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Spatio-Temporal Sampling of
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Abstract —Environment sampling is a popular technique for rendering scenes with distant environment illumination. However,
the temporal consistency of animations synthesized under dynamic environment sequences has not been fully studied. This
paper addresses this problem and proposes a novel method, namely spatio-temporal sampling, to fully exploit both the temporal
and spatial coherence of environment sequences. Our method treats an environment sequence as a spatio-temporal volume
and samples the sequence by stratifying the volume adaptively. For this purpose, we first present a new metric to measure the
importance of each stratified volume. A stratification algorithm is then proposed to adaptively suppress the abrupt temporal and
spatial changes in the generated sampling patterns. The proposed method is able to automatically adjust the number of samples
for each environment frame and produce temporally coherent sampling patterns. Comparative experiments demonstrate the
capability of our method to produce smooth and consistent animations under dynamic environment sequences.

Index Terms —Spatio-temporal sampling, dynamic environment sequences, temporal consistency, importance metric, adaptive

volume stratification

1 INTRODUCTION

Realistic rendering with real-world illumination [1],
[2], [3] is a challenge in computer graphics. A brute-
force way is to integrate the contributions of all in-
coming radiances to each surface element, in which
an HDR environment map [4] is commonly used to
capture the natural distant illumination. However, the
large amount of light sources in a high-resolution
environment map makes the radiance computation
intractable. To simplify the computation, we can ap-
proximate an environment map with a finite number
of directional light sources by using the environment
sampling techniques [5], [6], [7], [8], [9], [10]. As a
practical solution to production pipelines, it is possi-
ble to perform sophisticated sampling algorithms dur-
ing preprocessing and then to apply different environ-
ment lighting in rendering. In addition, environment
sampling can greatly save the storage space, especially
when dynamic environment sequences are used for
illumination.

Existing environment sampling techniques can be
roughly classified into two categories, depending on
whether the environment is static (i.e. a single en-
vironment map) [5], [6], [7], [11] or dynamic (i.e. a
dynamic environment sequence) [9], [10]. Although
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most static sampling methods can achieve high ren-
dering quality, directly applying them to sample dy-
namic environment sequences in a frame-by-frame
manner may cause severe flickering artifacts in the
rendered animations. In our previous work [9], we
proposed spherical q-tree, whose adaptive nature
suppresses the temporal inconsistency to some extent.
Although it utilizes the temporal coherence of con-
secutive frames, the spherical g*-tree samples each
frame independently. Havran et al. [10] developed
a postprocessing method to improve the temporal
consistency, in which temporal filtering is applied to
the power and position of light samples. Their method
is effective to alleviate fluctuations in the environment
lighting, while the rendered results might not conform
to the ground truth.

In this paper, we propose spatio-temporal sampling,
a novel method to simultaneously exploit the tem-
poral and spatial coherence of dynamic environment
sequences. Our method represents an environment
sequence as a spatio-temporal volume, in which con-
secutive frames are stacked up along the temporal
dimension. Environment sampling is then performed
through stratifying the spatio-temporal volume, with
more subdivisions in more important regions. To
measure the importance of a stratified volume, we
present a volumetric importance metric that considers
both the illumination and the temporal duration of
the volume. Based on this metric, we perform strat-
ification not only spatially but also temporally. This
is achieved by an adaptive stratification scheme that
employs a quadtree splitting in the spatial dimensions
and a binary tree splitting in the temporal dimension.
Additionally, we present a subdivision cost, according
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to which we select a particular dimension to split.

The proposed method can automatically determine
the number of light samples for each environment
frame, reflecting the variation of illumination over
time. It can also suppress abrupt changes in the
generated sampling patterns. As a result, we are able
to obtain smooth and temporally coherent rendered
animations. Readers may skip to Figures 12 and 13
for two examples demonstrating the effectiveness of
our method.

The rest of the paper is organized as follows.
Section 2 briefly reviews related work. Section 3
presents the way of constructing the spatio-temporal
volume from an environment sequence. In Section 4,
we describe our spatio-temporal sampling method in
detail. Experimental results are reported in Section 5,
followed by conclusions in Section 6.

