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Abstract. Although a variety of superpixel algorithms have been de-
veloped and adopted as elementary tools in low-level computer vision
and multimedia applications, most of them are designed for planar im-
ages. The quick growth of spherical panoramic images raises the urgent
need of spherical superpixel algorithms and also a unifying benchmark
of spherical image segmentation for the quantitative evaluation. In this
paper, we present a general framework to establish spherical superpixel
algorithms by extending planar counterparts, under which two spheri-
cal superpixel algorithms are developed. Furthermore, we propose the
first segmentation benchmark of real-captured spherical images, which
are manually annotated via a three-stage process.We use this benchmark
to evaluate eight algorithms, including four spherical ones and the four
corresponding planar ones, and discuss the results with respect to quan-
titative segmentation quality, runtime as well as visual quality.

Keywords: Superpixels · Spherical Image · Panorama · Benchmark ·
Evaluation.

1 Introduction

Superpixels group image pixels, which are perceptually similar in colors and
close in space, to form visually meaningful entities. Since they heavily reduce
the number of primitives to process, superpixels have gained great popularity
as elementary tools in low-level computer vision and multimedia applications,
such as image recognition [4], image parsing [24] [17], object localization [14],
saliency detection [21] [12]. By today, a great number of superpixel algorithms
have been developed for planar images [6][9][7][1][3]. As a key building block
of many applications [8], the performance of superpixel algorithms may greatly
affect the success of subsequent tasks. For the purpose of a fair performance
comparison, several works [25] [1] have focused on evaluating planar superpixel
algorithms quantitatively from multiple aspects, including the adhesion to ob-
ject boundaries and shape regularity of superpixels. The evaluation is usually
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conducted on the BSD image segmentation dataset [2], which provides ground
truth segmentations for multiple planar images.

Spherical superpixels, as a new type of superpixels, have received increasing
attentions in recent years due to the quick growth of spherical panoramas, which
cover 360 degree field of view and are widely used in recent applications [30]. The
distinct difference between spherical superpixels from planar superpixels results
from the fact that the underlying geometry of spherical images is a closed surface
while that of planar images is an open domain. Directly applying planar super-
pixel algorithms on the unrolled spherical images or the transformed piecewise
perspective images [16][4] would degrade the performance inevitably. Currently,
there are only two spherical superpixel algorithms reported in the literature,
namely spherical EGS (SphEGS) [28] and spherical SLIC (SphSLIC) [31]. Both
extend the planar counterparts to the spherical domain.

Another dilemma that spherical superpixel algorithms are facing is the lack
of spherical segmentation benchmark for the evaluation of their segmentation
quality. To circumvent this situation, SphSLIC utilizes a transformed BSD seg-
mentation dataset [31]. However, since the transformation from the planar to
the spherical domain imposes assumptions on the field of view and the viewing
direction for planar images, the transformed spherical images have large empty
regions, and what’s more, the evaluation is inevitably biased.

In this paper, we aim to bridge the planar superpixel algorithms with the
spherical domain such that we can benefit from the rich development of planar
superpixel algorithms, and obtain multiple spherical superpixel algorithms with
as few costs as possible. Second, we plan to provide a high-quality segmentation
dataset of real-captured spherical panoramas to fulfill the gap.

Specifically, inspired by the schemes of SphEGS [28] and SphSLIC [31], we
first present a general framework (Section 3) on the establishment of spherical
superpixel algorithms by extending planar counterparts, in which three main
factors should be carefully concerned. Within the framework, we adapt two
well-known planar superpixel algorithms, edge-augmented mean shift [6] and
ETPS [29], to the spherical domain, and discuss the adaptions in detail. Next,
we introduce the spherical segmentation dataset which is created by using an
interactive image annotation tool (Section 4). With our tool, manual annotation
for a spherical image can be conveniently obtained via a three-stage process.
To our knowledge, this is the first benchmark for spherical image segmentation.
Based on this dataset, we compare the performance of eight algorithms, includ-
ing the two newly adapted ones, SphEGS [28], SphSLIC [31] and their planar
counterparts, in terms of segmentation quality, runtime and visual quality (Sec-
tion 5).

In the following, we first give a brief overview of the planar and spherical
superpixel algorithms and existing superpixel evaluation works in Section 2.
We then describe the general extension framework and the two new developed
spherical superpixel algorithms in Section 3. Section 4 introduces the spherical
segmentation dataset and the quantitative metrics, followed by experimental
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results reported in Section 5. Section 6 concludes the paper and gives the possible
directions of future work.

