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Abstract

In vector graphics, gradient meshes represent an image object by one or more regularly connected grids. Every
grid point has attributes as the position, color, and gradients of these quantities specified. Editing the attributes
of an existing gradient mesh (such as the color gradients) is not only nonintuitive but also time-consuming. To
facilitate user-friendly color editing, we develop an optimization based color transfer method for gradient meshes.
The key idea is built on the fact that we can approximate a color transfer operation on gradient meshes with a
linear transfer function. In this paper, we formulate the approximation as an optimization problem, which aims
to minimize the color distribution of the example image and the transferred gradient mesh. By adding proper
constraints, i.e. image gradients, to the optimization problem, the details of the gradient meshes can be better
preserved. With the linear transfer function, we are able to edit the colors and color gradients of the mesh points
automatically, while preserving the structure of the gradient mesh. The experimental results show that our method

can generate pleasing recolored gradient meshes.

Keywords: Gradient mesh, example-based color transfer, linear operator, optimization.

Categories and Subject Descriptors (according to ACM CCS):

Generation—

1.3.3 [Computer Graphics]: Picture/Image

1. Introduction

In vector graphics, the gradient mesh, offered by Adobe
Illustrator and Corel Coreldraw, is a popular representation,
which is suitable for representing multi-colored objects with
smoothly varying colors. It is used to create photo-realistic
vector art by many artists. Gradient meshes represent
an image object by one or more regularly connected
grids. Every grid point (also called a control point) has
attributes including the position, color, and gradients of
these quantities defined in the parametric domain. The
image represented by gradient meshes is obtained by bicubic
interpolation of the specified grid information.

To create gradient meshes, artists have to manually
specify mesh grids and manipulate the associated attributes,
which is labor intensive. The problem has gained attention
such that several methods for (semi-)automatic generation of
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gradient meshes [SLWS07] [LHMO09] have been developed.
Good results can be obtained with the aid of some user
assistance. Although gradient meshes can be obtained
automatically, how to efficiently edit gradient meshes
remains problematic. Due to the large number of attributes
associated with each control point, manually editing the
attributes (such as the color gradients) of an existing gradient
mesh, which can be obtained by manual operation or
automatic generation, is not only nonintuitive but also time-
consuming. When the gradient mesh contains a large number
of mesh points, or the vector art consists of multiple gradient
meshes, it becomes especially important to have more
convenient and efficient ways for gradient mesh editing.

A straightforward way to relieve the color editing problem
is to borrow the color editing methods for raster images,
such as color transfer [RAGS01]. However, these methods
cannot directly deal with gradient meshes, which have
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more attributes per element than raster images. People may
consider performing color transfer on the rasterized gradient
mesh and then regenerating the gradient meshes from the
recolored rasterized gradient mesh using the methods in
[SLWS07] [LHMO9]. Nevertheless, it should be pointed
out that using the generation method in [SLWSO07] or
[LHMO9] is an approximating process, which will result
in loss of detail information in the recolored image. While
consuming extra computing time, the regeneration may also
change the gradient mesh structure, which is important in
some scenarios where the structure was originally obtained
through labor-intensive manual creation or complicated
optimization.

Considering  these  issues, in  our  previous
work [XWL*13], we proposed a principal component
analysis (PCA) based linear color transfer method, which
changes the color style of a gradient mesh by borrowing
the color statistics of an example image. This method
investigates a nice property of a gradient mesh that applying
a linear operator on the color component is equivalent
to applying the linear operator on the colors and color
gradients of the control points, respectively. The linear
operator is defined as a fused version of two basic PCA
based color transfer algorithms [XMO06, AKO7]. We call
this method PCA fusion [XWL*13]. Although this method
can obtain pleasing results in most cases, there still exist
some disadvantages that can be further improved. The
PCA fusion method implicitly assumes that the colors of
the example image and the gradient mesh are Gaussian
distributed, and only matches their means and variances in
the de-correlated color space. Unfortunately, since the mean
and variance are global properties, matching only them may
result in out-of-gamut artifacts, which means some colors
in the recolored gradient mesh may not be present in the
example image. Moreover, the PCA fusion method does not
consider preserving the detail information represented in the
gradient mesh such as highlights and textures, which may
be destroyed after color transfer. Finally, the PCA fusion
method may incur color inconsistency artifacts because of
the fusion operation.

