
Zebra: An East-West Control Framework For SDN Controllers

Haisheng Yu∗, Keqiu Li∗, Heng Qi∗, Wenxin Li∗ and Xiaoyi Tao∗
∗Dalian University of Technology

Email: likeqiu@gmail.com

Abstract—Traditional networks are surprisingly fragile and
difficult to manage. Software Defined Networking (SDN) gained
significant attention from both academia and industry, as if
simplify network management through centralized configura-
tion. Existing work primarily focuses on networks of limited
scope such as data-centers and enterprises, which makes the
development of SDN hindered when it comes to large-scale
network environments. One way of enabling communication
between data-centers, enterprises and ISPs in a large-scale
network is to establish a standard communication mechanism
between these entities.

In this paper, we propose Zebra, a framework for enabling
communication between different SDN domains. Zebra has two
modules: Heterogeneous Controller Management (HCM) mod-
ule and Domain Relationships Management (DRM) module.
HCM collects network information from a group of controllers
with no interconnection and generate a domain-wide network
view. DRM collects network information from other domains to
generate a global-wide network view. Moreover, HCM supports
different SDN controllers, such as floodlight, maestro and so
on. To test this framework, we develop a prototype system, and
give some experimental results.

Keywords-Software-defined networking, OpenFlow, Zebra

I. INTRODUCTION

Although traditional networking has been widely success-
ful and become a globe-spanning infrastructure upon which
national economies depend, it has long been known that the
traditional network architecture has significant deficiencies,
such as the coupling between architecture and infrastruc-
ture, low-level configuration of individual components, dis-
tributed and specialized middle-boxes, and limited visualized
tools. The above problems are not superficial symptoms but
are inherent to traditional networks and deep-rooted in the
architecture.

The appearance of SDN has given us a new way to evolve
the network. SDN advocates the separation of the control
plane from the data plane, and aggregates decision-making
of the higher-level routing decisions into control layer in
SDN, unlike traditional network switch implementations,
which is divorced from the data handling layer. A SDN
controller’s processing capability is limited: NOX [1] could
process about 30K requests per second; Floodlight could
process about 250K requests per second and Maestro [2]
could process about 300K requests per second. To fulfill
large-scale network environments and achieve a scalable
control layer, many recent papers have explored architec-
tures for building large-scale or global-wide SDN controller

[3], [4], [5], and they focus on necessary components to
implement such a SDN controller. One key limitation of
those systems is that each SDN controller has its own
communication mechanism that makes SDN networks very
difficult to exchange information between different domains.
The domain can be an enterprise network or a data-center,
and it can also be an Autonomouse System.

SDN usually has three different function layers, such as
application layer, control layer, and data layer. Openflow [6]
is a standardized protocol between control layer and data
layer, which makes SDN develop quickly. However, there is
no standardized protocol within control layer, which makes
the development of SDN hampered when it comes to large-
scale network environments. Southbound communication
refers to network communications between SDN controllers
and forwarding devices. Northbound communication refers
to network communications between SDN controllers and
network applications. East-west communication refers to
network communications between SDN controllers.

In this paper, we present a promising SDN architecture
Zebra for improving the SDN management. The core com-
ponent in Zebra is SDN controller decision layer that has
two sub-modules, Heterogeneous Controller Management
(HCM) and Domain Relationships Management (DRM). To
prove the solution, we design and implement a prototype
system that use floodlight, ryu and pox as SDN controllers.

The goal of this paper is to resolve communication
problems between different controllers. In fact, our research
is still at an primary stage and there are many unanswered
questions about the architecture. Rather by presenting a spe-
cific design alternative that is radically different from already
existing controller architecture, our aim is to highlight the
importance of general communication framework between
SDN domains. We also hope this work will help to focus
the standardization of protocols in East-West Control Plane
for SDN Controllers.

