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Abstract—Online virtual navigation systems enable users to
hop from one 360

o panorama to another, which belong to a
sparse point-to-point collection, resulting in a less pleasant
viewing experience. In this paper, we present a novel method,
namely Cube2Video, to support navigating between cubic
panoramas in a video-viewing mode. Our method circumvents
the intrinsic challenge of cubic panoramas, i.e., the disconti-
nuities between cube faces, in an efficient way. The proposed
method extends the matching-triangulation-interpolation pro-
cedure with special considerations of the spherical domain. A
triangle-to-triangle homography-based warping is developed
to achieve physically plausible and visually pleasant interpo-
lation results. The temporal smoothness of the synthesized
video sequence is improved by means of a compensation
transformation. As experimental results demonstrate, our
method can synthesize pleasant video sequences in real time,
thus mimicking walking or driving navigation.

Index Terms—Cubic panoramas, virtual navigation, video-
viewing mode, triangle-to-triangle homography-based warp-
ing, temporal smoothness

I. I NTRODUCTION

PAnorama-based virtual navigation systems become
prevalent to ordinary people via the Internet, including

Google Street View [1], Bing Maps Streetside [2], etc.
Due to the bandwidth limit, current virtual navigation
systems usually provide asparse point-to-pointcollection
of panoramas. The common navigation control is to enable
users navigate within one panorama (panning, zooming, and
rotating) [3][4], and hop from one panorama to another.
The hopping manner is simple and fast, yet may bring users
apparent visual discontinuity. Although this problem can be
alleviated by image transition like cross-fading, as existing
navigation systems did, it is often difficult to distinguish
the scene clearly during the transition.

A more physically plausible solution is generating inter-
mediate panoramas from reference ones [5][6][7][8][9][10].
Some early works [5][6][11][8][12] operate on cylindrical

Copyright (c) 2013 IEEE. Personal use of this material is permit-
ted. However, permission to use this material for any other purpos-
es must be obtained from the IEEE by sending a request to pubs-
permissions@ieee.org.

Q. Zhao, W. Feng and J. Zhang are with Tianjin Universi-
ty, P. R. China (E-mail: qiangzhaotju@163.com, wfeng@tju.edu.cn,
jwzhang@tju.edu.cn).

L. Wan (Corresponding author) is with the School of ComputerSoft-
ware, Tianjin University and with Tianjin Key Lab for Advanced Signal
Processing, Civil Aviation University of China, P. R. China(E-mail:
lwan@tju.edu.cn).

T. T. Wong is with The Chinese University of Hong Kong, P. R. China
(E-mail: ttwong@acm.org).

panoramas, while some recent works [9][13][10] operate on
cubic panoramas, which suffer less non-linear deformation
and have native hardware support. The most challenging
problem in using cubic panoramas is to tackle the dis-
continuity between cube faces. For instance, Shi et al. [9]
developed a pixel-based method tracing the optical ray
of each pixel. Kolhatkar and Laganière [13] estimated
the optical flow fields for each cube face extended by a
boundary projected from adjacent faces. Zhang et al. [10]
divided cube faces into central and boundary regions for
triangulation, and synthesized new views via face-to-face
homography transformation. Although these methods try
to solve the discontinuity problem, they still have obvious
artifacts, and/or are tedious for real-time navigation.

In this paper, we present a novel method that can
circumvent the cube discontinuity problem in an easy and
effective way. Our method is based on the simple concept
that the cube is a representation of the sphere. Accordingly,
we can project the cubic panorama on the sphere, and
perform manipulations in the spherical domain.

The major contributions of our paper is three-fold.
Firstly, we extend the matching-triangulation-interpolation
procedure [7][14][10] with special considerations of the
spherical domain (Section III). Specifically, we employ an
angular error metric in the spherical domain to get reli-
able sparse correspondences between two cubic panoramas.
Convex hull triangulation is then applied to triangulate the
panorama normalized on the unit sphere. In the interpola-
tion, a new warping scheme is performed between pairs of
spherical triangles. The second contribution is proposinga
(spherical) triangle-to-triangle warping, which combines a
homography transformation and an affine transformation.
Using this warping, we are able to achieve physically plau-
sible and visually pleasant interpolation results. As the third
contribution, we describe a compensation transformation to
improve the temporal smoothness of the synthesized video
(Section IV). Finally, parallel implementation for the new
view generation is developed to achieve real time perfor-
mance (Section V). As experimental results demonstrate,
our method can synthesize satisfied videos for both in-door
and out-door panorama sequences (Section VI).