In this paper, we propose a novel framework for gradient
mesh color transfer to edit gradient meshes. The key insight
of our framework is to approximate a color transfer operator
with an optimal linear transfer function. The approximation
can be well formulated as a classical minimization problem,
which equivalently minimizes the differences between the
color distribution of the linear transferred gradient mesh and
that of an example image. Although our current method also
uses a linear transform, we use a totally different framework.
In the previous work, the linear transform is defined by
PCA, which implicitly assumes the color distributions of
the example image and the gradient mesh are Gaussian.
In our current work, the transform is defined by directly
minimizing the difference of color distributions, which does
not have such an assumption. Therefore, our current method

handles images with non-Gaussian color distributions, and
also better matches the colors, so that the out-of-gamut
colors are avoided. Moreover, in our current method, image
gradients can be explicitly added to the minimization model
as a constraint, which can control the influence of the
transfer and preserve the details of the gradient mesh.
Also, since the linear transform is solved directly from the
minimization problem, artifacts due to the fusion operation
in the previous work are avoided. Experimental results
and a user study show that our method avoids abnormal
colors caused by the unmatched distributions, and also better
preserves the details of the gradient meshes. Figure 1 shows
an example of the results obtained by our method.

2. Related Work

Color transfer, first introduced by Reinhard et al. [RAGSO01],
refers to a category of methods which modify the color
distribution of a target image according to that of a reference
image. Since its introduction, a large number of methods
have been developed, and a recent survey can be found
in [FPC*14]. Reinhard et al. [RAGS01] modeled the color
distribution of an image using the mean and standard
deviation of color values in /off space, due to the color
correlation in RGB space. The mean and standard deviation
of both the target image and the reference image are then
used for shifting and scaling the colors of the pixels in the
target image. This method was then extended to produce an
image sequence based on multiple reference images and user
input parameters [WHO04]. Abadpour and Kasaei [AKO7]
de-correlated the colors in RGB space using principal
component analysis (PCA) and then matched the means and
standard deviations in the de-correlated space. The color
distribution is transferred to the target image by applying
PCA-based transformation on each pixel. Similar ideas were
also reported in [XMO06] [Kot05].

Instead of matching the mean and standard deviation,
some global color mapping techniques directly match the
histograms [WSM99] [MS03] [GD05a] [NNO5]. Recently,
Pouli and Reinhard [PR11] presented a histogram reshaping
technique for images of arbitrary dynamic range. In these
histogram matching methods, the colors are transformed to
a color space which is assumed to be uncorrelated, such
as CIELab. The histogram of each color channel is then
matched separately. Alternatively, Pitie et al. [PKDO07] cast a
three-dimensional color distribution matching problem into
a sequence of one dimensional matching problems via the
Radon transform. This method is suitable for any color
spaces. The impact of color spaces on color transfer effects
was recently exploited by Reinhard and Pouli [RP11].

Greenfield and House [GHO3] performed image seg-
mentation, and extracted a color palette by choosing
representative colors from the segments. The color mapping
between the palettes of the reference and target images
is then computed. Rather than binary segmentation, Tai et
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(a) Reference

(d) Our Result

(b) Rastered Gradient Mesh

(e) PCA Fusion [XWL*13]

e -

(¢) Mesh Grid

(f) PCA Scale [XM06] (g) PCA No Scale [AK07]

Figure 1: Results of the jade example. Our method faithfully captures the color style of the example image and better preserves

the details of the gradient meshes. \ is set to 1 in this example.

al. [TJTOS] applied probabilistic segmentation that produces
soft region boundaries. Chang et al. [CSNO3] categorized
each pixel as one of the eleven basic perceptual color
categories. Then, color transformation was applied within
the same basic color category. This method has been
extended to video data [CSNO7]. Dong et al. [DBZP10]
defined a one-to-one mapping between two dominant color
sets, which are extracted from both the target image
and reference image using probabilistic segmentation. The
mapped dominant colors are then used for transforming the
pixels in the target image. Wu et al. [WDM™11] adopted
this idea and they further proposed to preserve the spatial
distribution of the dominant colors. Su et al. [SDYL12]
decomposed the target image into the base and detail layers.
The colors of base layers are mapped by matching the
distribution of base layers and that of a reference image. The
final result is produced by combining the mapped base layers
with the detail layers.

To avoid the spatially inconsistent artifacts caused by
some per pixel operations like histogram matching, Pitie et
al. [PKDO7] suggested recovering the details of the target
image after the per pixel operation. This is done by preserv-
ing the original gradients in the target image. Similar ideas
can also be found in [LWX07, WHCO08,XM09,DBZP10],
although expressed in different formulations. Instead of
preserving gradient, Grundland et al. proposed mapping
reference color gradients to corresponding target color
gradients [GDOS5b]. In our new method, by comparison, we
use the gradient term as a constraint in the optimization
process.

The aforementioned methods can produce pleasing results
when the color distributions of the reference and target
images are homogeneous. Otherwise, they can generate
unnatural looking results. To address this problem, some
researchers suggested relying on user input swatches pairs to
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classify the colors [RAGS01,WAMO02,XM06,AK07,AP10].
The color transfer is then locally performed within each
swatch pair. The final color is the weighted sum of the results
from all swatch pairs. In our method, we adopt this idea.
We define a linear operator for each pair of swatches, and
combine the linear transformed colors and color derivatives
of all pairs.