2 Related Work

In this section, we introduce related works from three aspects: planar super-
pixel segmentation algorithms, current spherical superpixel algorithms and the
research on superpixel evaluation.

2.1 Planar Superpixels

In the literature, there are a variety of superpixel algorithms developed for pla-
nar images. According to their high-level approaches, those algorithms can be
classified into several categories [25] [1]. Density-based algorithms, e.g. edge-
augmented mean shift [6], perform mode-seeking in the density image, where
each pixel is assigned to the corresponding mode it falls into. Patch-based ap-
proaches, such as TPS [9], partition an image into superpixels by connecting
seed points through pixel paths. Graph-based methods like normalized cut [23],
graph based image segmentation [7] and entropy rate superpixels [16] treat the
image as an undirected graph and cut the graph based on the edge weights.
Clustering-based approaches borrow the idea from classic k-means algorithm.
SLIC [1], preSLIC [20] and linear spectral clustering [15] are the well-known
algorithms belonging to this category. Energy optimization-based methods, e.g.
ETPS [29], SEEDS [3] and CCS [26], iteratively optimize a formulated energy.
There are also contour evolution based algorithms, which represent superpixels
as evolving contours starting from initial seed pixels [13]. By observing the shape
of superpixels, the superpixel algorithms can also be classified into those gener-
ating regular primitives and those producing irregular primitives. For example,
SLIC [1] and ETPS [29] can produce regular and compact superpixels, while the
outputs of mean shift [6] and graph based image segmentation [7] are irregular.

2.2 Spherical Superpixels

To generate superpixels for spherical images, many works directly apply pla-
nar superpixel algorithms on the unrolled spherical images or the transformed
piecewise perspective images [19][5]. Although this strategy works well for some
applications, it would degrade the performance of the algorithms and produce
superpixels with open contours. To deal with this problem, Yang and Zhang
[28] presented a panoramic over-segmentation algorithm based on the graph
based image segmentation method [7]. To make the original algorithm applica-
ble to spherical images, additional neighborhood relationship is introduced when
constructing the graph from the pixels of spherical images. This method gives
irregular superpixels with closed contours. To generate more regular spherical
superpixels, Zhao et al. [31] proposed an algorithm in the spirit of SLIC [1].
Their method explicitly considers the geometry for the spherical images and
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makes modifications to the initialization, assignment and update steps of SLIC
algorithm. Based on these two works, we present the general framework that
establishes spherical superpixel algorithms by extending planar ones.

2.3 Superpixel Evaluation

To access the performance of superpixel algorithms, some works rely on application-
dependent evaluation. For example, Koniusz and Mikolajczyk [11] proposed a
segmentation-based method for interest point extraction, and they compared the
quality of interest points that are extracted with different superpixel algorithms.
Li et al. [14] presented a fast object localization method based on superpixel grid
and gave the localization accuracy for different superpixel algorithms. Superpixel
algorithms have also been evaluated in the application of image parsing [24].

As an over-segmentation technique, superpixel generation is also usually
evaluated on the standard planar image segmentation dataset, i.e. BSD500 [2].
Achanta et al. [1] gave the first categorization of superpixel algorithms by com-
paring popular superpixel algorithms for the adherence to image boundaries,
speed and memory efficiency. The compactness and regularity of superpixels
produced by different algorithms are compared in [22] and [10]. Stutz et al. [25]
presented an extensive evaluation of 28 state-of-the-art superpixel algorithms
on 5 image segmentation datasets regarding visual quality, segmentation perfor-
mance, runtime, robustness to noise, blur and affine transformations.

Zhao et al. [31] evaluated the performance of SphSLIC on a transformed
BSD dataset, and presented the metrics for spherical superpixels. They assumed
all the planar images in the BSD dataset have 90 degree field of view and the
same viewing direction. Mapping the planar images to the spherical domain will
lead to large empty regions in spherical panoramas. This indicates that the valid
image information is defined on an open domain like a planar image. One real-
captured spherical panorama, on the other hand, has image contents over the
whole sphere, which means the image information is defined on a closed domain.
Instead of relying on the transformed BSD dataset, we collect a new annotated
segmentation dataset of real-captured spherical panoramas.

3 Spherical Superpixel Algorithms

Inspired by the schemes of SphEGS [28] and SphSLIC [31], we realize that one
general way to establish spherical superpixel algorithms is to extend planar su-
perpixel algorithms to make them applicable to spherical images. In this section,
we first discuss the extension framework, and then give the extension details of
two new spherical superpixel algorithms under this general framework.

