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Tone-Mapped Mean-shift Based
Environment Map Sampling
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Abstract—In this paper, we present a novel approach for environment map sampling, which is an effective and pragmatic
technique to reduce the computational cost of realistic rendering and get plausible rendering images. The proposed approach
exploits the advantage of adaptive mean-shift image clustering with aid of tone-mapping, yielding oversegmented strata that have
uniform intensities and capture shapes of light regions. The resulted strata, however, have unbalanced importance metric values
for rendering, and the strata number is not user-controlled. To handle these issues, we develop an adaptive split-and-merge
scheme that refines the strata and obtains a better balanced strata distribution. Compared to the state-of-the-art methods, our
approach achieves comparable and even better rendering quality in terms of SSIM, RMSE and HDRVDP2 image quality metrics.
Experimental results further show that our approach is more robust to the variation of viewpoint, environment rotation, and
sample number.

Index Terms—Environment map sampling, adaptive mean-shift clustering, tone-mapping, adaptive split-and-merge
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1 INTRODUCTION

T He rendering of 3D virtual scenes can have the ren-
dering realism significantly enhanced by applying real-

world illumination, i.e. taking HDR environment maps as
lighting sources [1], yet it faces the challenge of huge
computational burden since one environment map can have
thousands of directional light sources corresponding to
image pixels. As an effective technique to address this
challenge, environment map sampling reduces the com-
putational scale greatly by means of approximating envi-
ronment maps with a finite number of directional lights.
Consequently, the practical computing time of 3D scene
rendering as well as the storage requirement can be largely
reduced. Since environment map sampling for images is
taken in a preprocessing stage, we may rely on sophisticated
algorithms to get high-quality light samples.

In the literature, different environment map sampling
methods have been developed [2] [3] [4] [5]. A stream of
existing methods rely on regular decomposition of environ-
ment maps into rectangular strata with similar importance
metric values, such as spherical q2-tree [3] and median cut
[6]. Since light regions may have arbitrary irregular shapes,
approximating them with a set of rectangular segments
may lead to a waste of light samples near boundary
regions of strong lights. One typical example using irregular
decomposition is the structured importance sampling [2],
which thresholds an environment map into several levels,
and evenly splits each level into small irregular strata.
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This thresholding-based scheme does not account for the
non-uniform intensity distribution of environment maps.
Warping-based sampling techniques [4] [7] were reported
to cast more samples in more important regions.

In this paper, we propose a novel environment sampling
method, aiming at better capturing strong light regions’
shapes as well as considering the non-uniform range of
high-dynamic-range pixel intensities. Our method takes
advantage of mean-shift image clustering, which is able
to over-segment an image into small uniform regions that
respect object boundaries. We then explore the impact of
high dynamic range on the clustering, and achieve adaptive
mean-shift clustering by adopting tone mapping techniques.
The irregular shapes of light regions can be respected in
clustered strata. Since the resulted strata have unbalanced
importance metric values for the rendering quality and the
strata number is not user-controlled, we develop an adaptive
split-and-merge scheme to obtain a strata distribution with
better balanced importance metric values for a given sample
number. The light samples are finally generated by casting
one directional light in each stratum respectively.

The effectiveness of the proposed method is validated
through the comparison with several state-of-the-art meth-
ods. Experiments show that our method achieves compa-
rable and even better rendering quality in terms of three
typical image quality metrics, namely SSIM, HDRVDP2,
and RMSE. In addition, our method is more robust to the
variation of viewpoint, environment orientation, and sample
number, as demonstrated in the extensive experiments.

2 RELATED WORK

2.1 Environment Map Sampling
The illumination computation for one point on a 3D object
is an integration of visibility, incident lighting and the
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BRDF function of the object’s surface defined as

I(x,~s) =

∫
Ω

Lin(~ω)ρ(x, ~ω,~s)v(x, ~ω)(~ω · ~n)d~ω, (1)

where Lin, ~ω, ~s and ~n are incident radiance, incident (inte-
gration) direction, viewing direction and surface normal re-
spectively; ρ refers to surface BRDF and v is the visibility.
For a high-resolution environment map that contains thou-
sands of directional lights, one of which corresponds to a
pixel, the brute force computation is quite time consuming.
Environment map sampling [9] [10] [11] [12] simplifies the
computation by approximating an environment map with a
limited number of directional light sources, with more lights
distributed in more important image regions.

A major category of existing methods basically de-
compose an environment map into small strata, with one
directional light casted in one stratum. The decomposi-
tion usually takes place more densely in more important
regions (e.g. highlights), and less in other regions (e.g.
dark portions). Some works adopt regular decomposition,
i.e. decomposing an environment map into non-overlapped
rectangular regions [6] [3] [5], or overlapped rectangular
regions [13]. One typical example for irregular decomposi-
tion is proposed in [2], which segments an environment map
into several levels by simple thresholding and stratifies each
level into strata of a different number of samples. How-
ever, the simple thresholding may not sufficiently account
for the non-uniform intensity distribution of environment
maps. Our method, on the other hand, over-segments an
environment map by adaptive mean-shift clustering, with
larger kernel sizes for higher intensities.