Inspired by Reinhard et al.’s work [RAGSO01], Welsh et
al. [WAMO?2] colorized a grayscale image by borrowing the
color characteristics of a color reference image. Instead of
using a reference image, Levin et al. [LLWO04] allowed users
to specify the reference color distributions by drawing color
strokes over a grayscale image. They then proposed a global
optimization method to diffuse color strokes across the
entire grayscale image. There have been many attempts to
improve the computational efficiency of this process [HKO05]
[HTC*05] [ICOLO05] [YS06] [LWCO™07]. In addition,
automatic grayscale image colorization methods have been
developed [JLWTO04] [CHS08] [LHZ08] [MTNO09].

3. Gradient Mesh

We now describe the mathematical representation of
gradient meshes and discuss its linear property.

3.1. Gradient Mesh Representation

As defined in [SLWSO07] [LHMO09], a gradient mesh
is a topologically planar rectangular grid, whose every
four nearby control points (vertices) define a primitive
component called a Ferguson patch [Fer64]. Figure 2 shows
a gradient mesh with four Ferguson patches. For each
control point in the grid, three types of information are
specified: position p = (x,y), color ¢ = (r,g,b) and their
gradients py, Pv, Cu, ¢v. Note that the gradients are defined in
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parametric coordinate space u,v, where 0 < u,v < 1. Each
Ferguson patch in the gradient mesh is rendered via bicubic
Hermite interpolation, given by

m(u,v) = ucoCTv, €))
where

rm® m? mg m%
0— m' o oml om

T md om0 0 |’
L mll, mZ 0 0
M1 0 0 0
0 0 1 0

¢= -3 3 -2 -1\
2 2 11

m can be any of x,y,r,g,b, the superscript of m indicates
one of the four control points of the Ferguson patch, u =
[1uu® u’],v=[1vV*v*],and the parameters have the range
of 0 <u,v < 1.Given a parameter pair (u,v), its position and
color are calculated using the above equation.

Since the position p = (x,y) and the color component
¢ = (r,g,b) are given in parametric space, (1) implicitly
defines a function ¢ = g(x,y,p', pu, Py, ¢, Cy, cy,i € ),
where i is the index of a control point, I' is the set
which contains all the indices of the control points. Since
P', Pu, Py, €', Cy, ¢y, i € T are constant, g(-) implicitly defines
the mapping between position (x,y) and color (r,g,b).
Due to the complexity of (1), g(-) can not be expressed
explicitly. To get a raster gradient mesh, we sample in the
parametric domain (u, v) to get a raster image of the gradient
mesh. This sampling process is called rasterization. Denote
the rasterized gradient mesh as ¢ = s(x,y), the process of
rasterization is denoted by Ras(-). Then, we have s(x,y) =

Ras(g(x’y’ pi7pilapi’7€i7cihcivai G r))'

Figure 2: The gradient mesh contains four Ferguson
patches. The gradient information is illustrated for point n’
in the bottom-right patch.

3.2. The Linear Property of Gradient Mesh

As pointed out in [XWL*13], gradient meshes are defined
in a parametric domain and have curvilinear grid structures.
Since the grid structures should be preserved during the
transfer, we aim to perform color editing in the parametric

domain. In other words, we try to tackle colors and color
gradients of control points.

In [XWL*13], Xiao et al. investigated the linear property
of the gradient mesh. They found that applying a linear
operator on the color component is equivalent to applying
the linear operator on the colors and color gradients of
the control points. We summarize the linear property of
the gradient mesh in matrix form. When applying a linear
operator L(-) represented by a 3 x 3 matrix 7 and a 3 x 1
translation vector b on m(u,v), we get

Tm' +b, fori=0,1,2,3,
Tmj, fori=0,1,2,3, )
Tm), fori=0,1,2,3,

Tm(u,v)+b—

where m(u,v) = [my(u,v),mg(u,v),my(u,v)]" is the col-
or vector at the parametric coordinate (u,v), m =
[mi,mé,mZ]T is the color vector of the i-th control point,
and mf,, mi, are the color derivatives of the i-th control
point. From the above equation, we can see that a linear
operator is transparent to parametric interpolation. That is,
if we want to linearly transform the colors inside a patch,
we just need to perform the linear transformation on the
colors and color gradients of the four control points, and re-
rasterize the gradient mesh. The linear property can also be
applied to the rasterized gradient mesh, which is given by

L(s(x,y)) = L(Ras(g(x,y,p', P, P¥. ¢, €4, ¢\, i €T)))
= Ras(g(x,y,p',ph, P, L(c}), Tely, Tel i € 1)),
3)
where L(c) = Tc+b. The advantage of this property is
two-fold. First, a linear operator can be defined using
the rasterized gradient mesh, whose statistical and other
properties can be more easily calculated. Second, the
computational cost of the linear transformation only depends
on the gradient mesh size, which is much smaller than the
resolution of the rasterized gradient mesh in general. Note
that the position information pi,pil,piV are preserved, we
ignore them in the following expressions. Meanwhile, we
use g(x,y,L(-)) to denote g(x,y,L(ci),TcL,Tciv,i er) to
simplify the expression.