II. RELATED WORK

A. View Interpolation

The introduction of view interpolation can date back to
the mid-90s. A main stream of existing methods are based
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on optical flow, disparity or depth information [15][16][17],
which need to establish dense correspondences between
reference images. Another type of view interpolation is
based on projective geometry. Seitz and Dyer [18] in-
troduced view morphing that interpolates along the base
line of an image pair and obtains physically plausible
images. Their method was further extended by several
works [19][20][21]. There also exist triangulation-based
interpolation techniques. Lhuillier and Quan [22] presented
joint view triangulation, which generates novel views by
warping the matched triangles. This work was improved by
Siu and Lau [23][14]. After constructing overlap-solved tri-
angular meshes for three reference images, they developed a
transformation-based warping for arbitrary view synthesis.
This work is at the basis of our interpolation algorithm.

B. Panorama Interpolation and Navigation

Panorama interpolation considers a large field of view
[24], e.g. 360 degrees in our work. According to the
underlying spherical mapping representations, most exist-
ing techniques fall into two categories, using cylindrical
panoramas [5][6][11][8][12], and using cubic panoramas
[9][13][10]. For cylindrical panoramas, there are pixel-
based solutions [5][8], and triangle-based warping meth-
ods [11][6]. In addition, the view synthesis for catadioptric
omni-directional images can be done through rectification
to cylindrical panoramas [12].

For cubic panoramas, Shi et al. [9] performed a search
guided by color consistency for each pixel along its optical
ray to find the correspondences in reference panoramas.
Kolhatkar and Laganìere [13] estimated optical flow fields
on cube faces extended by boundaries projected from
adjacent faces, and interpolated intermediate frames using
view morphing. As the interpolation only involves blending,
they achieved real-time navigation using GPU. The above
two methods are rather simple, but they may suffer severe
visual artifacts. There existed several works following the
matching-triangulation-interpolation procedure [7][10], yet
with detailed approaches different from ours. Yeung [7]
segmented panoramas into regions, and established region
correspondences. After triangulating the regions individ-
ually, special schemes are employed to get equal-sized
triangular meshes in matched regions. Finally, hardware
texture mapping [6] is applied to do interpolation. Zhang
et al. [10] proposed a three-step triangulation method, in
which the central regions of cube faces are first triangulated,
then the meshes of the horizontal four faces are connected,
and finally the regions surrounding up and down faces
are processed. A new view is synthesized by performing
face-to-face homography transformation [14], with the cube
face discontinuity considered. Their method gets better
interpolation results, however, is rather complicated for
real-time navigation. Our method, on the other hand, can
circumvent the cube discontinuity problem effectively, and
achieve real-time navigation.

Based on the panorama collections, there are also works
generating limited field-of-view videos for navigation pur-
pose. For instance, Chen et al. [25] automatically varied

the speed and field of view of the video to highlight
turns and landmarks. Their method selects frames, without
interpolation, from a sequence of panoramas captured at
close intervals. Peng et al. [26] only considered a60o

view facing the heading direction and simulated moving
forward simply by the zoom-in effect. In our work, we can
synthesize a360o panoramic video.

III. I NTERPOLATION OFCUBIC PANORAMAS

We now present how to synthesize an arbitrary view
between two cubic panoramas.

A. Finding Reliable Correspondences

We begin with the description of epipolar geometry for
the sphere [27]. For one world pointX, an epipolar plane
is given byX and two camera centersC, C′ (illustrated in
Figure 1). The epipolar constraint requires the correspond-
ing image pointsx andx′ lie on this plane, i.e., satisfying
the condition

x′TFx = 0, (1)

whereF is the fundamental matrix that can be decomposed
as a combination of camera motion and calibration matri-
ces.

After extracting feature points on cubic panoramas via
SIFT [28], we estimateF using the eight-point algo-
rithm [29], and eliminate correspondence outliers by the
RANSAC framework [30]. In the RANSAC iteration, we
should determine whether a match is complied with current
F. This is often realized by evaluating the geometric error
metric [29], given by

εgeo =
(x′TFx)2

‖Fx‖2 + ‖FTx′‖2
, (2)

where‖ · ‖2 is the normal-2 distance. The geometric error
is effective to remove outliers departing from the epipolar
plane, but may fail when the wrong candidate matches lie
on or close to the epipolar plane. For example, in Figure 1
−x′ is antipodal tox′. In case that−x′TFx is close to
zero,εgeo is small, and then−x′ will be wrongly accepted
as an inlier. We found this problem is not seldom in our
application, and may cause serious overlaps in the followed
triangulation process.