3.1 Extension Framework

Our extension framework aims to bridge spherical images and planar superpixel
algorithms. Note that the visual information of a spherical image is defined
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Fig. 1. The three terms that should be considered when extending planar superpixel
algorithms to spherical ones: (a) spatial distance measure, (b) neighborhood range
and (c) boundaries problem. The 1st and 2nd rows are the planar and spherical cases
respectively, when the equirectangular map is used to represent the sphere. See text
for more discussions.

on a viewing sphere, but it has to be parameterized into 2D rectangular do-
main for storage. As we know, spherical parameterization schemes may suffer
from geometric distortions, and different schemes may represent the sphere with
a different number of 2D rectangular base faces, which always have disconti-
nuity problem at patch boundaries. Hence the process of grouping pixels into
superpixels needs to take into account of both the spherical geometry and the
parametrization scheme, focusing on three main factors including: 1) spatial dis-
tance measure, 2) neighborhood range and 3) boundaries problem (Fig. 1).

In our current work, we choose equirectangular map to represent the spherical
image due to three reasons. First, equirectangular map is the most common
way used by camera vendors and research communities to represent and store
spherical panoramas. Second, it is used by both SphEGS [28] and SphSLIC [31].
Third, it has relatively simple neighborhood range and boundaries problem as
compared to other spherical parameterization methods.

Spatial Distance Measure. In superpixel algorithms, perceptually similar
pixels which are also close in space are grouped together. To measure the spatial
distance between two pixels, the planar superpixel algorithms always use 2D
Euclidean distance on spatial coordinates of pixels. For the spherical panorama,
we need to reply on spherical distances, which measure the length of the great
cycle connecting the two pixels over the sphere.

As shown in Fig. 1(a), the shortest path between two pixels in an unrolled
spherical image with 2D Euclidean distance is the line segment connecting them,
while the shortest path becomes a curve when spherical distance measure is used.
Another distance measure that considers the geometry for spherical panoramas
is cosine dissimilarity [31]. Supposing that two arbitrary pixels on the panorama
have spatial coordinates of [X1, Y1, Z1] and [X2, Y2, Z2], respectively, the cosine
dissimilarity between them is computed as

Ds = 1− 〈[X1, Y1, Z1], [X2, Y2, Z2]〉 , (1)
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where 〈a,b〉 is the dot product of vector a and b.

Neighborhood Range. Some density/clustering-based superpixel methods lo-
cate neighboring pixels or weight them in a local region. In planar algorithms,
the neighborhood of a pixel is always defined as a square patch centered at that
pixel. For spherical panoramas, different regions on the sphere have different
levels of distortions. Thus, when defining the neighborhood for a pixel of spher-
ical images, we should take the pixel position into account to compensate the
distortions.

Let us take the equirectangular map for example. It parameterizes ray direc-
tions by zenith and azimuth angles, and then a uniform grid in the parametric
domain oversamples the sphere near the poles. As shown in Fig. 1(b), the neigh-
borhoods that have the same size on the sphere would have different shapes in
the unrolled map [31].

Boundaries Problem. In the planar image (Fig. 1(c)), if a pixel p lies at the
left (top) boundary, the neighboring pixels at the left (on the top) of it would be
undefined. However, a sphere is a closed surface. When a sphere is parameterized
into a set of 2D rectangular base faces, special attentions should be paid when
we access the neighbors of a pixel lying near the boundaries of base faces [28].

In the equirectangular representation, the left and right boundaries corre-
spond to the same meridian, while the top and bottom boundaries correspond
to the north and south poles of a sphere respectively. Therefore, as shown in
Fig. 1(c), if a pixel p is at the left boundary of the spherical image, the pixels at
the right boundary with similar vertical coordinates are also neighbors. If p is
at the top boundary, the pixels at the top boundary with horizonal coordinates
as x + w

2 are also neighbors, where x is the horizonal coordinate of p and w is
the width of the spherical image.

3.2 Two New Spherical Superpixel Algorithms

Under the above extension framework, we develop two new spherical superpixel
algorithms by extending the planar mean shift [6] and ETPS [29]. These two
methods are ranked as the fifth and the first best planar superpixel algorithms
in a recent quantitative comparison [25].