4. Optimization based Color Transfer
4.1. Single-Swatch Color Transfer

The purpose of color transfer is to edit the gradient mesh so
that the edited gradient mesh has a similar color distribution
to an example image, while preserveing the details of the
gradient mesh. Therefore, we need to measure the color
distribution function and the details of the gradient mesh.
Since the color distribution function can not be analytically
derived, we use the cumulative distribution function of
the rasterized image obtained from the gradient mesh as
in [XWL*13]. The details of the gradient mesh are measured
by the image gradients of the rasterized image as in [PKDO07,
XMO09]. We first consider a simple case in which the gradient
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mesh is to borrow the color distribution from the whole
image. Considering the two purposes of color transfer, we
formulate the color transfer process as a minimization model
including two terms, one to measure the difference of the
color distribution functions, and the other to measure the
modification in image gradients. The minimization model is
given by

E =arg mLinEl +A\E>, 4)
where
Bl =y lled Rt (e) - cd o) (o) Pde,
Ey = JplV(Ras(g(x,y,L(-))) — V(s(x,y))|*dxdy.

&)
Here, cdf(-) denotes the cumulative distribution function;
o(x,y) denotes the example image; Q denotes the domain of
color space; V denotes the gradient operator; ® denotes the
domain of pixel space; and A is a parameter to balance the
influence of the two terms. The impact of A is discussed in
Section 5.1. Obviously, E1 denotes the difference between
the color distributions of the transferred gradient mesh and
the example image, and E, is the gradient constraint to
preserve the details of the gradient mesh. Using the linear
property in (3), £} and E; become

Er = folledf ) (e) —cd ) (e)Pde,
Ey = [ulIV(L(s(x,y))) — V(s(x,y)) || *dxdy.
(6) means that we can faithfully formulate L(-) on the

rasterized gradient mesh without rasterizing the edited
gradient mesh multiple times.

6

Since the ¢d f(+) functions in (6) are not differentiable and
the calculation of the difference of the three dimensional
cdf’s is computational intensive, previous methods often
rely on random search to solve the problem [AP10], which is
time-consuming. In fact, (6) can be efficiently approximated
by first matching the color distribution of the reference
image o(x,y) and rasterized gradient mesh s(x,y), and then
minimizing the difference of the linearly transferred colors
and the matched colors. Since the distribution function
of colors is 3-dimensional, we adopt the N-dimensional
probability distribution transfer method in [PKDO07], which
fully transfers the statistics of the reference image to the
target images even in RGB space. After the distribution
transfer, we obtain a set of reference colors s°(x,y), which
almost have the same color distribution as the example
image o(x,y). Thereafter, E| can be approximated by

Bl = [ ) -y @)
To summarize, our final energy function is given by

E = argmLinE{ +\E>. (8)

In (8), the functions of the unknown variables are linear in
both the first term and second term. Therefore, 7 and b can
be efficiently calculated from (8) by solving a linear system
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with only 12 variables. The detailed steps to solve 7" and b
are given in the supplemental materials. After solving 7" and
b, we then transform the colors and color gradients of the
gradient mesh control points based on (2). The transformed
color vectors are given by

d =T +b, ©)

where ¢/ denotes the transformed color vector of a control
point, ¢’ denotes the color vector of a control point in the
target gradient mesh. The transformed color gradient vectors
are given by

I '
¢, =Tcy, 10
/ ‘ (10)
c,=Tc,.
where c{, and ¢/, denote the transformed color gradient vector
of a control point, ¢, and ¢!, denote the color gradient vector
of a control point in the target gradient mesh.

Figure 3 shows an example in which the color statistics
of the image in Figure 3(a) are transferred to the gradient
mesh in Figure 3(b)(c). As a comparison, two PCA
methods [XMO06, AKO7] which can be extended to gradient
meshes are also used. As shown in Figure 3(d), our method
faithfully captures the color style of the example image, and
also avoids abnormal colors, such as the purple colors in
Figures 3(e)(f)(g), which are not present in the reference
image 3(a). Moreover, our method better preserves the
details of the original gradient mesh compared to the
previous method [XWL*13](see the highlights in the body
and tail).

4.2. Multi-Swatch Color Transfer

When the single swatch method does not work well, we
may choose separate color swatch pairs and transfer desired
color effects between swatches [RAGSO01]. This scheme can
also provide more flexible user control of color appearance.
Our linear framework can be easily extended to multi-swatch
color transfer.

For the i-th pair of swatches, we can obtain the transform
matrix 7; and b; using the single-swatch color transfer
method in Section 4.1. Then the recolored vectors will be
a weighted sum of single-swatch recolored vectors, given by

M ‘
c = E Wi(T,'C +bi),
2
/ u :
= 3 wilic (1)
! u '
¢, = > w;Tic,.