To deal with this problem, we introduce an angular error
metric under the assumption that the angels between differ-
ent correspondence pairs are close. To avoid complicated
reprojection computation, we define the angle between
correspondences in a simplified way. As shown in Figure 1,
we translatex into the second panorama sphere (see the
red dot), and calculate the angle (denoted asα) between
the resultingx and its possible matchx′. The angular error
metric is defined as the extend of how the angle departs
from the main angle distribution, given by

εang =
|α− µS |

σS

, (3)

whereµS andσS are the mean and standard deviation of
the angles between the correspondences in the consensus
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Fig. 1. The world pointX gives a point correspondence,x and x
′.

However, based on the geometric error, wrong candidate matches close
to the epipolar plane (in light red color) may be mistaken forinliers,
for example−x

′ which is antipodal tox′. Our angular error metric can
remove such outliers with abnormal angular offsets.
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Fig. 2. Correspondence outliers removed by our angular error metric. (a)
shows two correspondence outliers with small distances in geometric error,
with blowups displayed in (c) and (d). (b) plots the angle distribution. The
peaks marked with circles correspond to the two outliers, respectively.

set S determined by the geometric error. We empirically
set the threshold for the angular error to be 0.95. One real
example is shown in Figure 2. From our experiments, we
found that the angular error metric is applicable for both
indoor and street-level panorama sequences.

B. Triangulating Panoramas

Unlike the work of Zhang et al. [10], which adopts
different triangulation schemes for face central regions
and boundaries, we do triangulation in a unified way.
Specifically, since the feature points have been projected
on the sphere, triangulating a panorama can be done by
applying convex hull triangulation algorithm [31]. As a
sphere is completely symmetric around the center, there is
no discontinuity problem when triangulating the sphere, and
hence the cube face discontinuity can be naturally ignored.

Given two neighboring panoramas, we perform triangu-
lation on the first sphere and apply the mesh connectivity to
the second sphere. Due to moving objects/cameras and/or
mismatched points, the triangular mesh on the second
panorama may have overlaps inside. For instance, in Fig-
ures 3(a) and 3(b), the feature points in the red colored
regions are correctly matched, however, the moving car

with relatively large disparity results in an overlap in the
second sphere.
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Fig. 3. Triangulating panoramas: (a) The triangulation results for two
neighboring panoramas. The overlap on the second panorama is indicated
as the crimson region. (b) The triangular meshes of the overlapped regions.
(c) The meshes after the rematching.

To solve such overlaps, we first conduct checking of the
topology consistency, which requires no triangle intersec-
tion in the second triangular mesh. Specifically, we begin
with one triangle in the second mesh and include it in the
matched region. We then check whether a new triangle,
adjacent to the matched triangles, arises intersections. If
an intersection occurs, the new triangle is rejected as
unmatched. This checking process separates the triangular
mesh into matched regions and unmatched regions. Next,
we rematch the unmatched regions. Since the unmatched
region is a curved surface, for which the convex hull
triangulation is not applicable, we project the boundary
of each unmatched region to a 2D plane using gnomonic
projection, and perform 2D edge constrained Delaunay
triangulation [14] as in Figure 3(c).

The checking-and-rematching process continues until
there is no unmatched regions or the unmatched regions
remain unchanged. We found the later case occurs when
the unmatched region on the first sphere have convex
boundary, while the corresponding region on the second
sphere have concave boundary. Therefore, we use a ping-
pong technique. That is, we first do the rematching on
the first sphere, and check the topology consistency for
the second one. If there still exist unmatched regions, we
do the rematching on the second sphere, and check the
topology consistency for the first one. This process is fast
to converge, which usually needs no more than 5 iterations,
and after this process there are rarely unmatched regions in
our experiments.

C. Generating a Novel View

After the panoramas are triangulated, we develop a
triangle-based scheme for the novel view generation. It
contains three steps: 1) determining the destination trian-
gular mesh of the novel view; 2) computing a triangle-to-
triangle homography-based transformation between a pair
of source and destination triangles; 3) synthesizing the
destination triangles by the backward warping. Since all
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the triangles are operated in the spherical domain, we need
not to differentiate the triangles that cover more than one
cube face as Zhang et al. did [10].