2 RELATED WORK

Consider the reflected radiance at point x on an object:

I(z,5) = /Q Lin (@) pl, &, 50, 3)(@ - #)d5, (1)

where &, § and 7 represent the lighting direction,
viewing direction, and surface normal, respectively;
L;y, is the incident illumination; p is the BRDF func-
tion; and v is the binary visibility function. It is
apparent that when an environment map is used for
illumination, computing the above integral by brute
force is very time consuming.

To improve the computing efficiency, several ef-
fective techniques, including sampling of the BRDF,
sampling of the environment lighting, and sampling
of the product of both, have been proposed. The BRDF
importance sampling [12], [13], [14] performs better
for high-frequency BRDFs but low-frequency illumi-
nations. When the environment map contains high-
frequency lighting features, the environment impor-
tance sampling performs better in reducing rendering
bias. In comparison, the product importance sampling
[15], [16], [17], [18], [19] achieves the best rendering
quality for various BRDFs and illuminations. Note
also that it could be reduced to BRDF sampling or
environment sampling. In the following, we review
the existing techniques that can be used for environ-
ment sampling.

2.1 Sampling from Static Environment Maps

Gibson and Murta [20] generated light samples from
an environment map by minimizing rendering errors
in shadows. Their method requires a reference image
of shadows cast by the environment map. Kollig and
Keller [6] developed an iterative method. In each iter-
ation, a new sample is inserted near the sample with
the maximum intensity, and all samples are refined
according to the associated Voronoi tessellation.

Agarwal et al. [5] thresholded an environment map
into separate regions, and then assigned each region
a different number of samples based on an impor-
tance metric. Afterwards, the regions are hierarchi-
cally stratified into disjointed strata, with one sample
centered at each stratum. Ostromoukhov et al. [7]
proposed a fast sampling algorithm that generates
light samples by constructing a Penrose tiling struc-
ture on top of an environment map. Devebec [8]
developed a median cut algorithm to partition an en-
vironment map hierarchically into rectangular regions
with similar energies. Annen et al. [21] approximated
an environment map with a set of rectangular area
lights. Differing from other methods, their approach
may generate overlapping area lights.

Clarberg et al. [16] presented a technique for prod-
uct sampling using wavelets, which can generate high
quality sampling patterns. Their method hierarchi-
cally warps an input point set to match the distri-
bution of the product of the BRDF function and the
environment lighting. Subsequently, they proposed
a more practical method [18], which avoids using
precomputed BRDF function by sampling it on-the-
fly. Jarosz et al. [19] further extended the hierarchical
sample warping for importance sampling functions
represented as spherical harmonics.

2.2 Sampling from Dynamic Environment Se-
quences

For dynamic environment sequences, sampling each
frame separately is prone to flickering artifacts in the
rendered animations. In our previous work [9], we ad-
dressed the temporal consistency problem by building
an adaptive spherical g*-tree. The temporal coherence
of consecutive frames is used to generate samples
rapidly. Due to its local adaptive nature, the spherical
q?-tree can suppress abrupt changes in the generated
sampling patterns to some extent. Although it makes
use of the coherence of environment sequences, it still
relies on the strategy of sampling the sequence frame
by frame.

Havran et al. [10] proposed an efficient algorithm
for sampling hemispherical environment sequences.
For each frame, samples are distributed according to
the associated goniometric diagram mapping from
a unit square to the hemisphere. Temporal filtering
by an FIR filter is then applied to the power and
position of the samples within a time sliding window.
Such temporal filtering can reduce the fluctuations
in the environment lighting, e.g. when a sequence is
captured in an interior with fluorescent lighting. How-
ever, by redistributing the light energy, the rendered
animations might not conform to the ground truth.
Note also that their method handles hemispherical
environment maps and is not directly applicable for
spherical environment sequences.