—_

where M is the number of swatch pairs. The problem left is
how to calculate the weighting factor w;’s. Since weighting
factors based on Mahalanobis distance have been shown to
result in visually pleasing results [XWL*13], we choose to
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(d) Our Result (e) PCA Fusion [XWL*13]

(h) blowup of (¢)

(i) blowup of (d)

(f) PCA Scale [XMO06] (g) PCA No Scale [AKO7

(j) blowup of (e)

(k) blowup of (f)

(1) blowup of (g)

Figure 3: Single-swatch color transfer using different methods: (a) Reference Image, (b) Mesh grids, (c) Rasterized gradient
mesh, (d) Our result, (e) PCA Fusion [XWL*13], (f) PCA with scaling, (g) PCA without scaling. Note that our result does not
have abnormal colors and faithfully preserves the details of the gradient meshes. \ is set to 1 in this example.

adopt this way to calculate w;’s, given by
M
wi=di/ Y dj, (12)
=1

where d; denotes the reciprocal of the Mahalonobis distance
from a given color ¢ to a target color swatch I’ (i). d; is given
by
1
di = , - —, (13
V(e =ns(D)TMs () =1 (" —ms (D))

where ms(i) and Ms(i) denote the mean vector and
covariance matrix of swatch I’ (i), respectively.

Figure 4 shows an example of using our multi-swatch
color transfer scheme. As shown in Figure 4(e), the color
style of the recolored peppers is quite close to the reference
swatches. Compared to our result, the results generated by
[XWL*13,XMO06,AK07] are obviously yellowish as shown
in Figure 4(f)(g)(h), especially for the green pepper and
the stems. Note that we transfer the color of a light green
apple to the dark green pepper. Moreover, our method better
maintains the contrast of the gradient mesh because of the
gradient constraint in our model.

5. Experimental Results

We generate gradient mesh vector graphics based on
the algorithms from Sun et al. [SLWS07] and Lai et
al. [LHMO9]. For a given raster image, we first apply

Lai et al’s algorithm [LHMO09] to create a gradient mesh
automatically. If the quality of the rasterized gradient mesh
is not very good, we optimize the gradient mesh using
Sun et al’s algorithm [SLWSO07]. Note that [LHMO09]
extends the gradient mesh to tolerate image holes. To utilize
[SLWS07], we decompose one hole-tolerated gradient mesh
to two normal meshes at the hole. When the input image
is complex, the image is segmented into several parts
by manual or automatic methods [FHO4, RKBO04], and
each part is approximated by one gradient mesh. Table 3
shows the number and size of the gradient meshes and the
corresponding rasterized images used in the experiments.

5.1. The Impact of A

In our model (8), we use the parameter A to balance the
influence of the color distribution term and the gradient
term. In most of our experiments, we set A = 1, which
generates pleasing results in most cases. In this subsection,
we use an example (Figure 5) to illustrate the impact of
A. As shown in Figure 5(f), when we only use the color
distribution term E{ in (8), i.e. A = 0, the recolored result
can faithfully capture the color features of the reference
swatches. However, some details of the original gradient
mesh are destroyed, for instance the artifacts in the color
transition regions. When we use the gradient term as a
constraint and set A = 1, the artifacts are removed as shown
in Figure 5(g). Further increasing A can better preserve the
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(a) Reference image (b) Reference swatches

(e) Our Result

(f) PCA Fusion [XWL*13]

(c) Rastered gradient mesh (d) Target swatches

P9 99 F@¢ 9P

(g) PCA Scale [XMO06]  (h) PCA No Scale [AK07]

Figure 4: Multi-swatch color transfer using different methods. (a) Reference image, (b) Reference swatches, (c) Rasterized
gradient mesh, (d) Target swatches, (e) Our result, (f) Result of PCA Fusion, (g) Result of PCA with scaling, (h) Result of PCA
without scaling. Our result is more pleasing than the results of other methods. Note that a swatch pair is marked with the same

colors. \ is set to 1 in this example.

(a) Ref. (b) Ref. Sw. (c)Grad. (d) Grad. Sw.