This paper makes the following contributions:
1. We propose a new layer between application and con-
troller and design a distributed control framework, which
makes heterogeneous controller work together.
2. We have designed an initial Zebra architecture, which is
capable of making different kinds of controllers constitute a
large control plane.
3. To verify Zebra, we design and implement a prototype
system. In our prototype, there are three different SDN

2015 44th International Conference on Parallel Processing

0190-3918/15 $31.00 © 2015 IEEE

DOI 10.1109/ICPP.2015.70

611

2015 44th International Conference on Parallel Processing

0190-3918/15 $31.00 © 2015 IEEE

DOI 10.1109/ICPP.2015.70

610

2015 44th International Conference on Parallel Processing

0190-3918/15 $31.00 © 2015 IEEE

DOI 10.1109/ICPP.2015.70

610

2015 44th International Conference on Parallel Processing

0190-3918/15 $31.00 © 2015 IEEE

DOI 10.1109/ICPP.2015.70

610

2015 44th International Conference on Parallel Processing

0190-3918/15 $31.00 © 2015 IEEE

DOI 10.1109/ICPP.2015.70

610

2015 44th International Conference on Parallel Processing

0190-3918/15 $31.00 © 2015 IEEE

DOI 10.1109/ICPP.2015.70

610

controllers: floodlight, pox and maestro. Our experimental
evaluation clearly indicates Zebra has higher performance
than floodlight and maestro.

The rest of the paper is organized as follows: We describe
the background and motivation in Section 2. We present the
design and implementation in Section 3 and evaluate the
performance of Zebra in Section 4. Finally, we present the
related work in Section 5 and conclude it in Section 6.

II. BACKGROUND AND MOTIVATION

The concept of SDN domains was introduced to support
the need for partitioning a network control plane among
different controllers within an administrative domain. An
SDN domain can be defined as the portion of the network
being managed by a particular SDN controller.

In this section, we want to highlight the importance of
communication protocol between SDN domains. We insist
that as long as a large-scale network works well it should
satisfy the following requirements:

High Scalability. Since SDN controller can feasibly
manage limited number of devices, theres doubting that
a reasonably large network should deploy more than
one SDN controllers.

Enough Privacy. A carrier may choose to implement
different privacy policies in different SDN domains. For
instance, an SDN domain may be dedicated to a set of
customers who implement their own highly customized
privacy policies. Then the networking information in
this domain (e.g., network topology) should not be
disclosed to an external entity.

Great Generality. If SDN replaces the positions of tra-
ditional network, a standard communication protocol is
needed to deliver necessary message between domains,
such as reachability, topology and bandwidth.

Good Compatibility. To improve the compatibility
with traditional network, we should understand the
relationship between traditional domains. Then we must
create a communication protocol or use existing proto-
cols to control the hybrid network.

It is suggested that a standardized control framework can
improve innovation and management of Internet.

III. DESIGN REQUIREMENTS OF MANAGEMENT LAYER

In this section, we present the design principles of the
management layer for Openflow-based networks and how it
is designed in Zebra.

A. General SDN management architecture

As we know SDN has a general management architecture.
Figure 1 shows the components of the architecture. We

first present the general management architecture for SDN
networks and then point out open issues and weaknesses
of the architecture. The architecture have three different
function layers, such as application layer, control layer, and
data layer [7], [8]. The application layer determines how
a specific application uses a network. The control layer is
responsible for collecting network statistics and distributing
flow entries. The data layer handles individual packets based
on the state that is output by the control layer, and count
the packets. Over the years, plenty of controllers were
developed for this architecture: Beacon [9], Floodlight [10],
NOX [1], POX [11], Ryu [12], Trema [13], OpenDaylight
[14] and more recently ONOS [15]. 3-layer architecture
has successfully resolved SDN southbound communication
problem between controller layer and data layer. Openflow
doesn’t tell us how does northbound protocol between ap-
plications and controllers work well? One reason is that we
treat the subject without ever clarifying this issue that the
SDN routing problems needs to be decomposed into intra-
domain relationship problems and inter-domain relationship
problems.