1) Determining the Destination Triangular Mesh:To de-
termine a destination triangle, we only need to compute the
coordinates of its vertices. Given a pair of correspondences,
x andx′, we first recover the corresponding 3D scene point
X using linear triangulation [29], then reprojectX to the
novel view based on the view’s positionC′′ and orientation
R′′, giving the reprojected vertexx′′ as

x′′ =
R′′(X−C′′)

‖R′′(X−C′′)‖
. (4)

C′′ andR′′ can be computed via (13) and (14) respectively.
Thanks to the gnomonic projection associated with the
cubic panorama, we can no longer differentiate a spherical
triangle and its projective counterpart against the sphere
center. Without introducing ambiguity, we mainly refer to
the projective triangle in the following discussion.

2) Triangle-to-Triangle Homography Transformation:
Given one triangle∆EDF as shown in Figure 4, we set
up a virtual camera located at the sphere center, with the
image planeπ defined by the projective triangle∆EDF .
Here, we choose

−−→
DE to be the x-axis of the image plane

π. The local homogeneous coordinates of verticesD, E, F
in the image planeπ can be expressed as

[XD XE XF ] =




0 |E−D| cos θ|F−D|
0 0 sin θ|F−D|
1 1 1


 , (5)

whereθ is the angle between edgesDE andDF .
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Fig. 4. Setting up of the virtual camera for∆EDF , with the coordinate
system specified byrCul. See text for more details.

For the virtual camera, the line passing through the
sphere centerC, with the direction perpendicular to the
image plane defines the principal axisl. The intersection
point p is the principal point, specifying the camera cali-
bration matrixKt as follows,

Kt =




f 0 px
0 f py
0 0 1


 , (6)

where f is the focal length;px, py are 2D offsets of
principal point in the image plane. The camera orientation
respective to the sphere is given by

Rt = [r, u, l]T , (7)

wherer is the direction of the positive x-axis in the image
planeπ; u = cross(l, r). By taking the global position (C)
and rotation (R) information for the sphere into account,
we have the final camera matrix given by

Pt = KtRtR[I −C]. (8)

For a pair of source (e.g. on the first panorama) and
destination triangles, we first set up the virtual camera for
each triangle, and get their 2D local coordinates and camera
matrices using (5) and (8). We then compute the homog-
raphy matrixHh based on three point correspondences
Xi ↔ X ′′

i and two camera matricesPt ↔ P′′

t , i.e.

[{Xi ↔ X ′′

i },Pt ↔ P′′

t ] → Hh. (9)

Details about the computation can be found in [14][29].
The above transformation is physically plausible, how-

ever, it is affected by small reconstruction errors in re-
covering 3D scene points, which is an over-determined
problem. This will makeX ′′

i 6= HhXi (see Figure 5(a)),
and may lead to blurring in the interpolated results (see
Figure 5(b)). To tackle this problem, we enforce the position
constraint that requires the transformed point coincide with
the original point. Specifically, we get an intermediate point
X̂i = HhXi, and compute an affine matrixHa from the
new point correspondenceŝXi ↔ X ′′

i , i.e.

{X̂i ↔ X ′′

i } → Ha. (10)

The final warping matrix is computed as

H = HaHh. (11)

As shown in Figure 5(c), the refined homography transfor-
mation can improve the interpolation quality.

(a) (b) (c)

Fig. 5. Enforce the position constraint that requires the transformed point
coincide with the original point. (a) The triangles transformed usingHh

(in red color) may not coincide with the triangles of the firstreference
panorama (in blue color). (b) Interpolated result usingHh as the warping
matrix. (c) Interpolated result usingH = HaHh as the warping matrix.

3) Synthesizing the Interpolated Panorama:To generate
the interpolated cubic panorama, the backward warping is
used. For every pixel on the novel view, we find its corre-
sponding pixels on the two reference panoramas by means
of estimated warping matrices, and do color blending.

Note that the warping matrices are specified for the trian-
gles defined in a local image system. Given a pixel on the
novel view, we should convert its 3D coordinates defined
in the panorama’s camera system to 2D coordinates defined
in the local image system. Without loss of generality,
suppose that pixelP falls inside△ABC. We can compute
its barycentric coordinates[α, β, γ]T according to its 3D
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coordinatexP and the triangle verticesxi, i ∈ {A,B,C}.
Then the local 2D coordinates of pixelP can be represented
asXP = [XA,XB,XC ][α, β, γ]

T. These two steps can be
substituted by matrix multiplications, i.e.,

XP = [XA,XB,XC ][xA,xB,xC ]
−1xP . (12)

After gettingXP , the warping matrices can be used to find
the corresponding pixels in the local image system of the
triangles on the reference panoramas. An inverse procedure
is performed to get 3D coordinates of the correspondences
for texture lookup.