>3

(e) Gradient Mesh

(®) 5»:1 (h)2=10

Figure 5: The influence of \ on the results. (a) Reference
image, (b) Reference swatches, (c) Gradient mesh, (d)
Gradient mesh swatches, (e) Rasterized gradient mesh, (f)
Result of A =0, (g) Result of A = 1, (h) Result of .. = 10.
As shown in (g), we obtain a good balance between the
influence of the color distribution term and gradient term
by setting h = 1.

details, but reduces the ability to match the color distribution
as shown in Figure 5(h).
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5.2. Visual Comparisons

Figures 1, 3, 4, 6, 7, 8 show different examples recolored
by our method. Among the figures, the results in Figures 1,
3,6 and 8 are generated by our single-swatch color transfer
method, and the others are generated by our multi-swatch
color transfer method. For the single-swatch color transfer,
no user input is required. For the multiple-swatch method,
the only user intervention in our system is to specify the
color swatches. For example, in Figure 4, we use three pairs
of color swatches. Each pair of swatches is labeled with the
same color in the figure. In Figures 4 and 7, each of the
three peppers is represented by a single gradient mesh, and
just one color swatch is specified for each pepper. For the
purpose of comparison, we extend the two versions of the
PCA method [XMO06,AKO7] to handle gradient mesh color
transfer in our experiments. The results of the PCA fusion
method [XWL*13] are also given.

As shown in these figures, although all the four methods
can change the color styles of the gradient mesh towards the
reference images, the results of our method are visually more
pleasing than those of PCA and PCA-Fusion. In general,
our method can faithfully capture the color statistics of the
reference images, avoid abnormal colors that are not present
in the reference image, and preserve the detail information
of the gradient meshes. For instance, in the cloud example in
Figure 6, the results of PCA-Fusion and PCA with scaling
have some green colors in the sky (see Figure 6(e)(f)); the
results of PCA without scaling have some blue colors in the
sky (see Figure 6(g)). Neither the green colors nor the blue
colors are present in the reference image (see Figure 6(a)).
For the results of multi-swatch method, we can observe
similar situations in Figure 7.

As mentioned in Section 1, the PCA-Fusion method
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(d) Our Result

(e) PCA Fusion [XWL*13]

e >
(¢) Mesh Grid

1,

-y

(f) PCA Scale [XMO06]

(g) PCANo Scale [AKO07]

Figure 6: Results of the cloud example. Note the unexpected green colors and blue colors in the highlighted regions of figures
(e)()(g). The color of our method is visually closer to the reference image. \ is set to 1 in this example.

(a) Reference (b) Our Result

(d) Swatches

(e) PCA Scale [XMO06]

(¢) PCA Fusion [XWL*13]

(f) PCA No Scale [AK07]

Figure 7: Results of the peppers example: (a) Reference image; (b) Reference swatches; (c) Our Result; (d) Result of PCA
fusion [XWL* 13];(e) Result of PCA with scaling; (f) Result of PCA without scaling. Notice the colors of the green pepper, the
stem and the highlight areas, the colors of our method are more similar to those of the reference image. The gradient mesh and
its swatches are the same in Figure 4. Note that a swatch pair is marked with the same colors. \ is set to 1 in this example.

may cause some artifacts during the fusion step. Even if
a gradient-preserving step [XWL*13] is applied to relieve
the artifacts, they are still visible sometimes. As shown in
Figure 8(f), the result of PCA-Fusion has some extra textures
which are not included in the original gradient mesh (see
Figure 8(a)), while our result faithfully preserves the details
(see Figure 8(e)).

5.3. Gradient Mesh v.s. Rasterized Gradient Mesh

In [XWL*13], the authors already pointed out the need
to directly perform color transfer on gradient meshes.
Performing color transfer on the rasterized gradient mesh
and regenerating the gradient mesh not only consumes
extra computing time, but also changes the structure of
the gradient mesh. The changes in the structure are mainly
caused by two reasons. First, the regenerating processes in
[SLWS07,LHMO09] are approximating operations, therefore,
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details of recolored image will be blurred. Second,
performing the color transfer on the gradient mesh and
its raster image may produce different results for multi-
swatch color transfer. In multi-swatch color transfer, we sum
the weighted result of single swatches. Since we process
grid points or pixels separately, neighboring grid points
or pixels may have inconsistent weighting. For gradient
meshes, they have their own structures which naturally
avoid color bleeding. That is, even inconsistent weighting
in neighboring grid points will generate smooth transitions.
For the rasterized images of gradient meshes, this structure
information is lost. Inconsistent weighting in neighboring
pixels on the raster image may introduce obvious artifacts
inside the inner regions of the gradient mesh patches. The
artifacts can destroy the smooth transition of the gradient
mesh. Figure 9 shows an example. In this figure, the black,
yellow, and light green colors are transferred to the orange,
red, and dark green peppers, respectively. As we can observe
in Figure 9(e), there is an unexpected black band near
the pepper stem. In contrast, the recolored gradient mesh
(Figure 9(d)) does not have such artifacts, and its color
transition remains as smooth as the original gradient mesh
(Figure 9(c)). The reason for the artifacts is that the pixels in
inner regions may be mapped to colors quite different from
neighboring pixels. This problem is more likely to appear
when the swatches have quite different colors. For gradient
meshes, only the colors and gradients of grid points are
transformed, which guarantees inner regions have smooth
transition.

