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Abstract

This paper presents a novel and effective approach to synthesize English handwriting in the user’s

writing style. We select the most important features that depict the handwriting style, including

character glyph, size, slant, and pressure, special connection style, letter spacing, and cursiveness.

The features can be efficiently computed with the aid of our specially designed sample collecting

user interface. Given ASCII text, the user handwriting is synthesized hierarchically. First, character

glyphs are sampled and shape variation is added. Second, words are generated by aligning the

character glyphs on the baseline with proper horizontal inter-character space and vertical offset

from the baseline. The heads and tails of the letters may be trimmed to avoid severe overlap and

facilitate possible connections between neighboring letters. Adjacent letters may be connected to

each other by polynomial interpolation. Finally, after the pressure is assigned, the handwriting is

rendered word by word and then line by line. The experimental results prove the capability of our

system to adapt to the user writing style.
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1 Introduction

Pen-based computing has become an active research area in human-computer interac-

tion with the flourish of many pen-based devices such as Tablet PCs, Personal Digital

Assistants (PDAs), and Electronic White-boards. Besides handwritten document analy-

sis (e.g. [17]), pen-based user interface (UI, e.g. [18]), and handwriting recognition (e.g.

[19]), handwriting manipulation, such as handwriting editing, error correction, and script

searching, is also a hot topic in pen-based computing. In contrast, handwriting synthesis,

i.e., converting ASCII text into the user’s personal handwriting, is an important yet much

less explored problem. It adds a personal touch to communications, e.g., enabling the re-

ceiver of an email to read the handwriting of the sender [21]. Like wallpapers and favorite

software settings, synthesized handwriting also contributes to the personalization of one’s

computing devices [21]. Moreover, it can free the user from lengthy and stressful writing,

e.g., when preparing many handwritten documents such as greeting cards with different

text. Handwriting synthesis may also be helpful to forensic examiners [22], the disabled

[21], and the handwriting recognizer (by generating more training or testing samples for

the recognizer [23]).

Existing methods for handwriting synthesis can be roughly divided into two categories.

The first one is based on the handwriting reconstruction process [1,2], in which the hand-

writing trajectory is analyzed and modeled by velocity or force functions. Though physi-

cally plausible, these methods may not be convenient for synthesizing non-cursive hand-

writing. The second category involves glyph-based methods [8–10], which usually record

the glyphs directly and reuse or sample the glyphs when synthesis. These methods require

intensive user involvement in the sample collection process and cannot produce various

handwriting styles, e.g., from handprint style to fully cursive style, in a natural way.
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In this paper, we present a novel and practical approach to English handwriting synthe-

sis. It generates different handwriting even for the same ASCII text and supports different

handwriting styles. The synthesized handwriting looks natural and is similar to the user’s

original handwriting as shown by the experimental results. Compared with the existing

methods, our system requires less user involvement in the process of collecting handwrit-

ing samples.

It is observed that the visual appearance of English handwriting is affected by many

factors [12,13]. In our system we extract features, such as character glyph, size, slant, and

pressure, special connection style, letter spacing, cursiveness, as the user’s writing style.

The feature extraction is efficiently done with the aid of the specially designed sample

collecting user interface. In particular, the user is only required to input each distinct

character three times, several special pairs of letters, and several multi-letter words.

After extracting the writing style, our system synthesizes handwriting hierarchically. It

firstly selects appropriate character glyphs after deciding the connection states between

lowercase letters in a word. Then each glyph is geometrically perturbed and aligned on

the baseline with appropriate horizontal distance between neighboring glyphs and vertical

offsets from the baseline. Next, the adjacent letters are connected to each other using

high-order polynomial interpolation, if they are decided to be connected according to the

connection states. The heads or tails of the glyphs may be trimmed in order to avoid server

overlap and to ease connection. Then the pressure is assigned to the ligature, and words

are rendered one by one to form a line. The lines are further stacked into paragraphs.

The rest of this paper is organized as follows. Section 2 reviews related work. Then

the following three sections introduce the factors that depict the handwriting style, the

extraction of user handwriting style, and the handwriting synthesis process, respectively.

Next, we present the experimental results in Section 6. Finally, we give conclusions and
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future work in Section 7.

2 Related work

Since the late 1980s, people have tried to interpret handwriting from an underlying

physical scheme [1,3]. Different computational models have been proposed for relating

velocity and force to the handwriting trajectory. A typical example is the delta log-normal

model [2,19]. Li et al. [4] employed this model to represent the velocity of handwriting

trajectory and encode the trajectory by a group of parameters. Bezine et al. [5] proposed

a beta-elliptic model to estimate the correlation between geometry and kinematics in fast

handwriting generation. These models prove to be successful for representing, compress-

ing, and reconstructing captured handwriting (e.g. [6,7,4]), but not synthesizing novel

handwriting. Schomaker et al. [1] introduced another computational model for the pro-

duction of handwriting. Assuming that the handwriting is ballistic and fluently cursive,

the handwriting is segmented into compound strokes that are modeled by a group of pa-

rameters in the velocity domain. Given an input text, a grammar for the connection of

cursive allographs determines abstract codes for connecting strokes, then symbols are

translated into a sequence of parameterized strokes. Their method requires that the hand-

writing samples be non-hesitant and written by experienced adult writers.