There exist methods based on warping algorithms. For
example, hierarchical warping algorithms are proposed to
warp a random point set to match the distribution of
environment lighting in the wavelet domain [4] [14], or
using spherical harmonics [7]. The work in [15] generates
uniformly distributed samples on the hemisphere, and warps
these samples by using the hemispherical environment map
as a PDF function. In addition, Ostromoukhov et al. created
the sampling pattern by constructing a Penrose tiling over
the environment map [11].

2.2 Mean-shift Clustering

Mean-shift clustering is a popular non-parametric feature
clustering technique, and has been widely used in a variety
of applications, such as image segmentation [16], noise
removal [17], object tracking [18], etc. It was pioneered by
Fukunaga and Hostetler [19], and later expanded to make it
converge rapidly and applicable to high-dimensional feature
space or large data set [20] [21] [22].

Roughly speaking, mean-shift clustering automatically
estimates the modes (maximum) of the multivariant dis-
tribution underlying feature space. In an iterative process,
the modes are computed as successive averages of data
points weighted by a Parzen window kernel function, which
is centered at each feature point. The obtained results are
largely affected by the kernel function as well as the kernel

bandwidth or window size assigned. One classical choice
for the kernel function is a Gaussian function [21]. The
kernel bandwidth, on the other hand, can be a fixed value
or adaptively computed at each feature point, which has
been shown to produce better results at the cost of more
computations [22] [23] [24] [25].

The most expensive operation in mean-shift clustering
is to find nearest neighbors in feature space. To increase
the speed performance, acceleration techniques have been
proposed. As an example, Yang et al. [26] used the fast
Gauss transform to speed up the summation in each it-
eration. Paris and Durand [16] interpreted mean shift as a
topological decomposition of feature space, based on which
most pixels are classified without iteration. Freedman and
Kisilev [27] simplified the kernel density estimate based on
random sampling.

3 OUR ALGORITHM

Inspired by previous works, our goal is to divide an envi-
ronment map into strata of close importance metric values,
with an emphasis on respecting irregular shapes of light
regions as well as non-uniform distribution of intensities.
Intuitively speaking, an arbitrary image region may be
approximated by one irregular-shaped segment; however,
it has to be approximated by a set of rectangular-shaped
segments. Therefore, using irregular-shaped segments may
help us to assign less samples in less important regions, and
hence allocate more samples in more important regions.

Following this idea, we first over-segment the environ-
ment map into small regions with uniform intensities via
adaptive mean-shift clustering, and next construct strata
with balanced importance metric values via an adaptive
split-and-merge scheme. In the following, we start by intro-
ducing the classical mean-shift clustering on environment
maps.

3.1 Classical Mean-shift Clustering on Environ-
ment Maps
To apply mean-shift clustering, each pixel in an environ-
ment map (stored in the 2D longitude-latitude format) is
represented as a 5D feature point xi = {xi, yi, ri, gi, bi}
in the joint spatial-range domain [21]. Here, xi and yi
are spatial coordinates of one pixel, and {ri, gi, bi} are its
color range components. Denote one initial seed point to
be y0, the seed point corresponding to the mode’s center
is updated according to

yj+1 =

∑n
i=1K (yj − xi)xi∑n
i=1K (yj − xi)

, (2)

where n is the amount of feature points, and K(·) is
the kernel function depicting local feature distribution.
Considering the spatial domain and the color range domain,
the kernel function K(·) is defined as the product of two
radially symmetric kernels, given by

K(hs, hr,x) =
C

h2
sh

2
r

k

(∥∥∥∥xshs
∥∥∥∥2
)
k

(∥∥∥∥xrhr
∥∥∥∥2
)
, (3)
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where xs and xr are the spatial and color range parts of the
feature vector, respectively. The function k(·) is selected as
the Gaussian function, and C is the normalization factor.
The parameters hs and hr are the bandwidths of the spatial
and range kernels.

Fig. 1. Classical mean-shift clustering on an envi-
ronment map. The low-intensity image portions are
grouped into one purple segment.

Although being successful for LDR 2D images, the
classical mean-shift clustering may cause low-quality seg-
mentation results when applied for HDR environment maps.
For the example shown in Figure 1, the visible image
portions have intensities ranging between 0 and 1, while
the highlights have quite large intensity values, e.g. above
100. Then, using a small bandwidth for the range kernel
will generate numerous small segments; on the other hand,
using a large bandwidth may create very big segments
((hs, hr) = (7, 6) for Figure 1), which not only raises
complexity for the succedent processing, but also degrades
the rendering quality.

3.2 Adaptive Mean-shift Clustering by Tone-
Mapping
To solve the problem mentioned above, we consider adap-
tive mean-shift clustering. Intuitively, we want to define
a larger bandwidth ĥr in the high-intensity range, and a
smaller bandwidth in the low-intensity range. The existing
adaptive mean-shift clustering techniques usually determine
the kernel bandwidth according to the k-nearest neighbors
[22] [23] [24] [25], which have both small spatial distances
and high color similarites. For instance, Georgescu et al.
computed the adaptive bandwidth as the distance between
the feature point and its k-nearest neighbor [22]. However,
it is not an easy task to search for k-nearest neighbors,
especially in a large dataset.