In the above procedure, we need to determine which tri-
angle pixelP falls inside. The triangle-detecting operation
is conducted for all the pixels. For speed up, we utilize
both the neighboring triangle-detecting information for the
pixels, which is stored as an index map, and the adjacency
table for the triangular mesh that records for each trianglea
list of adjacent triangles. Figure 6 demonstrates an example.
When rendering a pixelp, we first check the triangles which
its previously proceeded neighborhood pixelsN(p) fall
inside, for instance, triangles 3, 4 for pixelp1. If the check
fails, for example for pixelp2, we then take the adjacent
triangles, saying triangles0, 3, 4, 6 adjacent to triangle 5, as
the checking set. If both steps fail, we finally take all the
remaining triangles as the checking set. Also note almost all
the triangle-detecting operations can be determined using
the first two steps. This hierarchical scheme can speed
up the triangle-detecting operation significantly, e.g. from
130.507 seconds without the speedup to 8.305 seconds,
for a triangular mesh with 950 triangles and a cubic face
resolution of512× 512 pixels.
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Fig. 6. The data structures used in the triangle-detecting operation. (a)
An example triangular mesh. (b) The adjacency table for the mesh in (a).
(c) A part of the index map of triangles which the pixels fall inside, and
the preceding pixels are colored yellow. By using the index map and the
adjacency table, the triangle-detecting operation can be accelerated.

IV. PANORAMAS TO V IDEO

We now describe how to synthesize a smooth video
sequence from sparsely-collected reference panoramas. In-
tuitively, a series of novel viewpoints are to be interpolated
between pairs of reference panoramas. Suppose two neigh-
boring panoramas have positions given by 3D vectorsC

andC′, and orientations given by 3×3 rotation matricesR
andR′. We linearly interpolate the position as

C′′ = tC′ + (1 − t)C, (13)

x

X̂¢

x’
H c’

Hc

X̂

Fig. 7. Interpolating the panoramas by simply projecting the scene
points causes temporal shaking in the generated video. The blue curve
shows the position track of one reprojected scene point using Equation 4,
interpolated att = 0.1, . . . , 0.9 and enclosed by two reference panoramas.
We compute two compensation matricesHc andH

′

c that transform the
reprojected feature points (the gray curve) to make the video more smooth
(see the red curve). Please note in order to illustrate the tracks more clearly,
the figure only shows the view of x-y plane.

where t ∈ [0, 1] is the interpolation variable. The orien-
tation interpolation is accomplished using spherical linear
interpolation of quaternion (Slerp), i.e.,

q′′ = Slerp(q,q′; t) =
sin(tθ)

sin θ
q′ +

sin[(1− t)θ]

sin θ
q, (14)

whereq, q′ andq′′ are quaternions corresponding to rota-
tion matricesR, R′ andR′′, andθ = arccos(q ·q′). After
the novel viewpoints are determined, we can synthesize a
video using the proposed algorithm in Section III.

However, we found there may exist temporal shaking be-
tween the interpolated frames and the original panoramas.
We investigate this problem by analyzing the position track
of feature points. As shown in Figure 7, the 9 interpolated
positions att = 0.1, . . . , 0.9 together with the positions in
the reference panoramas,x and x′, form the blue curve,
where the positions are spherical coordinates on the unit
sphere. Apparent changes occur between the first (last) two
points on the curve, although the changes are rather small
in absolute values. We also interpolated two panoramas at
t = 0, 1 using (4), yielding gray pointŝx and x̂′. As we
can see, the reprojected positionsx̂ and x̂′ deviate from
the original positionsx and x′, while they together with
the 9 interpolated positions compose the gray curve, which
is smooth. Hence, this shaking problem is mainly caused by
estimation errors in the reconstruction of 3D scene points.

We handle the shaking problem by transforming the gray
curve to make its starting and end point coincide withx

and x′, respectively. This can be achieved by computing
two compensation matrices which satisfy

xi = Hcx̂i, andx′

i = H′

cx̂
′

i, (15)

based on three correspondencesx̂i ↔ xi and x̂′

i ↔ x′

i

in triangles. Then, like (13) we linearly interpolate the
compensation transformation as

H′′

c = tH′

c + (1− t)Hc, (16)

and apply it to the reprojected positions. The newly gener-
ated red curve is used as the position track of the feature
point, based on which the warping matrix will be estimated.
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For the example shown in Figure 8(a), we count the average
error between the reprojected points in image space with
and without compensation, which is about 21.6 pixels for
a cube face size512× 512. As the shaking phenomenon is
apparent only in video playing, readers are referred to the
accompanying video for the visual comparison.