Ghosh et al. [17] introduced a sequential sampling
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Fig. 1. Spatio-temporal volume construction: (a) shows the unrolled view of one environment frame represented
in the HEALPIx format, which consists of 12 base patches. (b) by stacking up the frames of an environment
sequence in the chronological order, we obtain 12 base volumes. Here one base volume is visualized in light

gray for illustration.

approach for efficiently sampling the product of dy-
namic environment lighting and BRDFs. They gen-
erated samples for the first frame of the rendered
animation by bidirectional importance sampling. The
samples are then propagated to the following frames
using sequential importance sampling. They further
employed a Markov Chain Monte Carlo transition
kernel to redistribute the samples according to the
product distribution at each frame. This method does
not require the knowledge of future environment
frames and hence can deal with dynamically captured
environment data. Another work aiming to decrease
temporal flickers is from Hasan et al. [22]. They clus-
tered lights in a tensor defined over lights, rendered
pixels, and the indices of the rendered frames. In
contrast, our spatio-temporal volume is composed of
environment lighting only, which leads to a simple
sampling method.

Note that most aforementioned methods consider
the temporal coherence either between two consecu-
tive frames or among a block of continuous frames.
In our work, we generate light samples using all the
frames in a dynamic environment sequence. We deem
that dynamic environment data is to be used in off-
line rendering so that exploiting the spatio-temporal
coherence globally is possible and practical. Although
our spatio-temporal sampling cannot be implemented
in real time, it maintains sampling consistency better
than the previous methods.

3 SPATIO-TEMPORAL VOLUME CONSTRUC-
TION

Figure 1 illustrates the construction process of a
spatio-temporal volume. Given a dynamic environ-
ment sequence, we stack up all the frames in the
chronological order. As a result, each voxel, i.e. the
smallest unit in a volume, corresponds to a unique
pixel of one frame. Therefore, both temporal and
spatial information of the sequence are embedded in
the volume. For simplicity, we use the term, time
domain, to refer to the set of frame indices, and spatial

domain to denote the image space. This volumetric
representation allows us to utilize both the temporal
and spatial coherence of the entire environment se-
quence simultaneously.

In our construction process, we have an under-
lying assumption that the spherical environment is
represented in a rectangular structure. Following our
previous work [9], we adopt an equal-area spherical
mapping, namely HEALPix [23], because it effectively
maps a sphere to a rectangular structure, owns high
sampling uniformity and introduces less distortion in
the mapping. Figure 1(a) shows the HEALPix map for
one environment frame. Since the HEALPix partitions
a sphere into 12 base patches, stacking an environ-
ment sequence yields 12 base volumes, as shown in
Figure 1(b).

4 SPATIO-TEMPORAL SAMPLING

After constructing spatio-temporal volumes, our goal
is to perform sampling in the volumes such that the
generated samples can be used to render high-quality
animations. We consider the rendering quality from
two aspects: the rendering accuracy of each rendered
frame, and the temporal consistency of the rendered
animation. Note that in a practical sense, we are more
likely to notice abrupt temporal changes (i.e. flickers)
when we have no prior knowledge of the ground
truth. Intuitively, a decent sampling algorithm has
to meet three requirements: (1) for each environment
frame, the important regions should be assigned with
more samples; (2) more samples should be given
to the frames with higher importances; and (3) the
generated sampling patterns should change smoothly.

Based on these concerns, we develop a spatio-
temporal sampling algorithm that stratifies the spatio-
temporal volumes both spatially and temporally. Its
general framework is as follows:

1. For a dynamic environment sequence, construct
the 12 base volumes at initialization.

2. Evaluate the importances for all the volumes
and choose the one with the highest importance.
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3. For the selected volume, determine which do-
main is to be split and perform an appropriate
splitting. The splitting partitions a volume into
several non-overlapping volumes.

4. Define a temporal slice of each volume as a
stratum. If the average number of strata for each
frame does not reach a pre-defined value, return
to step 2.

5. For each volume, place a sample at the centroid
of each stratum. Hence, a resulted volume con-
sisting of T' temporal slices will have T samples
in total.

This framework can suppress the abrupt changes in
the generated sampling patterns due to its adaptive
nature. Its performance is affected by two factors,
the importance metric of a volume and the splitting
scheme. The importance metric determines which re-
gions should be assigned with more samples, and
the splitting scheme controls the coherence in the
generated sampling patterns. We will discuss these
two issues in the following subsections.