In our work, we adopt a much simpler scheme to achieve
adaptive mean-shift clustering. We think that using adaptive
bandwidth is equivalent to adjusting intensity values of the

environment map. Following this idea, we compress the
intensity range adaptively, with more compression on the
high intensity range. After non-linear compression, we still
adopt a fixed bandwidth, which eventually corresponds to
a varying bandwidth in the original intensity range.

Here, we perform the non-linear range compression by
employing a global tone-mapping operation [28], which is
quite fast and has decent performance. For each color value
I , it is compressed adaptively according to the Weber-
Fechner law and Naka-Rushton law, which is formulated
as,

Î =

{
η log(I +m) + so, I ≤ IM ,
In

In+Ins
, I > IM ,

(4)

where Is is the image’s semisaturation, computed from the
median and mean of the radiance values (see the detailed
definition in [28]); IM = 102Is, m = 10−1.2Is, s0 is com-
puted to keep the above piece-wise function continuous;
n = 0.74. The coefficient η is different for three channels:
η = 100/1.85 for red and green; η = 100/8.7 for blue [28].
After Eq. (4), the compressed intensity values are finally
normalized to [0,1].

Figure 2 plots the tone mapping function for red and
green channels. Obviously, when we apply a fixed kernel
bandwidth in the compressed range domain, the actual
bandwidth becomes smaller in visible light portions, and
becomes larger in highlight portions. The adaptively seg-
mented results are shown in Figure 3.

high dynamic range before tone-mapping
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Fig. 2. Tone-mapping function for red and green chan-
nels. The same kernel bandwidth in the compressed
range domain corresponds to a varying bandwidth in
the original range domain.

3.3 Strata Construction via Adaptive Split-and-
Merge
After the adaptive mean-shift clustering, the irregular shape
of light regions is well maintained in the clustering seg-
ments, each of which has nearly uniform intensity. How-
ever, it is noted that the number of segments is not user-
controlled. What’s more, some visible light (highlight)
regions may occupy large (or relatively large) area, leading
to high importance metric values, and thus they will need
more light samples. To handle these issues, we refine the
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Fig. 3. Our adaptive mean-shift clustering on the en-
vironment map generates more reasonable segments
for the input image in Fig. 1.

strata by using an adaptive split-and-merge scheme. Our
basic idea is to first split the regions with high importance
metric values and then combine adjacent regions to form a
given number of strata.

For the importance measure of light regions, we adopt the
metric proposed in [2], which unifies area-based stratifica-
tion sampling and illumination-based importance sampling.
It is a combination of light intensity and region area, given
by,

Γ (L,∆ω) = La∆ωb, (5)

where ∆ω is the solid angle of light region, and L the
integrated illumination (i.e. pixel intensities) of light region.
The parameters are set as a = 1, b = 1/4 according
to a visibility-based variance analysis [2]. Note that L is
computed using the original pixel intensity.

3.3.1 Adaptive Split Scheme
We detect those regions whose energy is much larger than
the average importance Γa, i.e.

{k | Γ(Lk,∆ωk) > α · Γa}, (6)

where k is region index, and parameter α is empirically
set as α = 2. The average importance metric Γa of all the
segments is given by

Γa =

∑N
i=1 Γ(Li,∆ωi)

N
, (7)

where N is the segment amount. For k-th region, we then
set the number of newly generated small segments as:

Nk = min(

⌊
Γ(Lk,∆ωk)

Γa

⌋
,Mk), (8)

where Mk is the amount of pixels in k-th region. As the
pixels in one region have similar intensities, we split the re-
gion evenly with Hochbaum-Shmoys’ algorithm [29]. This
detection and splitting processes iterate until the average
importance metric Γa changes only slightly (Algorithm 1).

In practice, we found that the mean-shift clustering
generated tiny fragments in the transition regions where
intensity changes greatly, and their existence largely affects
the splitting performance. This is because the inclusion of
those fragments decreases the average importance signif-
icantly. To attenuate their effects, we perform a pruning
operation that detects tiny fragments according to their sizes

Algorithm 1 Adaptive Splitting Scheme
1: Input: Region set R after the clustering.
2: do
3: compute Γa of all regions
4: determine the split region set {k}
5: for i ∈ {k}
6: split region i
7: update R
8: compute Γan of all regions
9: while |Γa − Γan| > ε

10: return R

Algorithm 2 Adaptive Merging Scheme
1: Input: Region set R, adjacency matrix A.
2: do
3: find region i∗ due to Eqn (8)
4: Determine neighbor set Ni∗ from A
5: for j ∈ Ni∗
6: find neighbor j∗ due to Eqn (9)
7: merge region i∗ and region j∗

8: update R and A
9: while |R| > Nsample

10: return R

(with their solid angles less than a threshold ζ), and merge
them into their nearby regions. In our experiments, we set
the threshold ζ = 0.0004. The segments after the adaptive
splitting are shown in Figure 5(a).