On the other hand, recording the user’s handwriting directly with a digital capturing

device and “redrawing” it faithfully on the (receiver’s) computer with the recorded infor-

mation, such as pen-tip position, pressure, and brush style, may be the simplest way to

produce personal handwriting. A pen-based system, such as a Tablet PC, provides such a

functionality, with which users are able to write on the screen using a digital pen and save

the handwritten document. It turns out to be laborious for users in case of long-time writ-

ing, such as preparing lengthy emails or numerous e-greeting cards. In addition, whenever

4



handwriting is required the user has to write him/herself.

Personal font design provides a more automatic way to produce handwriting. There

have been many commercial font design services, such as Personal Font and ParaType.

Customers are usually required to fill a form and send it to a font design company [21].

Font experts will select good handwriting samples and make sophisticated adjustments

before creating a TrueType R© or a PostScript R© font for the customer. Then the user uses the

personal font as a system font. However, users may feel inconvenient as the font creation

requires the involvement of font designers. Furthermore, the output handwriting has no

variation in character glyphs or word appearance that natural handwriting is supposed to

have. In addition, without careful writing and font tuning, cursive handwriting cannot be

generated because the characters in system fonts can only be rendered side by side without

generating the ligature on the fly.

Handwriting synthesis can combine the advantages of the above two approaches. Like

personal font, it lets users type on the keyboard or simply copy text, then the system will

generate the handwritten script. Moreover, it enables users to produce more natural hand-

writing without depending on font experts. In the following, we review some important

work on handwriting synthesis.

In 1996 Guyon [8] introduced a straightforward approach to synthesize handwritten

words. The system collects handwritten glyphs of single characters and letter groups that

most frequently appear in English text, such as “tion” and “ing”. When synthesizing a

word, the system splits the word into letter groups or characters. For example, “believe”

may be partitioned into “be”, “li”, and “eve”. Then the corresponding glyphs are placed

side by side without additional effort to connect them into a fluent handwriting. This

method does not handle glyph variation (although a global transform is tried). As a re-

sult, the synthesized handwriting has a regular appearance, and possible connections exist
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within each glyph only. In addition, the system requires users to write more than a thou-

sand letter groups in order to provide complete samples, which is tedious and impractical.

In 2002 Wang et al. [9] proposed a learning-based cursive handwriting synthesis sys-

tem. The trajectory is represented by a set of sparse control points and B-spline interpo-

lation is used to reconstruct it. They employ a tri-unit letter model in which a letter is

segmented into the head, body, and tail parts. The letter glyphs and ligatures (e.g., parts

connecting neighboring letters) of the cursive words are extracted by template matching.

The distribution of the control points of each character is learnt via PCA. For each lig-

ature, the segmented samples also form a generative distribution. During synthesis, the

letters and ligatures are randomly sampled from the generative distributions. Then a geo-

metric deformable model is applied to smooth the ligature part which consists of the tail

of the previous letter, the ligature, and the head of the latter letter.

In 2003, Wang et al. [10] proposed an improved algorithm over [9] to achieve better

results in letter segmentation and ligature generation. Given a handwritten sample, they

extracted features at two levels: coordinates of trajectory points and script codes that

depict the shape of letter glyph at a higher level. Then a two-level framework of level

building is applied to optimally segment single letters from cursive handwritten samples,

which reaches a correct segmentation rate of about 86%. Finally they adopted the delta

log-normal model [2,19] to synthesize smooth cursive handwriting .

The work of Wang et al. [9,10], however, has several drawbacks. First, their systems al-

ways require the user to write in fully cursive style. Unfortunately, partially cursive hand-

writing and handprint styles are also common in real situations. Second, a large handwrit-

ing database should be collected to learn the a priori distribution of letter glyphs for letter

segmentation. Third, during the segmentation process human interaction is demanded to

fix the letter segmentation error as automatic segmentation is not always correct [9,10,14].
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Such a procedure is not natural to non-technical users. Fourth, the sparse control point

representation and PCA learning of character glyphs may result in distortion such that

the generated glyphs may be invalid. Finally, their systems do not consider the pressure

variation of the strokes, which may make the synthesized handwriting less realistic and

less readable because letter spotting, as the first step of reading, becomes more difficult

without the help of stroke width variation to indicate the beginning and the end of each

letter.

Choi et al. [11] presented a character generation method based on Bayesian networks,

which integrates on-line handwriting recognizers. Instead of fluent handwriting, their

method generates separated characters only as they did not consider the ligature between

letters in the case of cursive handwriting. Furthermore, the method discards the personal

handwriting characteristics since the Bayesian networks represent the “average” writing

style of all users. Though it could be extended to adapt to personal writing styles, a large

amount of handwriting samples may have to be collected for each user.

3 Factors that Contribute to the Handwriting Style

The handwriting of different people differs in many aspects. These aspects actually

define the handwriting style of a person. As suggested by handwriting analysis techniques

in forensic inspection [13] or character analysis [12], factors that are easily noticeable to

ordinary people to distinguish different handwriting styles include: 1. the glyph and the

size of characters; 2. the pressure distribution and the slant of handwriting; 3. the relative

sizes of the middle, the upper, and the lower zones of letters; 4. the existence and the shape

of lead-in, connecting, and ending parts; 5. the letter, the word, and the line spacings; 6.

the embellishment; and 7. the simplified or neglected strokes.
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In our system, we choose features that depict the first five factors since they are rela-

tively easy to be computed by computers (as will be shown in Section 4), or simply be

provided by the user as samples. The synthesis of embellishment and the simplified or

neglected strokes may require a thorough understanding of handwriting dynamics [1,3,2]

or even psychology, which is still not fully available. Experimental results (in Section 6)

show that our system is capable of characterizing many aspects of handwriting style and

adapting to various handwriting styles.

