pottery can be separated
into portions with parallel bases, we consider to segment the
model according to the pattern’s appearance. To ease the
segmentation, we first estimate the symmetry axis using the
method proposed in [17], then rotate the model to ensure its
rotation symmetry axis coincident with the perpendicular
axis of the coordinate system. In this way, the segmenta-
tion is converted to finding horizontal cutting lines in the
orthographic side views of the pot model.

Here, we rely on gradient distribution to estimate the cut-
ting lines (illustrated in Figure 4). We first render 4 side view
images with 90-degree field-of-view via orthogonal projection,
i.e. left, right, front and back side views. For each side view,
we compute the horizontal gradients using the Sobel gradient
operator, and sum the absolute values along the horizontal
direction. After obtaining the summed gradient curve, the
cutting lines correspond to the positions that have values
close to zero and neighbouring gradient values form strong
jumps, which is formulated as

Lc =
{
Li | (Gli−1 − ε)(Gli+1 − ε) < 0

}
, (1)

where Li denotes the i-th row, Gli denotes the gradient of
i-th row, ε is the predefined threshold, and Lc denotes the
cutting line. Thanks to the orthographic projection, we can
easily locate the cutting planes in the 3D space from the
detected cutting lines. With the cutting planes, the pot model

(a)

(b) (c)

Figure 4: Model segmentation by locating the cut-
ting planes. (a) shows four side views of the 3D
model. (b) is the summed gradient cruve, in which
the horizontal line represents the per-defined thresh-
old, vertical lines are the detected cutting lines. (c)
shows the cutting planes in 3D space.

Figure 5: Unroll a cone to the planar space.

can be segmented into a set of 3D portions along the vertical
direction, and each portion has some decoration pattern.

3.3 Conical Frustum Fitting and Unrolling

Given a segment, we now approximate the segment with a
conical frustum. As the vessel is rotational symmetric, we can
do the approximation by simply taking the top and bottom
bases of the segment as circles, and estimating the radii and
the height of the segment.

As illustrated in Figure 5, the unrolling of the fitted frus-
tum is to transform each vertex P (x, y, z) of the fitted conical
frustum to a planar vertex P ′(X,Y ). Let the corresponding
cone of the fitted conical frustum has a height H and bottom
radius R. Using spherical coordinates, the coordinates of P
can be expressed as

P = (r sinφ, y, r cosφ), (2)
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Figure 6: When (a) a cutting plane passes across
triangles, the triangles are divided into smaller ones
as in (b) and (c). (d) shows a triangle passing across
the boundary of the flattened frustum.

where r = h
H
R is the distance from P to y-axis, and h = yA−

y, the azimuth angle φ is computed by φ = arccos z√
x2+z2

.

The unrolling depends on the choice of the vertical cut, which
is set in the positive z direction. With some mathematics, we
can deduce the formula to calculate P ′(X,Y ):

X =
√
h2 + r2sin(

θ

2
− φ′),

Y = yA −
√
h2 + r2cos(

θ

2
− φ′),

(3)

where 
φ′ =

r√
h2 + r2

arccos
z√

x2 + z2
,

θ

2
=

πR√
H2 +R2

.
(4)

It’s worth noting that the above equation assumes x is posi-
tive. When x is negative, the angle φ′ is

φ′ =
r√

h2 + r2
(arccos(−1)

z√
x2 + z2

+ π). (5)

Note that a 3D pot model is usually represented as a trian-
gular mesh. In the unrolling, there are some special cases that
deserve considerations. As illustrated in Figure 6(a), some
triangles may be cut through by the cutting planes. To tackle
this situation, we need to decompose one such triangle into
several smaller triangles. As shown in Figure 6(b), a triangle
is decomposed into two small triangles when the cutting plane
passes by one triangle vertex. When the cutting plane passes
across two triangle edges, the triangle is decomposed into
three smaller triangles (Figure 6(c)). On the other hand, the
unrolling may cause some triangles pass across the boundary
of the flattened frustum (illustrated in Figure 6(d)). Similarly,
we also divide such triangles into smaller ones.

3.4 2D Layout Adjustment

After unrolling, overlapping between unrolled fragments may
occur, as shown in Figure 7(a). To handle this problem, we
adjust the layout in 2D space. In more detail, we keep the bot-
tom fragment as the baseline and move the other fragments
upwards until they have no intersections. From Figure 7(b),
we can clearly see that the intersections between unrolled
fragments are removed effectively after layout adjustment,
and the result is more plausible.

( )a ( )b

Figure 7: Adjust the layout of the unrolled decora-
tion segments to avoid overlaps: (a) before adjust-
ment; (b) after adjustment.

( )a ( )b ( )c

Figure 8: Automatic unrolling effects. (a) is the in-
put 3D model. (b) and (c) are unrolling results with-
out/with less-textured segment merging.

By observing pottery decorations, we notice that there may
exist less-textured segments, and they may affect the visual
effect of the unrolling decoration (Figure 8(b)). For this case,
we can merge such a segment with one of its neighbours. An
automatic way is to select the neighbour such that they have
close mean values of their top and bottom radii, given by

C′i =

{
Ci+1, If |Ri −Ri+1| < |Ri −Ri−1|,
Ci−1, others.