Spherical Mean Shift (SphMS). Mean shift (MS) algorithm [6] is an it-
erative procedure for locating local maxima of a density function. It can be
used to find modes in the joint spatial-color feature domain of an image. Pix-
els that converge to the same mode thus define the superpixels. The algorithm
successively computes the mean shift vectors according to the kernel-weighted
averages of pixel features, and translates the kernel windows. To develop the
spherical mean shift, all the three terms in the extension framework should be
considered. Specifically, we do the following modifications:
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1. The original 2D spatial coordinates of a pixel in its feature representation
are converted to a 3D unit vector, according to the equirectangular map
computation. The cosine similarity (Eq. 1) is then adopted as the distance
measure between a pixel and the mode’s center.

2. Since the spherical panorama has different levels of distortions in the equirect-
angular map, the search window defined by the kernel should be modulated
by the zenith angle.

3. When the mode’s center goes near the boundaries of the equirectangular
map, the search window is set to cross the boundaries.

It is also noted that the distance measure in MS is a combination of spatial
distance and color distance. Since the color distance is kept intact, we need to
weight the spherical spatial distance such that it has a similar magnitude as the
planar spatial distance.

Spherical ETPS (SphETPS). Starting from an initial grid partitioning,
ETPS [29] iteratively exchanges pixel blocks between neighboring superpixels,
and uses a coarse-to-fine scheme. This algorithm encourages the color homogene-
ity, the shape regularization and the small boundary length within superpixels,
and it enforces the superpixels to form a connected component. As the con-
straints of color coherence, boundary length and component connection can also
work for spherical panoramas, we only need to consider the shape regularization
and the boundaries problem. In more detail, three revisions are made to planar
ETPS algorithm.

1. The shape regularization is formulated as the Euclidean distance between
one pixel and the superpixel centroid. Given the equirectangular map, we
map the 2D image coordinates of each pixel to the spherical domain, forming
a 3D unit vector, and adopt the cosine dissimilarity (Eq. 1) as the spatial
distance measurement.

2. To estimate the superpixel centroid over the sphere, we use an approximation
scheme. We first calculate the centroid of pixels within a superpixel in 3D
space, and then normalize it to a unit vector.

3. The equirectangular map has four boundaries. If a pixel block lies at the left
boundary of the spherical image, the rightmost pixel block with the same
vertical coordinate should be considered for potential exchange, and vice
versa. If a pixel block lies at the top (bottom) boundary of the spherical im-
age, the pixel block at the top (bottom) boundary with horizontal coordinate
x+ w

2 should be considered for potential exchange.

4 Dataset and Evaluation Metrics

In this section, we introduce the spherical segmentation dataset that we collected
and the metrics used to evaluate the spherical superpixel algorithms.
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(a) (b) (c)

Fig. 2. Dataset preparation: manual annotation process (top), intermediate ground
truth segmentation (middle) and boundaries (bottom). Our manual annotation pro-
cess has three stages: (a) annotating the objects at the central part, (b) rotating the
underlying sphere horizontally to annotate the objects that cross the left and right
boundaries, (c) rotating the sphere vertically to annotate the objects that lie near the
polar regions.

4.1 Dataset and Annotation Process

The authors of SphSLIC [31] utilized a transformed BSD segmentation dataset
to evaluate the performance of spherical superpixel algorithms. Although this
strategy is relatively easier than collecting a spherical segmentation dataset, it
has some disadvantages. First, each spherical image in the transformed BSD
dataset has only a limited meaningful region, and the remaining regions are all
empty. This indicates that the transformation scheme can not emulate all the
different levels of distortion in true spherical images. Second, when transforming
the BSD dataset, all the planar images are assumed to have 90 degree field of
view and the same viewing direction. Changing these two parameters will result
in different transformed BSD dataset, and affect the evaluation performance.
Therefore it is necessary to collect a dedicated dataset for spherical superpixel
algorithm evaluation.

To construct the dataset, we choose 75 images from SUN360 spherical panorama
database [27]. The selected images contain 50 indoor images and 25 outdoor im-
ages covering different categories. Each image is resized to 1024× 512 pixels for
manual annotation. The tool we used to annotate the spherical images is devel-
oped on the basis of the segmentation tool provided by Martin et al. [18], which is
applied to acquire BSD image segmentation dataset. We made the modifications
that allow the user to rotate the underlying image sphere in 3D space.

Our manual annotation process contains three basic stages, as illustrated in
Fig. 2:
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Fig. 3. Sample images and ground truth annotations from spherical segmentation
dataset: (top) spherical images, (middle) ground truth segmentations and (bottom)
ground truth boundaries.

1. Since the central region of a spherical panorama in the format of equirect-
angular map is least distorted, we first label the objects in this region (see
Fig. 2(a)).