4 Computing the Features of Handwriting Style from Samples

To make the system practical for ordinary users, we need a natural and intuitive way

by which a user “tells” the computer what his/her writing style is. In our first approach,

we requested users to write a paragraph of text and segment the samples from the hand-

written document. However, automatic segmentation does not always produce correct re-

sults [14,9,10]. Manually fixing the segmentation errors is unnatural and inconvenient for

a non-technical user. In our current system, we let users write isolated characters (with

ligature parts if users prefer cursive writing) instead. Though there might be mismatch

between the ligatures exhibited in isolated characters and those that appear when writing

words, writing isolated characters makes the glyphs of individual characters easily avail-

able to the computer. Specifically, we carefully design a sample collecting UI (Fig. 1)

which facilitates extracting features of the handwriting style. The UI consists of three

parts for collecting samples of individual characters, special letter pairs, and multi-letter

words, respectively. The user is requested to follow three stages (corresponding to each

part of the sample collecting interface), during which certain characters and character

pairs are collected.

Fig. 1.
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4.1 Features from Individual Characters

At the first stage, the user is asked to write all individual characters that appear on

a QWERTY keyboard (94 characters in total) three times (Fig.s 1(a)∼(d)). The three

samples for each character serve for glyph variation during synthesis. If the user prefers

cursive writing (which can be detected later when the user writes multi-letter words), the

three samples of lowercase letters will be viewed as their appearance at the beginning, the

middle, and the end of words, respectively. The UI also reminds the user to provide the

head and/or tail parts of the lowercase letters for possible connection (Fig. 1(a)). Note that

three samples per character may not capture all possible variants. To avoid asking the user

to input a large number of samples, we choose to add glyph variation during synthesis

instead. Based on the samples, the following features are computed for each character:

(1) Character glyph. We use a dense sequence of control points to represent the charac-

ter glyph. To do so, Sklansky’s algorithm [15] is adopted to approximate each stroke,

i.e., the trajectory of pen from pen-down to pen-up, by a polyline. Intermediate points

may be inserted to the sequence of polyline vertices if successive vertices are farther

than the average length of the polyline segments or the polyline has high curvature

at those points. These polyline vertices are taken as the control points of the char-

acter glyph. This representation supports easy control on the character glyph in two

aspects compared to the wave function approximation [2,19]. First, glyph variation

can be efficiently realized by simply moving control points around. Second, ligatures

between neighboring letters can be conveniently generated by adding control points.

In comparison to Wang et al.’s sparse control point representation [9,10], our dense

control point representation better preserves the character glyph and eases the letter

head/tail trimming (Section 5.2.2) and ligature generation (Section 5.2.3).
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(2) Character size. The size of character glyph may differ significantly when the charac-

ters are written separately in our UI. As a result, the relative sizes among characters

may appear unbalanced when synthesizing a line or a paragraph. Therefore size nor-

malization is necessary. However, making the height or the width of characters iden-

tical may remove natural size variation. Instead, we develop a scaling algorithm so

that the abnormal size variance among the characters is minimized while the natural

size variation is preserved. Readers may refer to Appendix for the details.

(3) Pressure. It is the measure of how heavily the user presses the pen against the screen.

It is physically captured when the user writes on a Tablet PC.

(4) Slant. The letter slant is estimated as the average direction of letter strokes [16]. The

global writing slant is taken as the average of all the letter slants. Then each letter

is de-slanted with its own slant so that during synthesis the global writing slant can

be applied to generate handwriting with a more uniform slant. It is possible to add

small slant variation to every character so that the synthesized handwriting looks

more casual.

(5) Average height of capital letters, middle zone letters, and descendent letters (Please

refer to Appendix for their classification). They are estimated from the normalized

letters. In particular, the average height of middle zone letters is very useful for

aligning letters and punctuations that do not lie on the baseline.

(6) Existence and shape of lead-in, connecting, and ending pieces. They are provided

by the user, e.g., the head and/or tail parts of lowercase letters. However, whether

the user prefers cursive writing and how a lowercase letter connects to others are

still unknown. Such information will be further probed by asking the user to write

special letter pairs and multi-letter words.
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4.2 Features from Special Letter Pairs

Our current system assumes that only lowercase letters may be connected to each other.

We further separate lowercase letters into uni-stroke letters and multi-stroke letters. The

multi-stroke letters include ‘f’, ‘i’, ‘j’, ‘t’, ‘x’, and ‘z’, which are probably written in

multiple strokes. Here ‘z’ is considered as a multi-stroke letter because some people like

to add a dot to the middle of it (Fig. 14(b)). The rest lowercase letters are uni-stroke letters.

Note that multi-stroke letters have more than one way of connecting to other lowercase

letters. For example, when writing “ta” (Fig.s 2(7)∼(12)), the user may write the t-stem

first and then connect ‘a’ to the t-bar (Fig. 2(9)), or write the t-bar first and then connect

‘a’ to the t-stem (Fig. 2(8)). Though uni-stroke letters may be written in multiple strokes,

we assume they have only one connection type, i.e., connection happens at the beginning

point or the end point of the letter.