3.3.2 Adaptive Merging Scheme
Up to now, we have decomposed the environment map into
a set of disjoint regions with balanced importance metric
values. The merging stage hierarchically combines the
neighboring regions while maintaining importance balance.
To be more specific, we always select one region with the
minimum importance metric value, i.e.

i∗ = arg min
i

Γ(Li,∆ωi), (9)

where i∗ is the index of the selected region. We then choose
one of its neighbors to merge so that the importance metric
after region combination is the minimum among all possible
choices, as given by,

j∗ = arg min
j∈η(i∗)

Γ(Li∗ + Lj ,∆ωi∗ + ∆ωj), (10)

where η(i∗) denotes the neighbors of region i∗. This
merging process runs iteratively until the user-set sample
number is reached (Algorithm 2).

To accomplish the merging process rapidly, we construct
an adjacency matrix A (illustrated in Figure 4(a)) to store
the neighborhood information and the merging status of
each region. A diagonal element A(i, i) denotes whether
region i is merged into another region. The non-diagonal
elements indicate if two regions are adjacent or not. All
diagonal elements are initialized as −1, and A(j∗, j∗) = i∗

when region j∗ is merged into region i∗. Non-diagonal
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elements A(i, j) are assigned as 1, if region i and j are
adjacent, otherwise as 0. We can see that the adjacency ma-
trix is a diagonally symmetric matrix. With the adjacency
matrix, we can rapidly find region i∗ and determine the to-
be-merged region j∗. Then we need to update the adjacency
matrix. Besides setting A(j∗, j∗) = i∗, we transfer the
neighborhood information of region j∗ to region i∗. In
detail, if A(j∗, q) = 1, where q 6= i∗ and q 6= j∗, we
will set A(i∗, q) = 1. A similar treatment is taken for i∗-th
column. In the example shown in Figure 4(b), region 5 is
merged into region 2 (shown in light blue).
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Fig. 4. Adaptive merging using adjacency matrix. (a)
Initialized adjacency matrix. (b) Supposing region 5 is
merged into region 2, the adjacency matrix is updated
accordingly.

( )a

( )b

Fig. 5. The adaptive split-and-merge scheme for the
result in Fig. 3. (a) Segments after the adaptive split-
ting. (b) Segments after the adaptive merging. The
results are blended with the original image.

Figure 5(b) shows the final strata. In this example, we set
the sample number to be 300. Although the final strata may
not keep the original segment boundaries from the initial
mean-shift clustering, we observe that such discrepancy
often takes place in low-intensity regions, while highlight
region boundaries are better maintained.

Once the adaptive merging is completed, we collapse all
the pixels within a stratum to a directional light source
located at the center, by integrating pixel intensities. This
preserves the overall illumination contribution of the distant
environment.

4 EXPERIMENTS AND DISCUSSION
In this section, we make comparison with five state-of-
the-art methods, including structured importance sampling
(structured for short) [2], hierarchical sample warping
(HSW for short) [4], spherical q2-tree [3], Lightcuts [12]
and Ostromoukhov et al’s method (FHIS for short) [11].
Among those methods, the structured method [2], spherical
q2-tree [3] and FHIS [11] sample environment map only.
For the HSW method [4], which samples the product of
environment map and BRDF function, we set the BRDF
function to be a constant. Lightcuts [12] establishes a binary
light tree to cluster a group of lights from many directional
lights. According to the experiment settings in [12], we
generated 3000 initial light samples via structured sampling
method. We then omit material and geometry-related terms
and use a horizontal cut to get clustered light samples.

To quantitatively measure the rendering quality, we pre-
pare the ground truth results by taking each pixel in envi-
ronment maps (with a size of 1024× 512) as a directional
light. Since recent evaluation of image quality metrics
shows that no image quality metric is significantly better
than others for different rendering distortions [30] [31], we
adopt typical metrics of three different types, i.e. SSIM
metric [32] that accounts for structure and contrast changes,
HDR-VDP2 metric [33] that predicts visual differences, as
well as the popular RMSE metric. The mean-opinion score
(MOS) from HDR-VDP2 information is used to estimate
the rendering quality [33]. Rendering results similar to
the ground truth should have high SSIM values, high
HDRVDP2 MOS values and low RMSE values.

4.1 Rendering a Ball with Different BRDFs and
Environment Maps
In the first experiment, we employ seven HDR environment
maps [34] [5] to render a ball with a fixed sample number
(i.e. 300). We choose different BRDF settings, including
diffuse and phong of increasing specularity. The detailed
settings are listed in Table 1, where ka, kd, ks are ambi-
ent reflection coefficient, diffuse reflection coefficient and
specular reflection coefficient respectively, and ns is the
shininess index. For phong model, each combination (ks,
ns) is used together with the diffuse settings.

TABLE 1
The settings of BRDF models

diffuse phong
ka kd ks ns
0.05 0.5 0.3, 0.6, 0.9 1, 10, 100, 1000

We observed that the rendering results under different
BRDF settings look generally similar to the ground truth.
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TABLE 2
Mean and variance values of SSIM, RMSE, HDRVDP2 MOS for using different environment maps. The best

values are marked in bold.