4.1
umes

Importance Metric for Spatio-Temporal Vol-

In importance sampling, we would like to assign more
samples at brighter regions and fewer samples at
darker regions. Note that the regions are not restricted
to one environment frame, but may come from differ-
ent frames.

Let us begin by an example. Suppose there are
two spatio-temporal volumes, V; and V2, as shown
in Figure 2. We assume that they span the same
solid angle in the spatial domain and have uniform
intensities. Let us first consider the strata of two
volumes at time ¢ = 0. Since the two strata belong to
one environment frame, if the stratum S? in V; is more
important than the stratum SJ in V5, more samples
should be assigned to SY. Due to the uniform intensity
assumption, an intermediate stratum S! in V; is also
more important than any intermediate stratum S} in
V,, although they may be from two different frames.
As a result, more samples should be given to each
stratum in V;. Note that this analysis always holds
no matter which volume has more temporal slices.
In other words, the sampling depends more on the
regional importance of each stratum (i.e. the impor-
tance of a 2D region) than the temporal duration of
the volume.

Following this idea, we define the volumetric im-
portance metric as the average of the regional impor-
tances of strata in a volume, given by

1
Iy=r ;mt), @

where I'(¢) is the regional importance of the stratum
at time ¢ and 7 is the number of strata in the volume.
Particularly, when T' = 1, the volumetric importance
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Fig. 2. Estimation of the importances of spatio-
temporal volumes.

metric I', reduces to a regional importance metric.
Our metric can cope with the existing regional impor-
tance metrics [6], [8], [5], [24]. In our work, we adopt
the metric proposed by Agarwal et al. [5]. By com-
bining the stratified sampling and illumination-based
importance sampling, they described the importance
metric for a 2D region (2 as

I = LAw’, 3)

where Aw is the solid angle of 2, and L is the
integrated illumination, given by

L= /Q Lin(&)d3. )

A large value of parameter a favors the illumination
component and a large value of b favors the area
component. The hybrid metric avoids oversampling
small bright regions, while for equal-area regions it
is equivalent to the integrated illumination. In this
paper, we adopt the setting a =1 and b =1/4.

By substituting (3) into (2), our volumetric impor-
tance metric becomes

L= > (2] o (5)

where L(t) is the integrated illumination of the stra-
tum at time ¢. The proposed importance metric not
only considers the illumination and region area of a
volume but also eliminates the impact of the temporal
duration of the volume. We can further speed up its
computation by using the summed area table [25].

4.2 Adaptive Volume Stratification

With the proposed importance metric, we now de-
scribe our hybrid tree structure for volume stratifica-
tion. It applies a binary tree in the time domain and
a quadtree in the spatial domain. This hybrid tree
structure has the advantages of both simplicity and
stability of the quadtree in 2D splitting and the binary
tree in 1D splitting, respectively. Using a quadtree
in the spatial domain guarantees a low-discrepancy
sampling pattern when the environment lighting is an
image of constant radiances [9]. On the other hand,
applying a binary tree in the time domain helps to
capture apparent changes between consecutive envi-
ronment frames.
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Input: A spatio-temporal volume.

Output: Several non-overlapping sub-volumes.

1. Compute the splitting cost of subdividing the
volume along one dimension, getting C., Cy and Cy;

2. If 2C; > Cy + Cy, split the volume using a binary
tree in the time domain;

3. Otherwise, split the volume using a quadtree in the
spatial domain.

Algorithm 1: Splitting a spatio-temporal volume.