The second stage of sample collection is designed to identify the special connection

style of multi-stroke lowercase letters, i.e., how they are connected to other lowercase

letters. For simplicity, the connection between two multi-stroke letters are not considered

in the current system. The user is asked to write special letter pairs, “af”, “fa’, “ai”, “ia”,

“aj”, “ja”, “ta”, “at”, “ax”, “xa”, “az”, and “za” (Fig. 1(e)) once. We pair multi-stroke

lowercase letters with ‘a’ to determine their connection styles because: 1. ‘a’ is easy to

connect when the user prefers cursive writing; 2. ‘a’ is usually written in a single stroke,

which greatly reduces the complexity of analysis; and 3. its shape and stroke length make

it robust for the bounding box test and the length test described in Algorithm 1.

Fig. 2.

Fig. 2 shows possible ways of writing “at” and “ta”. The examples show that the con-

nection style of multi-stroke letters can be very complex. The connection style includes

the head connection type and the tail connection type. Let us start from the tail connec-
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tion, using ‘t’ as an example. In Fig. 2, cases 7∼9 illustrate three possible ways in which

the end point of a ‘t’ glyph is the connection point. This case is defined as the NORMAL

type. Note that ‘t’ may be written as a uni-stroke in case 7, or two strokes in cases 8 & 9.

In cases 11 & 12, ‘t’ has no connection to ‘a’. This is defined as the NO CONNECTION

type. Case 10 shows a special situation where the last point of the first stroke of ‘t’ is the

connection point, i.e., the t-bar is a late stroke. This is defined as the SPECIAL TAIL type.

Similarly, for the head connection, cases 1∼4 have letter ‘a’ connected to the beginning

point of a ‘t’ glyph. Therefore, they belong to the NORMAL type. And cases 5 & 6 are of

NO CONNECTION type.

The following pseudo code (Algorithm 1) shows the heuristic rules of determining the

tail connection type of letter ‘t’ by checking the number, the bounding boxes, and the

lengths of the strokes in the letter pair “ta”. The head connection type of letter ‘t’ can be

determined in a similar manner. Although the algorithm is presented to deal with letter

‘t’, it is applicable to other multi-stroke lowercase letters ‘f’, ‘i’, ‘j’, ‘x’, and ‘z’.

4.3 Features from Multiple-Letter Words

In this stage, the user is asked to write several multiple-letter words (Fig. 1(f)) in order

to get information of spacing and cursiveness.

(1) Letter spacing. It is defined as the distance between the central lines of neighbor-

ing letters. We estimate it as the average letter width of multi-letter words after de-

slanting the words. Each multi-letter word provides an estimate of the letter spacing.

For simplicity, we model the distribution of the letter spacing by a Gaussian.

(2) Cursiveness. Cursiveness is a measure of how much the user prefers cursive writing.

It is between 0 and 1, where 0 represents that the user prefers handprint writing while

1 denotes that the user likes completely cursive writing. During synthesis, the sys-
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Algorithm 1. Determine the tail connection type of letter ‘t’.

input: Strokes S for letter pair “ta”

output: Tail connection type tailType

if S contains 1 stroke

tailType = NORMAL;

else if S contains equal or more than 3 strokes then

tailType = NO CONNECTION;

else

Compute the bounding boxes, B1 and B2, of the two strokes;

Compute the lengths, L1 and L2, of the two strokes;

if overlap between B1 and B2 is small then

tailType = NO CONNECTION;

else if L1 < c · L2 //c = 1.0 for letter ‘t’

tailType = NORMAL;

else

tailType = SPECIAL TAIL;

end

end

tem has to determine which pair of adjacent letters in a word is connected. It would

be ideal if we compute the connection probability from handwritten samples. How-

ever, it is impractical in real practice due to the large amount of letter pairs. Because

writing all the pairs once is laborious, and writing each letter pair only once cannot

provide an accurate estimate of the connection probability. Instead, we decouple the

pairwise connection probability into two components: the writer-independent a pri-

ori connection probability, which defines the easiness of connecting a pair of letters

and is estimated by counting the frequencies of their connection in handwriting sam-
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ples (not those samples provided by the user), and the writer-dependent cursiveness,

which measures how much the user prefers cursive writing. The two components

jointly estimate the connection probability of any letter pair during synthesis (Please

refer to Section 5.1.1). The user cursiveness can be estimated as follows.

In the UI the user is asked to write a particular set of words. Given the i-th word, let

ni be the number of letters, mi be the number of expected strokes when the word is

written in handprint style, and ki be the number of detected strokes. The cursiveness

pi of the i-th word is defined by:

pi = min

(
max

(
mi − ki

ni − 1
, 0

)
, 1

)
.

For example, “table” has 5 letters (ni = 5), and 6 expected strokes (mi = 6) assum-

ing ‘t’ is written in two strokes and each of the rest letters written in a single stroke.

A user may write the whole word in one stroke only (ki = 1). Then we have pi = 1.

The user cursiveness is calculated as:

Puser =
1

M

M∑
i

pi,

where M is the number of multi-letter words that the user writes. It is easy to check

that, the fully cursive writing style yields Puser = 1; the complete handprint style

yields Puser = 0; and the mixed style (partial cursive and partial handprint) yields

Puser ∈ (0, 1). A similar definition of cursivity index is introduced in [20].