2. Next, we rotate the underlying sphere horizontally due to the fact that some
objects may be split by the left and right boundaries of the image. To make
this rotation operation simple and efficient, we do the horizontal rotation by
180 degrees such that the left and right boundaries of the original spherical
image meet at the central region (see the top image in Fig. 2(b)). Then the
two parts of split objects can be easily assigned to a common segment. The
last two images in Fig. 2(b) show the possible segments for the input image.

3. Finally, the sphere is rotated vertically by 90 degrees. The objects at the
polar regions of the original spherical image now appear at the central region,
which can be conveniently annotated (the top image in Fig. 2(c)).

In the experiment, we trained three students to get familiar with the annota-
tion tool, and each of them annotated 25 images. The final result is the spherical
segmentation dataset 1. The number of segments for each image ranges from 250
to 1085, with the average as 510. Some annotation examples are shown in Fig. 3.

4.2 Metrics

The most important properties of superpixels are adherence to image bound-
aries and structural regularity. In this paper, we use three standard metrics to
evaluate boundary adherence, i.e. boundary recall, under segmentation error and
achievable segmentation accuracy, and two metrics to evaluate structural regu-
larity, i.e. compactness and size variation. The spherical metrics resemble their

1 The annotated dataset are available at http://scs.tju.edu.cn/~lwan/data/

sspdataset/sspdataset.rar.
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Fig. 4. Visual comparison of superpixels from different methods. For each method,
we show the segmentation results with approximately 2000 and 670 superpixels, one
zoom-in region, and the color-coded sphere for fewer superpxiels.

planar counterparts except that the pixel distortions are considered, usually by
means of counting the solid angle of each pixel and the spherical distance. The
detailed description of these metrics can be found in [31]. For the completeness,
we give the brief introduction here.

Boundary recall measures the percentage of borders from the ground truth
that coincide with those of the superpixels, given by∑

p∈B(G)A(p)I(minq∈B(S) d(p, q) < ε)

A(B(G))
, (2)

where B(G) and B(S) are the boundaries of ground truth G = {g1, · · · , gm}
and superpixel segmentation S = {s1, · · · , sn}, d(p, q) is the spherical distance
between p and q, I(·) is the indicator function and A(·) is the surface area of
pixel or pixels set.

Under segmentation error evaluates how many pixels from superpixels
leak across the boundary of ground truth segment. It is expressed as∑

i(
∑
j|sj∩gi 6=∅A(sj))− 4π

4π
. (3)

Achievable segmentation accuracy gives the best performance when tak-
ing superpixels as units for object segmentation. It is computed as∑

j maxiA(sj ∩ gi)
4π

. (4)

Compactness is a numerical quantity representing the degree to which a

shape is compact. It is based on the isoperimetric quotientQ(sj) =
4πA(sj)−A2(sj)

L2(sj)
,
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Fig. 5. Visual comparison of superpixels from different methods. For each method,
we show the segmentation results with approximately 2000 and 670 superpixels, one
zoom-in region, and the color-coded sphere for fewer superpxiels.

where L(sj) is the perimeter of superpixel sj . Then the compactness is the
weighted mean of isoperimetric quotient of each superpixel, where weights are
the areas of the superpixels, i.e.∑

j Q(sj)A(sj)

4π
. (5)

Size variation describes the uniformity of superpixel size. It can be defined
as the variance of superpixel areas

n
∑
j A

2(sj)− 16π2

n2
. (6)

5 Experimental Results

In the experiments, we evaluate eight superpixel algorithms based on our spher-
ical segmentation dataset, including the four spherical superpixel algorithms,
i.e. SphMS, SphETPS, SphEGS [28], SphSLIC [31], and the four planar coun-
terparts. In order to make a fair comparison, we have determined the optimal
parameter values for each algorithm separately.

5.1 Visual Comparison

Fig. 4 and Fig.5 shows the segmentation results for two spherical panoramas at
two different numbers of superpixels. We can see that EGS and SphEGS gen-
erally produce superpixels that are more tightly adhesive to object boundaries,



12 L. Wan et al.

Fig. 6. The comparisons of different methods on the spherical segmentation dataset: (a)
boundary recall; (b) under segmentation error; (c) achievable segmentation accuracy;
(d) compactness; (e) size variation; and (f) running time.

while SphSLIC ans SphETPS generate spherical superpixels with most regular
shapes. It is also obvious that for all the superpixel algorithms, the more super-
pixels are created, the more object boundaries can be captured. In comparison,
SphEGS captures more object boundaries than the other spherical superpixel al-
gorithms. As shown in the blowups in Fig. 4, SphEGS grasps the lights and the
edges of walls accurately, while SphETPS partitions those lights into separate
segments, which is better than SphSLIC.