Specifically, for a given volume, we first determine
which domain is to be split (explained later), and
then either split the volume at the center in the time
domain (which results in two sub-volumes), or split
it equally along the two spatial dimensions (which
results in four sub-volumes). Figure 3 illustrates the
two splitting schemes. Recall that each stratum in
a resulted volume is collapsed to one light sample.
Therefore, after the temporal splitting the total num-
ber of samples in the volume remains unchanged
while the spatial splitting increases the total number
of samples four times.

y : y

At the end, we illustrate how the spatio-temporal
sampling works using a simple example. Figure 4(a)
shows an input volume. It is composed of three parts,
each with constant intensities (light gray colors refer
to high intensities). At the first subdivision, since the
cost of the temporal splitting is much larger than the
costs of the spatial splittings, the volume is split with
a binary tree in the time domain (Figure 4(b)). The
resulted sub-volume on the right part owns a higher
importance and is selected at the second subdivision.
At this time, the cost of the temporal splitting is
zero, so the quadtree-based stratification is applied in
the spatial domain (Figure 4(c)). Figure 4(d) shows
the generated sampling patterns. As demonstrated
in this example, the hybrid volume stratification can
capture both the abrupt illumination changes between
successive frames (Figure 4(b)) and the important
changes in the spatial domain (Figure 4(c)).

y

’

0 T1/2 T1 t 0 T1/2 T1 t
(a) input volume (b) 1%¢ subdivision

(a) (b)

Fig. 3. A volume can be split (a) in the time domain
which results in two sub-volumes, or (b) in the spatial
domain which results in four sub-volumes.

Note that the splitting should capture impor-
tant changes in the illumination, including tempo-
ral changes between successive frames and spatial
changes between nearby regions in the spatial do-
main. Hence, we select the domain that yields a larger
difference between the importances of the resulted
sub-volumes. For this purpose, we define a splitting
cost. Suppose the volume is split along one dimension
to get two sub-volumes, v; and vy. The splitting cost
is given by,

C =Ty — Tl (6)

Let the cost of the temporal splitting to be C;, and
the costs of splitting along one spatial dimension only
are C, and C, respectively. Since we always split a
volume in the spatial domain with two subdivisions,
the temporal splitting is performed if and only if the
following condition holds,

2C; > Cy + C,,. 7)

The steps of splitting a volume are summarized in
Algorithm 1.

-
e

7

L
0 T1/2 T1 t 0 T1/2 T1 t
(c) 24 subdivision (d) samples

Fig. 4. lllustration of spatio-temporal sampling. (a)
is an input volume. Light gray color indicates high
intensity. (b) and (c) show the results of the first and
second subdivisions, respectively. (d) gives the possi-
ble generated sampling patterns.

5 EXPERIMENTS AND DISCUSSION

We first introduce a metric for measuring the tempo-
ral inconsistency of an importance sampling method.
Next, the proposed spatio-temporal sampling is com-
pared with several existing methods, which is fol-
lowed by a discussion of our method.

5.1 Temporal Inconsistency Metric

We define a temporal inconsistency metric to quan-
titatively measure how similar the rendering varia-
tion of a sampling method is to that of the control
results globally. The metric is computed as the mean
absolute error between the temporal differences of the
rendered results from a sampling method and those
of the control results, which is given by,

B0 = & S wlAX) - A%, ®
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where X;(t) is the intensity of pixel ¢ in the t-th
rendered frame from a sampling method; Xz(t) is the
counterpart of X;(t) in the control result; and N is
the total number of pixels of one rendered frame.
The operator A(-) computes the temporal difference
between two consecutive rendered frames, given by
AX;(t) = X;(t) — Xi41(¢). In addition, we can take
the rendering accuracy into account and define the
weighting factor w; = |X;(t) — X;(t)| + 1. It means
that the higher the difference between the rendered
result and the control image, the larger the inconsis-
tency will be. Note that the metric is evaluated over
the whole rendered image although the variations in
the shadows are more visually obvious than other
regions. Based on this metric, a sampling method is
said to produce more temporally consistent results if
its inconsistency values are closer to zero.

5.2 Experimental Results

We consider two dynamic environment sequences,
including a synthetic sequence and a real captured
sequence. The synthetic data “grace_flame” contains
120 frames. It was created by blending a synthetic
HDR flame sequence with the “grace” environment
map [3]. To obtain the real data, we built an HDR
panorama video capturing system based on Lady-
bug2, which is a spherical digital video camera [26].
We captured the “reading_room” sequence (consisting
of 160 frames) in a large reading room where two
hand-held spotlights were turned on-and-off during
rotation.