5 Handwriting Synthesis Process

Based on the features of handwriting style, our system synthesizes handwriting in a

hierarchical way. For an input ASCII text, the glyphs of characters are first generated.

Then the characters are aligned on the baseline and are connected when needed to form a

word. Finally, the words are aligned into lines and further paragraphs. During synthesis,
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the extracted handwriting style features will be used in the subsequent processing steps

described in Sections 5.1, 5.2, and 5.3.

5.1 Character Generation

Fig. 3 shows the flowchart of character generation and the required information of the

handwriting style. As the glyphs of a lowercase letter when connected or disconnected to

other letters may differ significantly, we generate the letter glyph based on the knowledge

of its connection state, i.e., whether it is connected to its previous or subsequent letters, so

that appropriate samples can be chosen (Please refer to the first paragraph of Section 4.1.).

For the remaining characters, the three samples are randomly selected. Then a geometric

deformation is applied to perturb the character glyph. In the following, we will present

these steps in more details.

Fig. 3.

5.1.1 Connection state sampling

With the user cursiveness Puser, we can estimate the probability of connecting the i-th

and the j-th letters as:

Pij =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Puser, if Puser = 0, 1,

min(αPuserpij , 1), otherwise,

(1)

where α−1 =
1

26 × 26

∑
i,j

pij, and pij is the writer-independent a priori connection proba-

bility (i.e., the relative easiness of connecting the i-th and the j-th letters, see Section 4.3).

For an input ASCII word, the connection probability Pij of every pair of neighboring

lowercase letters is approximated by Eq. (1). Our system then generates a random num-

ber r that is uniformly distributed on [0, 1]. If r ≤ Pij, this letter pair is decided to be
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connected. Otherwise, they will not be connected. After each adjacent pair is processed,

the states for whether a letter connects with its previous or next one are determined.

5.1.2 Glyph initialization

For each letter in the word, we choose one of its three samples as the initial glyph.

Recall that we assume only lowercase letters might be connected to each other, and that

the three samples are supposed to appear at the beginning, middle, and end of words, re-

spectively. The initial glyph of a lowercase letter will be selected according to its position

in the word and its sampled connection state. More specifically, the “beginning” sample

is chosen when the lowercase letter is at the beginning of the word, or at a middle position

but not connected with the previous letter. The “end” sample is chosen if the letter is at

the end position or at a middle position but not connected with the subsequent letter. The

“middle” sample is chosen only when the letter is at a middle position and connected to

both its previous and subsequent letters. For example, given a word “hello” if the connec-

tion state sampling decides that every two neighboring letters will be connected except

for ‘e’ and the first ‘l’ (Fig. 4). Then we will chose the “beginning” samples for ‘h’ and

the first ‘l’, the “middle” sample for the second ‘l’, and the “end” samples for ‘e’ and ‘o’,

as shown in Fig. 4. If the word has only one letter, the “beginning” sample is chosen. For

capital letters, digits, or punctuations, the three samples are selected randomly.

Fig. 4.

5.1.3 Geometric deformation

We apply geometric deformation to simulate handwriting variation in real situations.

This method brings the advantage of avoiding the collection of a large number of hand-

written samples. As illustrated in Fig. 5, for stroke pieces delimited by high curvature

points, we sequentially apply local random rotation and random scaling to them, where

16



the starting point of the current piece is fixed at the ending point of last piece that has

undergone perturbation. The deformation is at a small scale so that the perturbed glyph

looks similar to, but still different from, the original one.

Fig. 5.

5.2 Word Composition

To compose the glyph of a word (Fig. 6), we first align the letter glyphs, vertically

and horizontally, against the baseline. The heads or tails of the glyphs may be trimmed

to avoid severe overlap and to facilitate smooth connection. Then the ligatures between

neighboring glyphs are generated by utilizing high-order polynomial interpolation. Fi-

nally the ligatures are assigned with pressure values.

Fig. 6.

5.2.1 Vertical alignment

Vertical alignment places letter glyphs vertically with respect to a horizontal base-

line. More specifically, for middle-zone letters, ascendent letters, capital letters, and digits

(Please refer to Appendix), the bottom of their bounding boxes is expected to meet the

baseline. For descendent letters, the top of their bounding boxes is expected to meet the

top of the middle zone, which is determined by the height of middle zone letters. For all-

zone letters (such as ‘j’) and punctuations, we assign the vertical offsets from the baseline

as scales of the middle zone height. The scales are class-dependent so we choose not to

spread out the empirical formulae due to the page limit.

5.2.2 Horizontal alignment

Horizontal alignment places letter glyphs horizontally along the baseline. We expect the

distance between the central lines of the bodies of two neighboring letters to be d, which
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is sampled from the letter spacing distribution (Please refer to Section 4.3). However, the

letter samples often have the head and the tail parts that are useful for connection but may

interfere in accurate central line computation. The letter glyphs may also severely overlap

each other when the head or tail parts are rather long. As a result, the synthesized hand-

writing may look weird or it may be hard to produce smooth ligatures. In the following,

we design a head/tail trimming scheme to remove redundant portions of heads/tails.

Fig. 7.

To detect the head and the tail, the end of the head part and the beginning of the tail are

first roughly estimated at the first cusp and the last cusp of the letter (Fig. 7), respectively.