SSIM(mean, var) Structured [2] HSW [4] Q2-tree [3] Lightcuts [12] FHIS [11] Our
campus 0.9957, 3.94E-05 0.9967, 2.10E-05 0.9959, 3.09E-05 0.9958, 3.00E-05 0.9963, 2.63E-05 0.9965, 2.22E-05
galileo 0.9968, 2.08E-05 0.9963, 2.61E-05 0.9967, 2.24E-05 0.9966, 2.04E-05 0.9935, 7.81E-05 0.9971, 1.71E-05

grace flame 0.9996, 3.00E-07 0.9995, 6.95E-07 0.9997, 2.74E-07 0.9989, 2.97E-06 0.9987, 3.76E-06 0.9998, 1.75E-07
kitchen 0.9972, 1.67E-05 0.9971, 1.61E-05 0.9968, 2.06E-05 0.9970, 1.72E-05 0.9971, 1.57E-05 0.9972, 1.46E-05

readingroom 0.9972, 1.66E-05 0.9987, 3.03E-06 0.9986, 4.54E-06 0.9981, 7.65E-06 0.9974, 1.00E-05 0.9986, 3.96E-06
rnl 0.9963, 3.21E-05 0.9971, 1.93E-05 0.9968, 2.45E-05 0.9967, 2.32E-05 0.9970, 2.05E-05 0.9970, 2.01E-05

stpeters 0.9962, 3.62E-05 0.9964, 2.80E-05 0.9964, 3.08E-05 0.9960, 3.48E-05 0.9921, 1.12E-04 0.9967, 2.45E-05
RMSE(mean, var) Structured [2] HSW [4] Q2-tree [3] Lightcuts [12] FHIS [11] Our

campus 0.0113, 7.19E-05 0.0155, 6.75E-05 0.0091, 6.38E-05 0.0183, 7.09E-05 0.0193, 5.61E-05 0.0114, 5.54E-05
galileo 0.0087, 4.41E-05 0.0150, 7.42E-05 0.0090, 5.49E-05 0.0153, 4.60E-05 0.0165, 1.21E-04 0.0114, 4.78E-05

grace flame 0.0054, 1.23E-05 0.0248, 6.59E-05 0.0043, 1.44E-05 0.0319, 6.24E-05 0.0334, 1.28E-04 0.0062, 1.02E-05
kitchen 0.0101, 6.84E-05 0.0221, 1.25E-04 0.0101, 8.87E-05 0.0168, 8.19E-05 0.0144, 8.61E-05 0.0124, 6.84E-05

readingroom 0.0132, 8.43E-05 0.0170, 4.99E-05 0.0076, 4.25E-05 0.0169, 7.53E-05 0.0296, 1.13E-04 0.0119, 4.59E-05
rnl 0.0103, 7.17E-05 0.0188, 8.80E-05 0.0094, 7.10E-05 0.0139, 7.45E-05 0.0144, 6.91E-05 0.0155, 5.78E-05

stpeters 0.0089, 5.86E-05 0.0170, 7.19E-05 0.0091, 5.40E-05 0.0152, 6.27E-05 0.0339, 2.20E-04 0.0122, 4.62E-05
MOS (mean, var) Structured [2] HSW [4] Q2-tree [3] Lightcuts [12] FHIS [11] Our

campus 83.4186, 1.07E-04 83.4192, 2.22E-05 83.4222, 1.49E-05 83.4061, 9.70E-04 83.4155, 1.17E-04 83.4192, 3.43E-05
galileo 83.4172, 1.39E-04 83.3856, 2.00E-03 83.4053, 8.69E-04 83.3501, 1.85E-02 83.2711, 3.13E-02 83.4056, 3.87E-04

grace flame 83.4238, 6.18E-07 83.4193, 3.38E-05 83.4241, 7.38E-07 83.3775, 3.60E-03 83.3988, 1.90E-03 83.4242, 1.22E-07
kitchen 83.4098, 5.81E-04 83.3847, 1.50E-03 83.3926, 2.30E-03 83.3429, 9.80E-03 83.3858, 1.50E-03 83.3922, 1.80E-03

readingroom 83.4164, 6.00E-05 83.3668, 6.73E-04 83.4218, 1.71E-05 83.4154, 9.19E-05 83.3307, 1.04E-02 83.4014, 4.16E-04
rnl 83.4225, 1.19E-05 83.4203, 1.92E-05 83.4231, 3.73E-06 83.4148, 2.14E-04 83.4205, 1.90E-05 83.4204, 1.80E-05

stpeters 83.4214, 3.29E-05 83.4163, 9.25E-05 83.4222, 8.50E-06 83.4128, 2.62E-04 83.1569, 1.77E-01 83.4205, 2.24E-05
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error (low SSIM value) between the rendering and the ground truth.