Our approach is compared with several state-of-the-

art methods, including

« Spherical g*-tree [9].

o Structured importance sampling [5]. Note that it
relies on the thresholds that may vary frame to
frame, which may cause severe flickers [9]. In our
implementation, we fixed the thresholds for each
environment sequence.

o Hierarchical sample warping (HSW) [16]. For
this method, we set the BRDF function to be
a constant and sampled environment sequences
in both framewise and volumetric manners. The
framewise HSW (named HSW2D) samples each
environment frame independently by using the
same 2D Hammersley point sequence as in-
put. We also implemented HSW in 3-dimensions
(named HSW3D) and sampled the environment
volume as a whole. Considering temporal coher-
ence, we prepared the input random point set by
generating a 3D Hammersley point sequence for
one frame (defined within a limited time range),
and duplicating it for the remaining frames. We
then constructed a 3D mipmap from the environ-
ment volume and distributed samples within the
volume using HSW. Finally, the resulted samples
are quantized into frames.

o Importance sampling using temporal (filter-
ing [10]. Note that the method proposed by
Havran et al. [10] handles hemispherical environ-
ment data and is not directly applicable for spher-
ical environment sequences. To make a proper
comparison, we extended their method to spher-
ical domain. We first generated uniformly dis-
tributed samples on the sphere, and then warped
the samples by using the environment map as
a PDF function. During the temporal filtering,
a FIR filter (using the parameters provided by
the authors) is applied in a symmetric manner to
both sample energy and position.

In our experiments, we set the average number
of samples for each environment frame to be 300.
In other words, except for our method and HSW3D,
all other methods will produce 300 samples for each
frame. In addition, we generate control images by
using 10K uniformly distributed light samples drawn
from each environment frame.

5.2.1 Synthetic Environment Sequence

The first experiment uses the “grace_flame” sequence
for illumination. After the environment sampling, an
animation is rendered by illuminating a girl model
using light samples of each environment frame.
Figure 5 plots the temporal inconsistency curves
for the six sampling methods. We can see that our
spatio-temporal sampling has minimum inconsistency
values on average. In other words, it produces a
more temporally consistent rendered animation. On
the other hand, the structured importance sampling
and HSW2D have larger inconsistency values, since
they do not consider the temporal coherence between
frames during the sampling. The HSW3D, although
sampling the environment sequence in a volumet-
ric manner, still suffers apparent inconsistency. By
observing the sampling patterns (as shown in the
supplementary video), we find that it can produce
stable samples in static regions, but introduce jump-
ing samples in regions with dynamic illumination
changes. One possible reason is that by building a 3D-
tree over the environment volume, the HSW3D may
perform different warps for successive frames in these
regions. Importance sampling with temporal filtering
also has poor consistency. It is probably because the
FIR filter adopted is not suitable for environment
sequences with large dynamic changes (designing a
suitable FIR filter for arbitrary environment sequence
is out of the scope of this paper). Furthermore, FIR
filtering may introduce bias in sample energy and
positions, and hence the rendered results may not
conform to the control images. The spherical g>-tree
has smaller inconsistency values in most frames, but
it may still have severe inconsistency sometimes. This
may be because the sample number is not adequate
to capture the important illumination in some frames.
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Fig. 5. For the “grace_flame” environment sequence, the temporal inconsistency is measured with respect to the
image index. To clearly illustrate the differences between the testing methods, we clip the curve of importance
sampling with temporal filtering at some peaks. Among the six sampling methods, our spatio-temporal sampling

produces a more temporally consistent result.
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Fig. 6. The temporal inconsistency of different methods for the “reading_room” environment sequence. To
clearly illustrate the differences between the testing methods, we clip the curve of importance sampling with
temporal filtering at some peaks. In comparison, the spatio-temporal sampling has smaller inconsistency values

on average.