At these cusps, the turning angles exceed a threshold. Such an estimation may not be

accurate for letters without salient head or tail part. We may refine the head/tail positions

by detecting the points that have maximum or minimum values in either horizontal or

vertical coordinates within the roughly estimated head/tail part (Fig. 7). The index of

the refined head/tail position is the minimum/maximum of the indices of these points, in

which the beginning or end points of the stroke are not taken into account.

After detecting the head and the tail, the remaining parts form the body of the letter. If

a part of the head/tail is outside the bounding box of the body and inside the bounding

box of its neighboring letter, this part is clipped as a redundant part (Fig. 8).

Fig. 8.

Up to now, letter glyphs still have vertical central lines since the letter samples are de-

slanted when extracting the writing style (Please refer to Section 4.1). After cutting the

head/tail parts of all letter pairs in the word, we may shear these letter glyphs with the

global writing slant.
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5.2.3 Ligature generation

When two neighboring letters are connected according to the sampled connection states,

a smooth ligature is expected to occur between them. We propose using a high-order poly-

nomial to fit the ligature part, which consists of the tail part T of the first letter, the head

part H of the second letter, and the line segment L linking the end point of T and the

beginning point of H (Fig. 9(a)). In particular, for multi-stroke lowercase letters, their

head/tail connection types tell which stroke may contribute to the head/tail part. For ex-

ample, let the t-bar and the t-stem be the first and second stroke of ‘t’ separately. If the

tail connection type of ‘t’ is NORMAL, the t-stem will be selected to connect ‘t’ and the

next lowercase letter (Fig. 2(8)). If the tail connection type of ‘t’ is SPECIAL TAIL, the

t-bar instead will be selected for connection (Fig. 2(9)).

Fig. 9.

Assume the ligature to be parameterized by

P(t) =
N∑

k=0

Pkt
k, t ∈ [0, 1] ,

where Pk are the control points of the ligature to be determined, and N is the number

of control points. We impose three constraints on the ligature: similarity to the original

ligature, deformation energy from the original ligature, and smoothness of the ligature.

The similarity requires that the new ligature should be close to the original ligature. It

is defined as

E1 =

1∫
0

ξ1(s) ‖O(s) − P(s)‖2 ds,

where ξ1(s) is a weighting function and O(s) is the parametric function for the original

ligature interpolated from the control points by cubic splines. In order to allow larger
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deviation at the part of L, ξ1(s) should be smaller when s is parameterizing L.

The deformation energy requires that, conceiving the ligature as a spring, the new lig-

ature should be deformed from the old one with least energy. The deformation energy is

defined by

E2 =

1∫
0

‖O′(s) − P′(s)‖2
ds.

The smoothness requires that the resulting ligature is smooth, defined as

E3 =

1∫
0

ξ3(s) ‖P′′(s)‖2
ds,

where ξ3(s) is a weighting function. Because the non-smoothness occurs around the end

points of L, ξ3(s) should be larger when s is parameterizing the parts around the end

points of L.

Based on the above energy functions, the control points Pk, k = 1, · · · , N , should

minimize the following function:

E
(
{Pk}N

k=1

)
= λ1E1 + λ2E2 + λ3E3,

with boundary conditions:

P0 = O(0),
N∑

k=0

Pk = O(1), P1 = O′(0),
N∑

k=0

kPk = O′(1),

where λ1, λ2, and λ3 are constants. They are chosen as λ1 = 0.89, λ2 = 0.085, and

λ3 = 0.025, respectively, by trial and error. The above problem turns out to solve a linear

equation for Pk, k = 1, · · · , N .

In implementation, some details should be considered when preparing the ligature from
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neighboring letter glyphs. First additional control points may be inserted to ensure that

both T and H have at least three control points (could be replicant). Second, if L is close

to vertical, it may be difficult to connect two glyphs smoothly. In this case, the first point

of H is dropped and L is updated as the line segment linking the end point of T and the

second point of H (Fig. 9(b)), so that the slope of L can be smaller.

5.2.4 Pressure assignment

The variation in stroke width not only adds liveliness to handwriting, but also helps

reading as the letter spotting becomes easier when the strokes of the letter end with di-

minishing width. The stroke width variation can be fulfilled by introducing pen pressure to

the stroke. Recall that the pressure on the letter samples has been captured during hand-

writing sample collection, so the pressure of points at the body part simply inherits its

original value. For the ligature, we assign the pressure by “transferring” the pressure from

the head and the tail parts. Assume that there are m points on the head and the tail parts,

and p1, · · · , pm are their pressure values captured in letter samples. If there are n points

on the new ligature, the pressure value of the i-th point is assigned by

p̃i = pk, where k is the integer part of i · m

n
.

Given the stroke points and pen pressure, the rendering APIs provided by Microsoft R©

Tablet PC Ink SDK will automatically render the strokes, where low-pressure parts have

small width and high-pressure parts have large width.
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5.3 Line and paragraph composition

In our system, multiple words are rendered one by one with the inter-word spacing,

i.e., the distance between the right of the bounding box of the first word and the left of the

bounding box of the second word, being assumed as half of the letter spacing. Should the

handwriting appear in multiple lines, we have to choose an appropriate line spacing. We

have observed that users often have the top of the second line meet the bottom of the first

line. Then we may take the spacing as follows:

dline = Hcap + Hdes − Hmid + ∆h,

where Hcap, Hdes, and Hmid are the height of capital letters, descendent letters, and

middle-zone letters (Please refer to Section 4.1), respectively, and ∆h is a small positive

value to ensure that the handwriting on two lines does not overlap, so that the synthesized

handwriting is more readable. In our system, ∆h is empirically chosen as 10. Randomness

can also be added to ∆h to enrich the naturalness of synthesized handwriting.