Figure 1. Common SDN has three layers: application layer, controller
layer and data plane layer

The fundamental assumption in 3-layer architecture is that
the southbound interface between data layer and control
layer, and the northbound interface between application
layer and control layer are standardized. Actually, the south
interface changes all the time. Worse still, there are many
types of SDN controllers that cause the south interface
impossible to standardize. Each SDN controller has their
own interface for application. Although all SDN controllers
share a common base interface set, when you move up
the ranges, you’ll find more and more different advanced
features . For instance, both pox and floodlight have interface
to get switch and flow information, and it is very easy to
delete a flow in floodlight using static-entry-pusher interface
with delete action, it is very hard to delete a flow in pox
controller. Meanwhile, their functions are also different. For
instance, OpenDaylight [16], ryu [12] and floodlight [10]
all have interface to get switch and flow information, but a
firewall only exists in OpenDaylight, a load balancer in Ryu
and a monitoring application in Floodlight.

612611611611611611

B. Layering

To address these architectural issues, many efforts have
been put to find an effective way to redesign the Internet
[17], [18], [19], [20], [21]. 4D and RCP are two well-known
researches of them.

The 4D project, starting in 2004, advocated a clean
slate design and proposed three key principles: network-
level objectives, network-wide views, and direct control. It
emphasized separation between the routing decision logic
and the protocols governing the interaction among network
elements. It proposed giving the ”decision” plane a global
view of the network, serviced by a ”dissemination” and ”dis-
covery” plane, for control of a ”data” plane for forwarding
traffic.

There has been substantial research on how to build SDN
management layer [22], [23], [24], [25], [3], [4], [26], [27],
but these efforts have primarily focused on networks of
limited scope such as data-centers and enterprises. However,
Internet access is provided by ISPs that employs a range of
technologies to connect users to their network. There are
always three tiers in ISP. ISPs requiring no upstream and
having only customers (end customers and/or peer ISPs) are
called Tier 1 ISPs. Tier 2 ISPs are also known as Transit
ISPs. Just as their customers pay them for Internet access,
Transit ISPs themselves pay upstream ISPs for Internet
access. An upstream ISP usually has a larger network than
the contracting ISP or is able to provide the contracting
ISP with access to parts of the Internet the contracting ISP
has no access to. Tier 3 ISPs provide Internet access for
end users. Internet access is the consumer goods in ISP,
while it is the flow entries in Zebra. We propose Zebra,
it can make a clear separation between application layer
and control layer, which makes network administrator much
more smoothly manage network. There are also three tiers
in Zebra architecture. Data layer is servered as end users in
ISP.

Zebra shares the 4D’s view that decision function and
dissemination and discovery function should be dispersed to
multi-layers [17].

C. Northbound problem

There are many successful solutions in resolving SDN
southbound communication problem, but very few in re-
solving northbound problem between application layer and
controller layer. The main reason is that we treat the subject
without ever clarifying this issue that the SDN routing prob-
lems need to be decomposed into intra-domain relationship
problems and inter-domain relationship problems.

This paper is the first piece of work to tackle the above-
mentioned problems. Zebra can make a clear separation be-
tween application layer and control layer; Decision Layer is
the core component of Zebra, which acts as a standard com-
munication protocol between application layer and controller

layer; Data layer consists of switches performing flow-
based packet forwarding, and dissemination layer consists
of one (or possibly more) controller works like cache server.
Decision layer centralizes all the network intelligence and
network control, such as routing decisions and QoS control.
Zebra architecture is depicted in Figure 2. It shows decision
layer is a new layer between application layer and controller
layer, which manipulates different controller’s interface and
provides application layer with a standard interface. We
also build a prototype to demonstrate the efficacy of Zebra
design.