By extending the adjacency relationship for boundary pixels, SphETPS,
SphEGS, and SphSLIC overcome the discontinuity problem that can be obvi-
ously observed in the color-coded spheres for ETPS, EGS and SLIC. For better
illustration, the equirectangular maps are rotated horizontally by 45 degrees. The
left and right image boundaries now meet together as the vertical red lines in
the right parts of panoramas for EGS, ETPS and SLIC. Their spherical versions,
on the other hand, are not subjected to this problem.

To observe the shape regularity on the spherical domain, we use color-coded
spheres to illustrate the segments. By adopting the spherical distance, SphETPS
is able to assign less superpixels near the polar regions, while ETPS has many
small superpixels crowded together in the polar regions. As for SphMS, it im-
proves the performance with respect to MS. For example, in Fig. 4, SphMS
captures some salient object boundaries in the southern polar region.

5.2 Quantitative Evaluation

Fig. 6 gives the performance of different algorithms in terms of boundary re-
call, under segmentation error, achievable segmentation accuracy, compactness
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and size variation. In comparison, we find that almost all the spherical super-
pixel algorithms get much better performance than their planar counterparts
for the metrics under evaluation, while SphSLIC and SphEGS have much larger
improvements than SphMS and SphETPS.

The boundary recall curves are plotted in Fig. 6(a). We can see that SphEGS
achieves the best recall values for all the numbers of superpixels, followed by
SphETPS and EGS, while SLIC reports the lowest values. For the under seg-
mentation error as shown in Fig. 6(b), among the eight methods, SphEGS has
the minimum under segmentation errors. SphETPS and SphSLIC achieve sim-
ilar performance when the number of superpixels increases. In the term of the
achievable segmentation accuracy, SphMS has the lowest values while SphETPS
reports the second best performance (Fig. 6 (c)). We notice that the increase of
the superpixel number has relatively small impact on SphMS and MS, as they
quickly converge after using 2000 superpixels. This may be because they are
inclined to reach local minimum in the clustering.

As for compactness and size variation, which contribute to the structural
regularity, SphSLIC and SphETPS significantly outperform the other spherical
superpixel algorithms as shown in Fig. 6(d) and 6(e), because they start from
uniformly distributed seeds or grids and explicitly consider the geometry for
spherical image and superpixel regularity. On the other hand, EGS, MS and
their spherical extensions do not constrain the compactness, and hence they
generate superpixels with irregular shapes and less compactness.

5.3 Running Time

We evaluate the timing performance on a computer installed with Intel(R) Core
(TM) i5-4590 CPU @ 3.30GHz. Here, we use the authors’ implementations for
SphSLIC, SphEGS, and all the planar algorithms. Both SphMS and SphETPS
are implemented by adapting the original codes of the planar versions. It is
also noted that these algorithms cannot generate exactly the same number of
superpixels as required, usually with a small variation. For a fair comparison,
given each expected superpixel number, we run each algorithm for 10 times and
count the average of the running times.

Fig. 6(f) plots the running time for different superpixel algorithms. For most
algorithms, their running time increases linearly with respect to the number
of superpixels. However, SphEGS even spends less time than EGS for a larger
superpixel number. Among all the methods, ETPS achieves the fastest perfor-
mance, SphMS is the slowest algorithm, and SphETPS spends less time than
SphSLIC when the number of superpixels increases.

6 Conclusion

In this paper, we have presented a general framework for establishing spheri-
cal superpixel algorithms, in which three main factors are considered to extend
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planar counterparts. By applying this framework, two well-known planar super-
pixel algorithms, i.e. mean shift and ETPS, are adapted to the spherical domain.
We then collected a high-quality segmentation dataset of spherical images, and
evaluate the performance of eight different algorithms, including the two newly
adapted, two existing spherical superpixel algorithms, and their planar counter-
parts, in terms of quantitative performance, visual quality and running time.

Currently, our dataset contains 75 spherical panoramas, one groundtruth seg-
mentation for each panorama. In the future, we would like improve the quality
of the dataset by collecting multiple groudtruth segmentations for each individ-
ual panorama. Another direction is adapting more planar superpixel algorithms
to the spherical domain, and making a more thorough comparison of spherical
superpixel algorithms.
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