ACCEPTED BY IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 7

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

S
S

IM

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

R
M

S
E

50

55

60

65

70

75

80

85

M
O

S

Structured

HSW

Q
2
−tree

LightCuts

FHIS

Our

campus  galileo                  kitchen                   rnl      stpeters
grace
_ amefl

reading
room

campus  galileo                  kitchen                   rnl      stpeters

Environment Map

grace
_ amefl

reading
room

campus  galileo                  kitchen                   rnl      stpeters
grace
_ amefl

reading
room

Environment MapEnvironment Map

Fig. 7. SSIM, RMSE and HDRVDP2 MOS values for rotating environment maps when rendering the “Girl” model.

TABLE 3
Ranking of SSIM, RMSE and HDRVDP2 MOS in Fig. 7.

SSIM/RMSE/MOS Structured [2] HSW [4] Q2-tree [3] Lightcuts [12] FHIS [11] Our
campus 6 3 3 2 5 5 5 1 1 4 6 4 1 4 6 3 2 2
galileo 5 2 2 4 5 5 3 1 1 2 4 4 6 6 6 1 3 3
grace flame 5 3 2 1 4 3 4 1 4 3 5 5 6 6 6 2 2 1
kitchen 5 1 3 2 5 5 6 2 1 4 6 4 3 4 6 1 3 2
readingroom 6 5 4 1 2 3 3 1 1 4 4 2 5 6 6 2 3 5
rnl 6 2 1 2 4 5 4 1 3 3 5 2 1 3 6 5 6 4
stpeters 5 1 3 2 4 4 4 2 1 3 5 5 6 6 6 1 3 2

Towards different environment maps, the mean and variance
values of the three image quality metrics among different
BRDF settings are summarized in Table 2. Our method gets
maximum SSIM values and also minimum SSIM variance
values for four environment maps, while HSW [4] yields
three champions. For RMSE and HDRVDP2 MOS values,
spherical q2-tree [3] and the structured method [2] report
better statistics, yet our method has the third rank among
the six comparative approaches.

We select a set of rendering results with obvious dis-
crepancies on image quality metrics for visualization. Fig-
ure 6 shows the SSIM error maps using the phong model
(ks = 0.6, ns = 10). The SSIM error maps are color-coded
from red to blue. For “campus”, “galileo”, “kitchen” and
“stpeters” maps, all comparative methods have obvious dif-
ferences to the ground truth. For “grace flame”, spherical
q2-tree [3] and our results show almost no error, and thus
the images appear almost completely blue . For “readin-
groom” and “rnl”, HSW [4] has best results. FHIS [11] gets
worst results in “galileo” and “rnl”. In general, our method
have comparative or better performance for seven scenes. It
is worth noting that in this experiment, no shadow occurs.
As will be demonstrated in the following experiments, our
method in a general sense can produce better and more
robust rendering results.

4.2 Rendering by Rotating Environment Maps

In the second experiment, we investigate the impact of
rotating environment maps, using 36 rotation angles evenly
distributed in [0o, 350o] along y axis. Here, we render the
“Girl” model, which is shown at the last second row in
Figure 9.

Figure 7 plots mean and variance values of the three
image quality metrics in rotating each environment map.
Our method has close mean values to HSW [4] in terms of
SSIM metric, and both of them are relatively larger than
other methods for most maps. On the other hand, spherical
q2-tree [3] and the structured [2] report lower RMSE and
higher HDRVDP2 MOS mean values. We further summa-
rize the ranking of different sampling methods in Table 3.
The five comparative methods always have lower ranks
for either one or more metrics. Particularly, FHIS [11] has
maximum lowest ranks and Lightcuts [12] have minimum
highest and/or second highest ranks. It can be clearly seen
that except for some cases, our method has higher ranks
for all the three metrics.

Figure 8 shows the image quality metrics at different
rotating angles by using “galileo” environment map. We can
see that all the methods have varying values for different
rotating angles. In this example, although our method is
not always the best, it in a general sense outperforms
other sampling methods, since it achieves rather high SSIM,
HDRVDP2 MOS values, and rather low RMSE values.

4.3 Rendering a Scene with More Environment
Maps

In the third experiment, we evaluate the effect of using 20
different environment maps given one 3D scene. Besides
the first 7 environment maps used in previous experiments,
we randomly choose 13 environment maps from the In-
ternet [35], which cover both indoor scenes and outdoor
scenes. A 3D scene different from that used in the previous
experiment is selected, i.e. the “Tableset” model shown
at the third row in Figure 9. The three metric values for
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Fig. 8. SSIM, RMSE, and HDRVDP2 values for rotating “galileo” environment map when rendering the “Girl”
model.
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Fig. 9. Rendering results and their SSIM maps in different scenes by different methods.

different sampling methods are listed in Table 4. At the last
row, the average ranks of different methods considering all
the environment maps are calculated for each image quality
metric respectively.

We can see that each sampling method has best perfor-
mance for certain image quality metric and some environ-
ment maps. Among all the methods, spherical q2-tree [3]
reports best values only for RMSE and MOS metrics, yet
none for SSIM metric. By counting the ranks, we find
HSW [4] has the highest rank for SSIM metric, spherical
q2-tree [3] has the highest ranks for RMSE and MOS
metrics, while our method yields the second highest ranks

for all the three image quality metrics.