(6)

where Ri is the mean radius of one fitted conical frustum Ci.
After the merging, one cutting plane will be removed, and
then we reconduct conical frustum fitting and unrolling for
the merged segments. Figure 8(c) shows one example after
the less-textured segment merging.

4 EXPERIMENTAL RESULTS

To validate our algorithm, we collect several vessel models
which have different geometric forms and different decorations
painted on the pots’ bodies. The pot models tested in our
experiments are acquired in two ways: 1) downloaded from
the online 3D model website [12] (Figures 9, 11(a), 11(c)); 2)
created manually using 3ds Max (Figures 4, 8, 11(b)).

In this following, we first show effects from applying auto-
matic unrolling and interactive unrolling, then make compar-
ison with unrolling using cylinder approximation, and finally
report the timing performance.

4.1 Effects from Automatic Unrolling

In Figure 8(a), we show a 3D vassel model with 600 vertices
and 1,140 triangles, and its summed gradient distribution of
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( )a ( )b ( )c ( )d

Figure 10: Comparison with unrolling using cylinder fitting: (a) the 3D model, (b) the result from cylinder
unrolling, (c) the result from piecewise cylinder unrolling, and (d) the result from our method.

( )a

( )b

Figure 9: Results with interactive merging control:
(a) the input 3D model and the summed gradient
curve, (b) the unrolled result from automatic un-
rolling and that with interactive merging control.

side views. We can clearly see that the summed gradients
have obvious small values at certain positions. As shown in
Figure 8(b), our segmentation produces reasonable cutting
planes. We also note that there is a nearly white segment near
the centre. By performing automatic less-textured segment
merging, the white segment is merged to the segment below it
(Figure 8(c)), and the unrolled result is updated accordingly.

The unrolling results shown in Figures 8(b) and (c) both
look plausible. They can be used as reference to help arche-
ologists to produce decoration line drawings.

4.2 Effects with Interactive Merging
Control

To further facilitate user intervention and provide more flexi-
bility, we provide interactive merging control in our system.
Users can select and merge two neighbouring segments in an
interactive manner.

Figure 9 shows a 3D vassel model with 1,024 vertices and
1,984 triangles, the unrolled result from automatic unrolling,

and the unrolled result with interactive merging control.
As we can observe from the left result in Figure 9(b), the
decoration unrolling near the bottom is not so satisfied, since
our current less-textured segment merging only considers
geometry property only. As shown in the right result in
Figure 9(b), a more pleasant result can be achieved by tuning
the merging manually.

4.3 Comparison with Unrolling using
Cylinder Fitting

Since decoration unrolling is a new problem, there are no
existing methods for this problem. Here, we make comparison
with two alternative solutions. The first is replacing conical
frustum with cylinder in our framework, named as piecewise
cylinder unrolling. The second is fitting the whole model with
one cylinder solely, named as cylinder unrolling.

The comparison results are shown in Figure 10. From
the figure, we can see that the three methods have similar
unrolled results in the middle part, which is close to a cylinder.
When approximating the whole model with one cylinder
solely, the texture of the top segment with small radius is
stretched seriously (Figure 10(b)). This problem is alleviated
for piecewise cylinder unrolling. However, for the second
top segment, piecewise cylinder unrolling still suffers from
obvious stretching, as compared to the 3D model. Our result,
on the other hand, has much less distortion and the shape of
unrolled segments can indicate the form of the 3D model.

4.4 More Results

Figure 11 shows unrolled results for more 3D pottery vessels.
It is obvious that our approach is able to segment 3D models
reasonably. By applying our automatic unrolling, we can
get reasonable unrolled decorations for most vessels (see the
second and third examples). With interactive merging control,
we can also easily adjust the unrolled results to get satisfied
results (see the first example).

4.5 Timing Performance

In the end, we report running times of our algorithm in
Table 1. Our system is implemented using C++ on a machine
installed with Intel(R) Core(TM) i5-3330 CPU@3.00GHz
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with 16GB RAM. As evidenced in Table 1, we can see that
the running time grows with the number of vertices and
triangles. In general, our system is rather fast and able to
achieve interactive performance.

Table 1: Timing performance of automatic decora-
tion unrolling.

Model Vertex number Triangle number Time (s)

Fig 2 640 1,248 0.250

Fig 8 600 1,140 0.256

Fig 9 1,024 1,984 0.312

Fig 11(a) 1,584 3,072 0.499

Fig 11(b) 928 1,824 0.593

Fig 11(c) 44,000 87,599 22.511

5 CONCLUSIONS

In this paper, inspired by archeological decoration drawings,
we address an interesting problem of unrolling the decorations
painted on 3D pottery into 2D planar space. Following the
drawing rules used in archeological drawing, we propose a
simple and effective approach. We first segment the 3D model
along its symmetric axis by conducting segmentation in the
side-view image space. Then each segment is further fitted
as a conical frustum and undergoes the unrolling. Finally, we
adjust the layout of the unrolled segment to obtain a pleasant
unrolled result.

In our current work, we only process pots without handles.
In the future, we want to study how to deal with a vessel with
handlers sticking outside of the vessel. In addition, we would
like to collect some scanned 3D models of pottery vessels,
and apply our method on real data.
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