6 Experimental Results

We build the handwriting synthesis system on a Tablet PC with which the users can

write directly on the screen with a digital pen. Eight testers are invited to test our system.

They are from China, USA, and Japan, respectively. Their handwriting styles vary from

handprint to completely cursive, as shown in the left column of Fig. 10. Four testers have

no experience of writing on a Tablet PC and they are allowed to practise to get accustomed

to writing on the screen. Usually, a user can finish inputting his/her handwriting samples

at his/her normal writing speed within twenty minutes. The sample collecting process can
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be much faster if the writer is experienced of using Tablet PCs, as tested by the authors.

Fig. 10.

Fig. 11.

Fig. 12.

Fig. 10 shows some handwriting samples of the eight users and the synthesized glyphs.

One can see that most of the synthesized words are quite similar to the original samples.

Note that the synthesized words vary from handprint to completely cursive. Therefore,

the cursiveness of the writers is well preserved. Fig. 11 shows handwriting paragraphs

synthesized by our system using the writing styles of the eight users, respectively. On a

Pentium 2.8GHz PC, it takes about one second to synthesize this paragraph of text for each

user using our unoptimized codes. The computation of horizontal alignment and ligature

generation accounts for the majority of time. Table 1 is the cross rating among the testers,

i.e., each tester evaluates whether the synthesized handwriting of every writer is similar

to its corresponding real handwriting. The evaluation shows that the performance of our

system is rather satisfactory.

Fig. 12 shows the paragraphs generated by the approach proposed in [9] in the styles

of the second and the eighth writers (Fig. 10(b1)(b2)(h1)(h2) and Fig. 11(b)(h)). One can

see that our approach produces more natural, readable, and user-dependent handwriting,

and the difference in visual appearance among different writers is much larger than that

in Wang’s results.

Fig. 13.

We also have our system integrated with Microsoft R© Office R© Outlook R©. Fig. 13 shows

an example of the communication via emails. Although the sender sends a text email, what

the receiver reads is a handwriting email. The handwritten script is sent as an image so

that the requirement on the receiver’s system is minimal. We choose the image format as
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Table 1

Cross rating among the testers. The score at the cross of row i and column j is the rating of the

tester i on the similarity between the synthesized handwriting and the real handwriting of the tester

j . The scores are between 1 and 5, with 1 being completely dissimilar and 5 being very similar.

Tester 1 Tester 2 Tester 3 Tester 4 Tester 5 Tester 6 Tester 7 Tester 8

Tester 1 4 4 5 5 4 4 4 2

Tester 2 5 3 4 5 3 5 3 2

Tester 3 4 5 4 5 5 4 4 2

Tester 4 4 4 5 4 4 5 5 3

Tester 5 5 5 5 5 3 5 5 3

Tester 6 5 4 4 4 3 4 4 2

Tester 7 5 4 5 5 4 4 4 2

Tester 8 4 4 5 5 4 4 4 1

TIFF which ensures a small image size while preserving the visual quality of thin strokes.

For the given example, the image of the handwriting is about 22KB.

7 Conclusions and Future Work

In this paper, we presented a novel handwriting synthesis system which extracts the

user’s handwriting style and synthesizes new handwritten scripts according to the user’s

writing style. Particularly, our system respects the cursiveness that varies from completely

handprint to completely cursive, as well as the special connection styles of multi-stroke

lowercase letters. The experimental results demonstrate that our system can produce per-

sonal handwriting with pleasing visual quality.

The proposed system, however, does not capture all aspects of the handwriting style.

For example, we only provide connection between lowercase letters and the variance of

letter glyphs is simply approximated by geometric deformation. Moreover, our system

assumes that the users write at constant speed. But users may write more quickly and
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less patiently after some time in real situations such that the handwriting may become

crabbed. We may incorporate such an effect by introducing the impact of time and speed

on the handwriting appearance. Other handwriting psychology should also be understood

to make our system more robust. As shown in Fig. 10, some synthesized words, such as the

synthesized glyphs of “people” and “little” for the eighth writer, look different from their

counterparts. It is mainly because the isolated letter samples were written with quite long

head/tail parts that actually do not appear when the user writes words. Finally, although

currently our system only supports English handwriting, it is possible to be extended to

support other western languages with some modifications. Considering general handwrit-

ing synthesis, incorporating part of our techniques, e.g., the treatment on handprint and

partial cursive writing styles and the multi-stroke letters, with the computational model

proposed by Schomaker et al. [1] may be a possible way. In this case, the ligature insertion

method described in [1] might be adapted to make the ligature generation process simpler.

As argued above, there are opportunities to improve our current system. However, in

this paper we have discussed various advantages of our approach. First, due to the prag-

matic procedure of collecting a relatively small amount of samples, the required involve-

ment of the user is minimal compared to other systems. Second, our results appear visually

acceptable (for both cursive and handprint handwriting), which was sustained by a user

study presented in this paper. Third, we believe that compared to the commercial font de-

sign services, our approach offers a valuable and more personal alternative, which mimics

true handwriting in a better way.