4.4 Rendering by Varying Viewpoints

Next, we render three 3D scenes illuminated with
“grace flame”, “readingrooom” and “stpeters” environment
maps respectively, and change the view points randomly by
20 times for each scene.

Figure 9 visualizes the rendering results for one view
point and their corresponding SSIM maps. For the “Tree”
model and “Tableset” model, all the sampling methods
except FHIS [11] generate similar rendering results, while
our method and HSW [4] produce a bit better SSIM maps.
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TABLE 4
SSIM, RMSE, HDRVDP2 MOS for 20 different environment maps. The best values are marked in bold, and the

second best ranks are marked in bold with ∗.

SSIM/RMSE/MOS Structured [2] HSW [4] Q2-tree [3] Lightcuts [12] FHIS [11] Our

campus
0.9475 0.9491 0.9456 0.9416 0.9530 0.9506
0.0274 0.0314 0.0255 0.0386 0.0380 0.0285
80.8371 79.6775 80.8204 76.4454 79.0787 79.7815

galileo
0.9418 0.9526 0.9482 0.9462 0.9111 0.9533
0.0278 0.0314 0.0256 0.0312 0.0465 0.0270
79.9375 78.5506 80.2434 78.8113 70.5254 79.0340

grace flame
0.9804 0.9803 0.9862 0.9502 0.8533 0.9867
0.0156 0.0200 0.0135 0.0439 0.1124 0.0174
80.4121 77.7017 79.8199 56.1932 41.1819 81.0675

kitchen
0.9601 0.9605 0.9413 0.9557 0.9622 0.9576
0.0273 0.0598 0.0316 0.0381 0.0362 0.0305
81.1698 78.6639 81.4471 80.9802 80.0806 81.8723

readingroom
0.9143 0.9484 0.9352 0.9214 0.8449 0.9436
0.0470 0.0400 0.0363 0.0559 0.1629 0.0378
79.1897 81.3506 81.1201 77.1054 48.2580 81.3268

rnl
0.8857 0.9161 0.9205 0.9089 0.9219 0.9197
0.0480 0.0421 0.0349 0.0668 0.0425 0.0395
78.0470 80.5293 81.0023 76.3495 80.6057 79.4642

stpeters
0.9297 0.9606 0.9422 0.9402 0.9018 0.9543
0.0408 0.0459 0.0332 0.0453 0.1069 0.0337
79.6333 82.3815 82.0503 80.3768 62.0952 81.6971

alexs
0.8941 0.9205 0.9015 0.9064 0.9228 0.9174
0.0424 0.0399 0.0380 0.0584 0.0358 0.0367
77.2774 77.6036 80.2461 75.4999 79.7375 79.2291

arches
0.9534 0.9441 0.9375 0.9468 0.9494 0.9360
0.0315 0.0479 0.0392 0.0468 0.0396 0.0484
78.7726 68.3988 73.3989 72.1862 71.9081 68.7692

caveroom
0.9770 0.9861 0.9725 0.9803 0.9395 0.9806
0.0266 0.0391 0.0457 0.0357 0.1667 0.0337
82.7876 83.0431 81.7287 82.4610 64.5904 82.9630

circus
0.9910 0.9843 0.9873 0.9909 0.9855 0.9877
0.0167 0.0428 0.0203 0.0205 0.0403 0.0290
83.2252 82.1184 82.6211 82.8552 78.6087 82.2584

factory
0.9519 0.9624 0.9606 0.9572 0.9572 0.9533
0.0342 0.0315 0.0268 0.0715 0.0474 0.0400
80.4581 81.7278 82.3228 80.0781 72.9679 78.9181

footprint
0.9202 0.9291 0.9123 0.9196 0.9310 0.9267
0.0408 0.0474 0.0435 0.0545 0.0392 0.0511
80.8934 79.1887 79.4961 76.9411 80.9511 79.7722

goldroom
0.9388 0.9484 0.9468 0.9435 0.9214 0.9549
0.0304 0.0339 0.0258 0.0336 0.0440 0.0323
78.8877 78.4738 81.1057 78.0721 72.6391 78.3232

hdrvfx
0.9493 0.9426 0.9425 0.9484 0.9113 0.9420
0.0247 0.0279 0.0244 0.0369 0.0381 0.0299
79.9815 78.7617 80.3093 75.1249 69.7812 76.3575

lobby
0.9274 0.9291 0.9136 0.9279 0.9411 0.9308
0.0427 0.0549 0.0471 0.0665 0.0549 0.0509
81.4583 81.5585 81.7331 79.2021 79.5008 79.7781

mans
0.9026 0.9260 0.9099 0.9220 0.9242 0.9328
0.0508 0.0451 0.0437 0.0559 0.0403 0.0389
68.7024 74.3374 74.2457 68.6139 74.6750 73.1137

monvalley
0.8969 0.9183 0.8929 0.8970 0.9201 0.9179
0.0526 0.0522 0.0534 0.0849 0.0504 0.0467
70.7949 70.3072 72.1918 62.2418 68.5107 73.0573

naturelab
0.9239 0.9460 0.9262 0.9165 0.8890 0.9458
0.0393 0.0427 0.0375 0.0630 0.0875 0.0325
81.4367 81.3075 82.0922 77.0433 64.8859 82.5327

provwash
0.9361 0.9553 0.9535 0.9436 0.8905 0.9688
0.0422 0.0418 0.0303 0.0522 0.1141 0.0281
82.4951 82.8147 83.0431 82.1719 68.7964 83.2402