V. I MPLEMENTATION DETAILS

In the implementation, we separate the algorithm into
a preprocessing stage, which includes the matching and
triangulation, and an on-the-fly stage that is the novel-
view generation. Note that all the three steps in the novel
view generation are to be performed for every individual
primitive (triangles or pixels). Hence, they are highly par-
allelizable, and we can improve the timing performance by
utilizing the GPU’s parallel computing power. Specifically,
one CUDA pass computes the triangular mesh on the novel
view, the warping matrices, and the compensation matrices.
Another CUDA pass is taken for novel view synthesis, in
which the multiple transformations, including the warping
matrices and the coordinate mappings, can be accomplished
easily by means of matrix multiplications. After that, the
generated panorama is used for environment mapping in a
DirectX rendering pass, and interactions such as zooming,
panning, rotation are provided.

Note the triangle-detecting speed-up process introduced
in Section III-C3 is not compatible with GPU processing,
because of the irregular size of the adjacency table. Alter-
natively, we develop a GPU-based strategy to acquire the
triangle index map. Since every triangle in the interpolated
panorama has only one corresponding triangle in the ref-
erence panorama, the pixels within one destination triangle
will share the same reference triangle’s index. This reminds
us of the hardware rasterization ability which can flat fill
triangles with single colors. In the implementation, we add
two passes to the pipeline. One general computing pass is
to assemble the destination vertices to triangle elements
with the color indicating the reference triangle’s index,
after the first CUDA pass. To use flat-filling capability, the
vertices shared by different triangles are repeated, so that
each vertex will have the correct triangle index. Since the
cubemap is hardware supported, a rendering pass is then
carried out to render the destination triangular mesh to the
cubemap, generating the triangle index map.

VI. EXPERIMENTS AND DISCUSSION

In this section, we evaluate our approach using different
panoramas and make comparisons with existing techniques,
then talk about the timing performance of our system,
finally discuss our limitations.

A. Experimental Results

1) Results for Indoor and Street-level Imageries:In
the first experiment, we tested on an indoor panorama
sequence, which was captured using the Ladybug2 camera
mounted on a manually movable platform. The sequence
contains 33 frames, separated with small distances (roughly

about 0.7 meter) and slight camera rotation. Figure 8 dis-
plays interpolation results att = 0.25, 0.5 and0.75 between
two pairs of neighboring panoramas. As Figure 8(a) shows,
the scene is well interpolated, with a tendency to move
rightward. In Figure 8(b), we can notice the lamp near the
column becomes dark gradually. We also compose a video
clip by interpolating 9 frames between pairs of adjacent
panoramas (see the accompanying supplementary video).
As the scene is static and the camera motion is relative
small, the generated clip looks pleasing and temporally
smooth to mimic walking navigation.

In the second experiment, we tested on street-level
panoramas from Google Street View, which are taken from
panoramic cameras mounted on specially adapted cars.
There are many moving objects in the images and the
displacement between adjacent panoramas is large, about
25 meters in our example. Figure 9 shows two interpolated
sequences att = 0.2, 0.4, 0.6, 0.8. Because of the large
depth range and moving objects in the outdoor scene, the
occlusion phenomenon is more serious than that in the
“Reading-room” indoor scene. Although our triangulation
process can handle the occlusion to some extend, we may
miss some cases. Despite this, as can be seen in Figure 9
and the supplementary video, our method can still get
reasonable results for these sparsely collected imageries.

2) Comparison between Different Methods:We compare
our method with three recent approaches, i.e. [9], [13]
and [10]. In experiments, we implemented the first two
methods, while due to the lack of technical details, we used
the results from [10]. In Figure 10, 10(a), 10(b) and the first
row in 10(c) are the panoramas captured in the laboratory
of University of Ottawa with the camera moving forward.
They are spaced with a distance of 1 meter. The first row
in Figure 10(c), which is captured between Figures 10(a)
and 10(b), is used as the ground truth.