(a) (b) (c)

(C)) (e) (H

Figure 8: Results of the cloud example: (a) Reference
image; (b) Our Result; (c) Result of PCA-Fusion [XWL*13];
(d) Blow-up of gradient mesh (enhanced); (e) Blow-up
of Our Method (enhanced) (f) Blow-up of PCA-Fusion
(enhanced). The PCA-Fusion method incurs small artifacts
(extra textures), while our method has no such artifacts.
Please view the digital images to observe the artifacts. The
gradient mesh used in the same as in Figures 6(b)(c). \ is set
to 1 in this example.

5.4. User Study

We conducted a user study to evaluate our method.
Our user study consisted of a questionnaire given to 20
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(© (d)

Figure 9: Comparison between results on gradient mesh vs
on raster images. (a) Result on gradient mesh, (b) Result on
raster image, (c) blow up of original gradient mesh, (d) blow
up of (a), (e) blow up of (b). The swatches used are the same
as those in Figure 7.

| IIII |I |

4

2

o - - - - - - - - - - L8 -
Lo Lo

PCAPCAPCA L0 PCAPCAPCA L0 PCAPCAPCA PCAPCAPCA L0 PCAPCAPCA
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™ Detail 32333528 41 3 2428 4 242335 39262734 3.83.12632
= Transition 3.2 3.2 3.5 2.8 4 282326 42252328 42232333 38 3 2828
= Similarity 3.3 2.9 3.5 2.9 4 32527 4 292828 3.7 2.6 2.6 3.1 36 3 3 26

Figure 10: Average scores of 4 methods. LO stands
for our linear optimization method, PCAF for PCA
Fusion [XWL*13], PCAS for PCA Scale [XMO06], and
PCANS for PCA No Scale [AKO7]. From left to right, the
image groups correspond to Figures 6, 3, 1,4, and 7.

participants including 10 males and 10 females. Each
questionnaire comprised twenty images, with five different
images modified using four methods: our linear optimization
method (LO for short) and three existing methods. The
images were shown in a random order to each participant.
Among them, 5 persons are artists working in design or
other related areas. These people were asked to score each
recolored result image according to 3 criteria:

1. Color similarity between the result image and the
example one. Since colors in the example image should
be transferred, here we describe the color similarity as the
similarity of color contrast or lighting ratio.

2. Color transition of the result image. Some methods may
produce unnatural effects or introduce extra colors, and
these kinds of artifacts would be expected to receive a
low mark.

3. Detail delineation of the result image. If a result image
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loses texture, or adds texture unreasonably, then its score
would be lower.

Figure 10 shows the results of user study. There are 5
groups of images. The table under the bars list the average
scores given by 20 participants. Note that each criterion has
a five-point scale to evaluate the performance of different
methods. The higher the score is, the better the result looks.
The histogram illustrates the accumulated average scores of
the 3 criteria. This graph informally indicates that people
prefer the results of our method over the others.

For each criterion, we further analyze user study data by
means of repeated measures analysis of variance (ANOVA).
As listed in Table 1, the method type and the image group
are the independent variables, and the user score is the
dependent variable. We can see that the effect of the method
type is significant, F=16.65, Sig<0.001 for color similarity;
F=28.5, Sig<0.001 for color transition; F=24.72, Sig<0.001
for detail delineation. The effect of the image group, on
the other hand, is not significant, since F=0.62, Sig>0.05
for color similarity; F=2.46, Sig>0.05 for color transition;
F=0.72, Sig>0.05 for detail delineation. Furthermore, the
LSD multiple comparison among different methods in
Table 2 shows that our method is significantly better than
PCA Fusion [XWL*13], PCAS for PCA Scale [ XMO06], and
PCANS for PCA No Scale [AKO7], in terms of the three
criteria respectively. These three comparitive methods have
similar performance in terms of color similarity and color
transition, while PCA Scale is significantly better than the
other two with respect to detail delineation.

Table 1: User Study Repeated Measures Analysis

Similarity Type Il sum df  Mean F Sig
source of sqaures sqaure
Method 57.31 3 19.10 16,65  0.00
Image group 1.27 4 0.32 0.62 0.65
Transition Type Il sum df  Mean F Sig
source of sqaures sqaure
Method 94.89 3 3163 2850  0.00
Image group 3.82 4 0.95 246  0.053
Detail Type Il sum df  Mean F Sig
source of sqaures sqaure
Method 69.26 3 2309 2472 0.00
Image group 1.40 4 0.35 0.72 0.58

Table 2: User Study LSD Multiple Comparisons

Similarity ~ Transition  Detail

Sig Sig Sig
LO vs. PCAF 0.00 0.00 0.00
LO vs. PCANS 0.00 0.00 0.00
LO vs. PCAS 0.00 0.00 0.00
PCAF vs. PCANS 1.00 0.38 0.07
PCAF vs. PCAS 0.81 033 0.02
PCANS vs. PCAS 0.76 0.08 0.00

Name Num. Patches Resolution
28 x 13
jade (Fig. 1) 3 28 x 8 600 x 450
28x16
horse (Fig. 3) 1 44 %78 300 x 174
30%x33
peppers (Fig. 4) 3 26x33 800 x 500
38%x63
. . 37x32
plumeria (Fig. 5) 2 37530 446 x 456
cloud (Fig. 6) 1 126 x 127 800 x 511

Table 3: The size of gradient meshes and the corresponding
raster images used in the experiments.