Average
Rank

4.25 2.45 4.1 4.05 3.7 2.55∗
2.7 4.1 2.05 5 4.5 2.65∗
2.95 3.35 2.15 4.85 4.8 2.9∗
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For the “Girl” model, the shadows behind and beneath the
girl from different methods vary greatly. We can clearly
see that the structured method [2], Lightcuts [12], and
FHIS [11] suffer from strong shadows. HSW [4] and
spherical q2-tree [3] are more similar to our result, yet
their SSIM maps reveal that both methods have much more
differences around girl feet.

We compute the three image quality metrics for each
rendering result and plot their curves in Figure 10. Due
to occlusion changes, the metric values vary against the
viewpoint. For the “Girl” model, our method has highest
SSIM and HDRVDP2 MOS values, and almost smallest
RMSE values. Although HSW [4] is ranked the best for
the “Tableset” and “Tree” models in terms of SSIM, it
reports relatively poor RMSE and HDRVDP2 values. We
can clearly see the robust and better performance of our
method over other methods in comparison.

4.5 Rendering by Varying Sample Number
We now evaluate the robustness of different methods for
varying sample numbers. In this experiment, we render
the three scenes by varying the sample number from 80
to 400, with an increment of 20, under the viewpoint
and lighting environment orientation in Figure 9. Given a

sample number, we average 10 runs of the renderings for
each method.

Figure 11 plots the curves of image quality metrics
against the sample number. Generally speaking, the RMSE
error decreases when the sample number becomes large for
the six methods, and the SSIM and HDRVDP2 MOS values
are in the reversal. In comparison, our method only reports
relatively poor HDRVDP2 MOS values for the “Tableset”
model, and achieves comparable or even better performance
for the other eight cases.

4.6 Rendering by Using Environment Sequence

Although our method aims for single environment map
sampling, we also tested its performance on an environ-
ment sequence. Specifically, we adopt the “grace flame”
sequence [5], and sample 300 points per frame to render
the “Girl” model. As shown in Figure 12, our method has
higher SSIM and HDRVDP2 MOS values in all frames than
other methods. Besides, several methods including ours,
spherical q2-tree [3], structured [2], and HSW [4], have
relatively close RMSE values, among which ours is a bit
better. However, we have to point out that our method does
not consider the temporal coherence between environment
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Fig. 10. SSIM, RMSE, HDRVDP2 MOS values for rendering at different view points in three scenes.
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Fig. 11. SSIM, RMSE, HDRVDP2 MOS values for using different sample numbers in three scenes.

frames, and hence our results still suffer from flickering
artifacts, as demonstrated in the supplementary video.

Here we visualize rendering results and SSIM maps from
20th, 60th and 100th frames in Figure 13. We can clearly
see that our results contain less difference regions than
those from other methods.

4.7 Timing Performance

Now we report the time cost for different methods. All
experiments are conducted on a 3.0GHz Intel Core i5 com-
puter with four cores and 8G memory. Table 5 shows the
timing for different methods to generate 300 samples from
a 1024×512 environment map. Structured [2] and HSW [4]
methods are implemented using Matlab codes (M for short),
others methods using C/C++ code (C for short). Spherical
q2-tree costs only 0.387s for sampling one environment
map, which seems to be the fastest method. Our method
uses Edison codes [21] for mean-shift clustering, which
consumes 10.36s; the rest steps cost 2.32s on average.

TABLE 5
Processing time for different methods.

Method Time(s)
Structured [2] (M) 5.303
HSW [4] (M) 10.287
Q2-tree [3] (C) 0.387
Lightcuts [12] (C) 52.916
FHIS [11] (C) 1.997
Our (C) 10.359+2.324

5 CONCLUSION

We have presented a new environment sampling method
by relying on the well-known mean-shift clustering. We
explore the impact of high dynamic range on the clustering
and achieve adaptive mean-shift clustering by adopting a
global tone mapping technique. After generating segments
capturing light region boundaries, an adaptive split-and-
merge scheme is developed to generate strata with better
balanced importance metric values, and the strata number
can be user-controlled. The effectiveness of the proposed
method is validated through both visual comparison and
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Fig. 12. SSIM, RMSE, HDRVDP2 MOS values for rendering by using “grace flame” environment sequence.
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Fig. 13. Rendering results and SSIM maps by using three frames of “grace flame” environment sequence.

quantitative evaluation. We found that our method achieves
comparable and even better rendering quality, and it is more
robust to the variation of viewpoint, environment rotation
and sample number. Our method is focused on the sampling
of single environment map. As a future work, we would like
to extend it to handle a sequence of dynamic environment
maps by considering temporal coherence.
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