The third row in Figure 10(c) is the result reported in [9]
(note that this method uses four surrounding cubes as input
views). We can see the result suffer from visible errors
in the ceiling and the left wall shown in Figures 10(d)
and 10(e), respectively. It is because the method adopts
a pixel-based interpolation that is sensitive to the errorsin
estimated depths and color differences, and is difficult to
guarantee the color smoothness over the entire image. The
fourth row in Figure 10(c) is the result generated by the
method of [13]. Since this method is based on optical flow
estimation, the results may have many artifacts when the
displacement is relatively large. The result at the last rowin
Figure 10(c), which was provided by the authors of [10],
is better than previous two results. However, it still has
apparent artifacts in the ceiling region (see Figure 10(e)).
What’s more, because this method triangulates the cubic
panorama in form of the cube, there are black lines between
cube faces in the result (see Figure 10(d)). Thanks to
the triangulation on the unit sphere and the triangle-to-
triangle homography-based transformation, our method can
generate results with less artifacts (the second row in
Figure 10(c)), and is best of the four methods.

Next, we carry out objective evaluations in Table I
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( )a

( )b

Frame 1 t=0.25 Frame 2t=0.5 t=0.75

Frame 31 t=0.25 Frame 32t=0.5 t=0.75

Frame 1

Frame 31

Fig. 8. The generated results for the “Reading-room” panorama sequence using our method. (a) Results interpolated fromframe 1 to 2; (b) Results
interpolated from frame 31 to 32.

Fig. 9. The generated results for the Google Street Viewc©data in Hong Kong using our method. (a) Reference panorama atframe 58, (b) and (c)
are the generated results. The average distance between thereference panoramas is about 25 meters. As shown, the interpolated results are reasonable,
though with some blurry artifacts.

and II by employing the PSNR and structural similarity
index (SSIM) [32] measurement. Besides the example in
Figure 10 (referred as “Ottawa”), we captured another
two scenes (with a capturing distance of 0.5 meter) for
comparison, which we refered as “SE Lab” and “MTS
Lab”. Due to space limitations, the visual results are not
presented here. From the tables, we can see that our results
have relatively higher PSNR values and SSIM scores. It is
also noted that although the result from Zhang et al. [10] has
only slightly lower scores than ours, it has severe artifacts
in visual appearance.

3) Our Method v.s. Google Street View:We now make
a comparison with Google Street View navigation service
for the aforementioned Google Street-level imageries. In
the Google Street View service, the hopping navigation is
to jump from one panorama to another, in which a zooming
cross-fading effect and other visual cues are made to give
the user a sense of movement. However, the transition is
over-blurred and has ghosting effects (see the first row in
Figure 11), and it is not that easy to distinguish the scene
objects in those intermediate frames. On the contrary, the
video navigation provided by our method (the second row
in Figure 11) makes view interpolation between adjacent

TABLE I
PSNRCOMPARISON

Our Method [9] [13] [10]

Ottawa 24.38 24.06 19.93 24.35

SE Lab 23.06 22.39 19.93 N/A

MTS Lab 20.43 19.03 17.00 N/A

TABLE II
SSIM COMPARISON

Our Method [9] [13] [10]

Ottawa 0.8259 0.8225 0.6231 0.8209

SE Lab 0.7891 0.7563 0.6368 N/A

MTS Lab 0.6703 0.6244 0.4796 N/A

panoramas and gives a more pleasing viewing experience.
What’s more, our video navigation can provide a more
flexible control. Users can change the view direction when
moving from one panorama to the adjacent one, which is
not supported by Google Street View. Both the side-by-side
comparison and flexible navigation control can be found in
the supplementary video.



8 SUBMITTED TO IEEE TRANSACTIONS ON MULTIMEDIA

( )c

( )b( )a

( )e( )d

S
h

i 
e
t 

a
l.

’s
  

m
e
th

o
d

K
o

lh
a
tk

a
r 

e
t 

a
l.

’s
  

m
e
th

o
d

Z
h

a
n

g
 e

t 
a
l.

’s
  

m
e
th

o
d

G
ro

u
n

d
 t

ru
th

O
u

r 
m

e
th

o
d

Fig. 10. Comparison between different methods. (a) and (b) are the
reference panoramas; (c), (d), (e) Starting from the secondrow are the
ground truth, our result, and those from [9], [13] and [10] att = 0.5,
respectively. Obviously, our method generates a more pleasing result, and
more visually similar to the ground truth.

A close inspection to Figure 11 and the video reveals
that our method still suffers from some artifacts. This is
due to two reasons. First, the street-level scene contains
buildings with symmetric structures or repetitive elements,
making it difficult to find correct matches. Second, moving
objects on the street may cause large overlaps. Interestingly,
although there are artifacts, our synthesized video still
looks more temporally smooth in a global sense than the
transition effect in Google Street View. This encourages us
that the video navigation is a useful and promising control
to current panorama-based navigation systems.