We further compare visual quality of rendered
images in Figure 12. The fourth and fifth columns
visualize the differences between frames 92 & 93 and
frames 93 & 94, respectively. As shown, the spherical
q?-tree, structured method, HSW2D, HSW3D, and im-
portance sampling with temporal filtering have more
obvious jumps in the shadows behind the girl. Al-
though our spatio-temporal sampling still has flickers
compared to the control results, it is much better than
other sampling methods. [Readers are referred to the
companion video for a clearer comparison as static
pictures may not be obvious to illustrate the temporal
inconsistency.]

5.2.2 Real Captured Environment Sequence

In the second experiment, we employ the Ward BRDF
model [27] and use the “reading_room” sequence to
illuminate a set of table and chair models.

Figure 13 compares four consecutive rendered
frames for the six methods. The rightmost three
columns show the blow-ups of the differences be-
tween every two successive rendered frames. The
difference images are enhanced for a clearer compar-
ison. It is obvious that the proposed spatio-temporal

sampling generates the most consistent results with
respect to the control images, while other methods
introduce more or less severe changes in the render-
ing. The corresponding PSNR value and the sam-
ple number for each frame are listed in the table
shown in Figure 7. The spatio-temporal sampling and
HSW3D use less than 300 (valid) samples for the
four frames, while other methods are restricted to 300
samples per frame. Note that because of duplicating
the input point set for all the environment frames,
the HSW3D may generate samples overlapping each
other at some frames, which actually leads to a waste.
In this example, most methods have similar PSNR
values that are higher than importance sampling with
temporal filtering. Although the HSW2D method has
the highest PSNR values for the four frames, it suffers
apparent temporal inconsistency. This validates our
claim that the rendering quality should consider both
the rendering accuracy and the temporal consistency.

Next, we quantitatively measure the temporal in-
consistency of the rendered animations (shown in
Figure 6). The structured method, HSW2D, and im-
portance sampling with temporal filtering have large
and continuously varying inconsistency values. The
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PSNR (dB) & Frame Frame Frame Frame
Sample number 83 84 85 86
Structured 40.51 41.11 41.50 41.97
HSW2D 43.43 42.83 43.53 43.89
39.97 39.48 39.26 4212
HSW3D 333/256 | 302/247 | 266/240 | 243/228
Temporal filtering] 39.77 35.12 33.07 32.31
Spherical q2-tree| 41.17 41.72 41.99 42.65
Spatio-temporal 41.14 41.39 4191 42.46
294 291 276 267
(b)

Fig. 7. (a) Sampling pattern of frame 84 in the “read-
ing_room” sequence. (b) PSNR values and the sample
numbers for the four consecutive frames, 83-86. For
the HSW3D method, the two sample numbers per
frame correspond to the assigned sample number and
the valid sample number, respectively. The methods
with no sample number specified all use 300 samples
for each frame.

HSW3D exhibits better consistency for frames with
more samples assigned (refer to the supplementary
video). Compared to the spherical q*-tree, the spatio-
temporal sampling has better consistency in most
parts of the animation. Referring to the animations,
we also observe that the structured method, HSW2D
and importance sampling with temporal filtering suf-
fer continuous flickering; the HSW3D shows coher-
ence in two parts of animations; the spherical g*-tree
has apparent jumps at sometimes; our spatio-temporal
sampling has a temporally coherent animation, much
like the control result.

Besides the temporal inconsistency, we are also
concerned about the rendering accuracy. The ren-
dering accuracy is measured using the root mean
square error (RMSE) between the rendered results
and the control images. As shown in Figure 8, both
the spherical q>-tree and spatio-temporal sampling
have RMSE curves lower than other methods, while
the spatio-temporal sampling has less variance in the
achieved rendering quality than the spherical q*-tree.
We also notice that there are apparent variations in
RMSE values for all the six methods, which is due
to the continuous slight flickering of the lamps in the
reading room.