Appendix: Size Normalization

In paragraph writing, the relative sizes among characters usually appears uniform. But

they may differ significantly when the characters are written separately in our input UI.
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Therefore, size normalization should be done among the same class of characters or

among the samples of a character. The characters can be classified into seven classes:

(1) Middle zone letters: a, c, e, m, n, o, r, s, u, v, w, x;

(2) Ascendent letters: b, d, h, i, k, l, t;

(3) Descendent letters: g, p, q, y;

(4) All-zone letter: f, j;

(5) Capital letters: A∼Z;

(6) Digits: 0∼9;

(7) Others: z and the rest characters.

For the first six classes of characters, the size normalization is applied so that the heights

of the normalized characters in the same class are almost the same. For the last class of

characters, the size normalization is done among the three samples of each character only.

Note that ‘z’ is singled out because it has at least three kinds of glyphs in handwriting

(Fig. 14), and one of the glyphs is descendent (Fig. 14(c)).

Fig. 14.

We wish not to make the heights of the characters in the same class identical in order

to preserve the natural size variation. Therefore, we propose a scaling algorithm so that

the size variance among the characters is minimized, and on the other hand the scaling

factor for each sample is also close to 1. These constraints try to preserve the natural size

variation while suppressing abnormal size variation. Suppose the scaling factor for each

character is si, and their optimal width is Wopt. We have to find Wopt and s = (s1, · · · , sN)

to minimize both functions:

g(s, Wopt) =
1

2

N∑
i=1

(siwi − Wopt)
2 +

1

2

N∑
i=1

⎛
⎝sihi − 1

N

N∑
j=1

sjhj

⎞
⎠

2

,

φ(s) =
1

2

N∑
i=1

(si − 1)2,

(2)
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where wi and hi are the width and height of the i-th sample, and N is the number of

samples in a given class. The minimization of g aims at making the size of the scaled

characters be as uniform as possible, while the minimization of φ requires the scaling

factors to be as close to 1 as possible. We do not replace Wopt with
1

N

N∑
j=1

sjwj because

we want the width of the characters to be more uniform so that the horizontal alignment

can be easier. The solution to (2) is:

Wopt =
1TAw

‖Aw‖2 , s = WoptAw,

where 1 = (1, · · · , 1)T , w = (w1, · · · , wN)T , and A = (Λ − N−1hhT )−1, in which

Λ = diag(h2
1 + w2

1, · · · , h2
N + w2

N) and h = (h1, · · · , hN )T . After normalization, the

average width and height of each character are recorded for later use.
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Figure legends:

(1) Figure 1. The user interface (UI) to collect user handwriting samples. (a) The over-

all appearance of the UI when collecting the samples of lowercase letters. (b)∼(f)

The sample collection boxes when collecting the samples of capital letters, digits,

punctuations, special letter pairs, multi-letter words, respectively.

(2) Figure 2. Different connections between ‘t’ and ‘a’. (1)∼(6) Different ways of writ-

ing “at”. (7)∼(12) Different ways of writing “ta”. Note that in (8) the t-bar is the first

stroke of ‘t’, while in (10) the t-bar is the second stroke of ‘t’.

(3) Figure 3. The flowchart of character generation.

(4) Figure 4. Selecting lowercase letter samples according to their positions in the text

word and the connection states.

(5) Figure 5. Adding geometric deformation to each stroke piece sequentially. With

small random scaling and rotation of each stroke piece (delimited by the high-

curvature points indicated by the dots), the perturbed stroke (solid stroke) may be

different, but still similar, to the original stroke (dashed stroke).

(6) Figure 6. The flowchart of word composition.

(7) Figure 7. Detecting the head and the tail. The end point of the head part and the

beginning point of the tail part are first detected as the cusps (round dots) that are

close to the ends of the stroke, and are then refined with the x-min-max or y-min-max

points (square and diamond dots) in the estimated head or tail parts. In this example,

the head part is detected as the part before the hollow dot because it is also the x-max

and y-max point, and the tail part is the part after the diamond dot.

(8) Figure 8. The rule of trimming head/tail parts of a letter. If part of the head or tail

part is outside the bounding box of the body and inside the bounding box of its

neighboring letter, this part is clipped. In this example, the bounding boxes of ‘a’,

its body part, and the subsequent letter ‘d’ are the thin solid, the thick solid, and the
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dashed rectangle, respectively. Therefore, the tail part of ‘a’ between lines C and D

is clipped.

(9) Figure 9. (a) The original ligature between two letters. The dots are the control points

on the ligature. (b) The first control point of the head part of the second letter may be

dropped so that the slant of the linking line segment is smaller. This will be a better

initial shape for ligature.

(10) Figure 10. Comparison of the captured handwriting samples (left column) of eight

writers and the synthesized handwriting (right column).

(11) Figure 11. Synthesized handwriting paragraphs in the style of the eight writers.

(12) Figure 12. Examples of the synthesized handwriting by Wang’s system [9] in the

styles of the second and the eighth writers, respectively. Note that they look similar

although the actual handwritings are quite dissimilar. Moreover, the completely cur-

sive writing style required by the system causes severe deformation in letter glyphs.

(13) Figure 13. Integration of our handwriting synthesis system with Microsoft R© Office

Outlook R©. (a) The text email composed by the sender. (b) The synthesized hand-

writing email read by the receiver. The handwriting is sent as an image.

(14) Figure 14. Different ways of writing ‘z’.
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