B. Timing Performance

Our system is built on a PC installed with Intel(R)
Core(TM) i7-2600 CPU @ 3.40GHz and NVIDIA GeForce

Fig. 11. Snapshots of the video navigation provided by Google Street
View (the first row) and our method (the second row). Since we do not
know the exact viewing parameters of Google Street View, there exist
some differences between the fields of view.

GT 530. For the preprocessing stage implemented on CPU,
we report the timing statistics for one typical case. It usually
takes about 3 seconds to find reliable correspondences from
two reference panoramas with a face size of 256×256, and
about 16 seconds for the triangulation procedure, when
there are about 950 triangles. The timing will grow with
the increase of the panorama’s resolution, the number of
feature points, and/or the number of triangles.

For the online stage, we collect the timing statistics by
accounting two major factors, i.e., the number of triangles
and the face resolution of cubic panoramas. As shown in
Figure 12, the timing curves are almost flat against the
increase of the triangle number, and grow with the increase
of the cube face resolution. For our CPU implementation,
it takes about 8.305 seconds to generate a cubic panorama
with a face size of 512×512 pixels. Our GPU implemen-
tation only needs 0.0172 seconds (58 fps). The speed up is
about 480 times. It is obvious that our GPU implementation
successfully achieves a real-time performance.

We now report the timing performance of previous
methods. For the method of [13], which is based on optical
flow, it can achieve interpolation at about 463 fps for
cubic panoramas with a face size of 512×512. However,
its quality is less satisfactory, as discussed previously.For
the method of [9], our implementation takes about 239.47
seconds to generate a cubic panorama with a face size of
512×512 pixels. For the method of [10], it took several
minutes for the interpolation step, which was reported by
the authors, while their machine is slightly slower than ours.

C. Discussion

In our experiments, we find that the interpolation quality
is related to the accuracy of correspondences, which is
always challengeable. We also find several situations in
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Fig. 12. Running time with the increasing number of triangles and
panorama resolutions. The logarithmic scaling is used for the time axis
due to the large value range.

which to get correct corresponding matches using SIFT
will be quite difficult. For instance, there are many objects
with self-similar structures; the panorama is covered by too
many trees; or the change of the depth range in the pair of
panoramas is too large. However, the comparison between
several state-of-the-art feature detectors tells us that SIFT
gets better interpolation results, as Figure 13 shows. Hence,
it is one of our future work that investigates more advanced
feature detectors.

(a)SIFT result (b)SURF result (c)BRISK result

Fig. 13. Comparison between different feature detectors. (a) SIFT[28];
(b) SURF[33]; and (c) BRISK[34].

Secondly, although the rematching in the triangulation
can solve most of overlaps, it sometimes mistakenly discard
correct matches, which will cause blurry artifacts in the
interpolated panoramas. One possible solution is to discard
all the feature points covered by the unmatched regions and
retriangulate the panoramas. This, however, may reduce the
number of the feature points significantly. One issue that
we do not tackle in this paper is the visibility between
triangles [11]. Interestingly, we have not observed the
visibility problem in our experiments. This may be because
the detected feature correspondences are rather sparse.

Currently, when we generate the video, we interpolate the
same number of panoramas between each pair of reference
images. This may result in varying paces when watching
the video. The problem can be alleviated by taking the real
physical distance between reference images into account,

and adjusting the number of interpolated frames adaptively.

VII. C ONCLUSION

In this paper, we present a novel algorithm, namely
Cube2Video, to provide users a video-viewing experience
when navigating cubic panoramas on-the-fly. Different from
existing methods, we tackle the challenging discontinuity
problem in cubic panoramas in an easy and unified way. S-
ince the cube is a projective representation of the sphere, we
extends the matching-triangulation-interpolation procedure
on the spherical domain. A new angular error is proposed
to improve the matching accuracy. After triangulating on
the unit sphere, we construct a virtual camera model and
develop a triangle-to-triangle transformation scheme forthe
interpolation. The temporal smoothness of the synthesized
video is improved via introducing a compensation trans-
formation. In addition, we exploit the cubemap hardware
support and the parallel computing power of GPU, thus
achieving real-time video viewing. Experiments show that
our method can get pleasant results, even for panoramas
with large displacements.

Our system can be further improved in several ways.
Firstly, line correspondences [35] can be included to further
improve the accuracy of the feature correspondences. Such
information may also serve as constraints and guide the
triangulation procedure. Secondly, accounting the physical
distances between panoramas may help us to obtain a more
flexible control of the video navigation pace.
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