5.5. Time Performance

We also evaluate the complexity and running time of
our method. Our method is implemented using Matlab-
C++ mixed programming. The N-dimensional probability
distribution transfer and solving (8) are implemented in
Matlab. They are compiled to DLL files, which are then
called in our C++ interface. Since Matlab is not good
at loop operation and extra time is spent on the data
type conversion between Matlab and C++, our method is
currently slower than the PCA-Fusion method [XWL*13].
The running time of our method mainly depends on the
time spent on the N-dimensional probability distribution
transfer method [PKDO7], solving (8), and performing
(9) and (10). The first two parts are affected by the
resolution of the rasterized gradient mesh, which are used
for calculating the N-dimensional distribution matching and
the gradient constraint. The computational complexity of the
N-dimensional distribution transfer is O(n) [PKDO7], where
n is the number of pixels in the rasterized gradient mesh. As
we can see from the supplemental material, the complexity
to calculate the terms of the linear system is also O(n). The
complexity to solve the 12 x 12 linear system is O(1). In
performing (9) and (10), the complexity is O(k), here k is the
number of control points of the gradient mesh. The running
time of our method is shown by parts in Table 4. In general,
it takes our method at most 90 seconds for the examples
in the experiments. The time difference between the raster
images and the gradient meshes are not large. This is because
the main time is spent on the N-dimensional probability
distribution transfer and the solving (8).

If running speed is a concern, we can improve the speed
of our method in two ways. One is to implement the Matlab
part with C++. The other is to use a rasterized gradient
mesh of smaller resolution for calculating the N-dimensional
distribution matching and the gradient constraint. This can
greatly improve the running speed with little impact on the
recolored image quality. Figure 11 shows an example. If we
use a rasterized image of half width and half height, the run
time of Part 1 and Part 2 (defined in Table 4) are reduced
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Gradient Mesh Raster Image
Part 1 2 3 1 2 3
jade (Fig. 1) 439 38.15001 442 38.16 0.20
horse (Fig. 3) 195 787 002 220 820 0.05

peppers (Fig.4) 237 1297 0.16 238 13.14 3.68
plumeria (Fig.5) 1.17 509 006 124 502 1.79
cloud (Fig. 6) 2028 71.75 0.06 20.17 71.35 0.59

Table 4: Comparisons of running time (seconds) on gradient
mesh and the corresponding raster image. “Part 1" refers to
the N-dimensional probability distribution transfer. “Part 2"
refers to solving (8). “Part 3" refers to performing (9) and
(10).

(@ (b)

Figure 11: Comparison of results using a smaller raster
image. (a) The recolored gradient mesh using a rasterized
image whose resolution is 800 x 511.(b) The recolored
gradient mesh using a rasterized image whose resolution
is 400 x 256. By using a raster image of half width and
half height, the run time of Part 1 and Part 2 (defined in
Table 4) are reduced from 20.28 and 71.75 to 10.14 and
17.79, respectively. The PSNR of these two recolored figures
is 50.45. The example image and the gradient mesh are the
same as in Figure 6.

from 20.28 and 71.75 to 10.14 and 17.79, respectively, while
the recolored results have no visual differences. The PSNR
of these two results is 50.45. Another possible way is to use
the GPU to accelerate the histogram based operations in the
N-dimensional distribution transfer as in [SHO7].

6. Limitations and Discussion

One limitation of our method is that finding a suitable
reference image is sometimes difficult, which is the same
as other color transfer methods. Therefore, we would like
to investigate more applications in our framework, which
are more intuitive, such as color theme enhancement [YP0S,
WYW?*10], and scribble-based recoloring [LLWO04]. Anoth-
er limitation is that there is no standard way to choose an
optimal A in (8). It may require user tuning based on the
visual effects. Nevertheless, pleasing results can be obtained
by setting A = 1 in most cases, as shown in the figures of this
paper. In our current work, we focus on the linear transform,
which makes use of the linear property of gradient meshes.
In future work, we will also consider non-linear transforms
for color editing.
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7. Conclusion

We have proposed an optimal linear operator for gradient
meshes color transfer. The color transfer process is approx-
imated by a linear operator solved from a minimization
problem. The minimization problem explicitly considers
both the color statistics and the constraints to match the
color features and meanwhile avoid artifacts. The colors and
color gradients of control points in gradient meshes are then
transformed by the linear operator. The grid structure of the
gradient mesh is preserved. The experimental results show
that our method can generate pleasing recolored gradient
mesh.
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