5.3 Discussion

Different sampling methods represent the spherical
environment in different formats. Specifically, the
structured method, HSW2D, HSW3D and importance
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0.1k 1 HSW2D
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009k I ‘ I| —— Spherical g2-tree
: S *“ —#— Temporal filtering
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Fig. 8. The rendering accuracy of different sam-
pling methods for the “reading_room” environment
sequence. Note that the spatio-temporal sampling
achieves small RMSE values on average and is more
stable than other methods.
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Fig. 9. Robustness of the spatio-temporal sampling
method. As shown, the RMSE curve of the clipped
“reading_room” sequence is similar to the correspond-
ing partial curve of the entire sequence.

sampling with temporal filtering use the longitude-
latitude format in a resolution of 1024 x512. The spher-
ical g*-tree and spatio-temporal sampling adopts the
HEALPix format in a resolution of 256 x 256 x 12. All
our experiments are performed on a PC with AMD
Athlon(tm) 64 Dual 2.01 GHz. For the “reading_room”
environment sequence, our unoptimized code takes
an average time of 0.8 seconds per frame. On the
same machine, the spherical g*-tree takes around 0.68
seconds for each frame.

Since the proposed method considers the envi-
ronment sequence as a 3-dimensional volume, the
generated sampling patterns may be affected by the
sequence length. We conduct one experiment to test
the robustness of our method. In this experiment, we
extract a clip from the “reading_room” sequence, e.g.
the first 120 frames, for illuminating the 3D scene used
in the second experiment. We also set the average
number of samples for each frame to be 300. Figure 9
compares the RMSE curves of the clipped sequence
and the original sequence. Since the sample number
for each frame of the clipped sequence may change
compared to the counterpart of the original sequence,
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the RMSE values may not be exactly identical in
the two cases. However, as shown in Figure 9, the
two RMSE curves are similar in the corresponding
parts. This tells us that the spatio-temporal sampling
is somehow robust to the sequence length.

Note also that our spatio-temporal sampling can
adjust the number of samples for different environ-
ment frames automatically (see Figure 10). By assign-
ing more samples to more important frames, we are
able to achieve higher rendering quality. To verify
this point, we compare the proposed method with a
modified version that is restricted to have the same
number of samples for each frame. As shown in
Figure 11, the spatio-temporal sampling results in
much smaller consistency values, while the modified
sampling method leads to large fluctuations.

6 CONCLUSION

This paper addresses the temporal consistency prob-
lem in importance sampling of dynamic environ-
ment sequences. We propose a new approach, spatio-
temporal sampling, which treats the environment se-
quence as a spatio-temporal volume and stratifies the
volume adaptively. Unlike most of previous methods,
our approach can simultaneously exploit the temporal
and spatial coherence of the sequence during the sam-
pling. Our main contributions are a volumetric im-
portance metric and a hybrid tree-structured volume
stratification scheme. The proposed approach can au-
tomatically adjust the sample number for each frame
and generate temporally consistent sampling patterns.
As evidenced by the experiments, our method pro-
duces consistent rendered animations in terms of both
temporal inconsistency values and visual quality.
Currently, we stratify the spatio-temporal volume
into rectangular sub-volumes, which may cause a
waste of samples in some low-energy regions. Hence
one future work is to explore a feasible way to
subdivide the spatio-temporal volume into irregular
regions. This may increase the sampling efficiency and
further improve the rendering quality. For this prob-
lem, a possible solution is to study the application of
state-of-the-art segmentation methods [28].
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Fig. 12. Comparison of different methods for the “grace_flame” environment sequence. The first row shows
results using the spatio-temporal sampling for environment frame 93: the rendered image on the left and the
corresponding sampling pattern on the right. From the second row are rendered results and the difference images
from different sampling methods and control images. Note the choppy jumps in shadows behind the girl for the
first five methods between consecutive animation frames. The proposed spatio-temporal sampling, on the other
hand, exhibits small flickering artifacts. [Readers are referred to the companion video for a clearer comparison
of the animated sequences.]
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Fig. 13. Comparison of different methods for the “reading_room” environment sequence. Note that the structured
method, HSW2D, HSW3D and importance sampling with temporal filtering have obvious changes in the ground
shadows between consecutive frames. For the spherical g2-tree, the jumps in the shadows are also apparent. In
comparison, the results from the spatio-temporal sampling are more consistent to control results in the last row.