Figure 2. Zebra architecture has four layers, decision layer is a newly
established layer between applications and controllers

D. Domain tasks

For a large-scale network, it is not enough to have only a
single controller with respect to scalability and reliability.
For instance, a SDN controller’s processing capability is
limited: NOX [1] could process about 30K requests per
second; Floodlight could process about 250K requests per
second and Maestro [2] could process about 300K requests
per second. To fulfill large-scale network environments and
achieve a scalable control layer, it is necessary to allow
multiple controllers to control multiple domains at the same
time.

To address these issue, many early researches were strug-
gling to find an effective way to decompose Internet service
into well-defined tasks. RCP [18] collects information about
external destinations and internal topology and selects the
BGP routes for each routes in an AS. RCP comprises of three
modules: the IGP Viewer, the BGP Engine, and the Route
Control Server. The IGP viewer establishes IGP adjacencies
to one or more routes, which allows the RCP to receive IGP
topology information. The BGP engine learns GBP route
assignments to each routes. The route Control Server then
uses the IGP topology from the IGP Viewer information and
the BGP routes from the engine to compute the best BGP
route for each route. SDIA [24] breaks down the task of
providing connectivity between hosts in different domains

613612612612612612

into the following tasks: inter-domain tasks, intra-domain
transit tasks and intra-domain delivery tasks.

Zebra decomposes Internet service into interior domain
tasks and exterior domain tasks. Interior domain tasks
include collecting network information from a group of
controllers with no interconnection and generating a domain-
wide network view. Exterior domain tasks include collecting
network information from other domains and generating a
global-wide network view.

E. Network view

Network view is an important basis for the decision of
network routing. Many SDN controllers provide a global
network view in the management layer. Onix use Network
Information Base Details(NIB) to store network view. It
holds a collection of network entities, each of which holds
a set of key-value pairs and is identified by a flat, 128-bit,
global identifier [28].

In the initial SDN architecture, the control plane is mainly
realized by a single controller, so the developers can focus
on features and functionality, as well as performance.

Zebra devides network view into two parts, namely
global-wide network view and domain-wide network view.
Domain-wide network view only stores information in a do-
main, whereas global-wide network view stores a domain’s
connection with other domains.

IV. DESIGN AND IMPLEMENTATION

Zebra descends from a long line of work [17], [28], [18],
[24], [29]. Zebra divides control plane into Dissemination
layer and Decision layer.

A. Zebra architecture

Understanding how Zebra realizes a control platform
requires knowing the function of each layer. There are four
layers in a network controlled by Zebra, and they have very
distinct roles (see Figure 2). Compared to 3-layer platform,
we represent significant disparities and major challenges in
designing Zebra.

Application Layer: customized demand. The appli-
cation layer determines how a specific application use a
network. There are network virtualization, network energy
efficiency, advanced routing, in-network storage, in-network
computation in such applications. A graphical user interface
(GUI) is needed for SDN controller, then the GUI will
change SDN control platform from a software to a network-
ing operating system.

Decision Layer: control logic. Decision Layer is the
core component of Zebra, which consists of HCM and
DRM. HCM is responsible for routing decisions inside
a domain, and CRM is responsible for routing decisions
between various domains. Compared to 3-layer architecture,
decision layer in Zebra is a newly established layer between
SDN applications and controllers. Decision layer makes all

decisions driving network control, including reachability,
load balancing, access control, security, and interface config-
uration. Replacing today’s management layer, decision layer
operates in real time on a network wide view of the topology,
the traffic, and the capabilities and resource limitations of
the routers/switches. The decision layer uses algorithms to
turn network-level objectives (e.g., reachability matrix, load-
balancing goals, and survivability requirements) directly into
the packet-handling state that must be configured into the
data layer (e.g., forwarding table entries, packet filters,
queuing parameters). The decision layer consists of multiple
servers called decision elements that connect directly to the
network.

Dissemination and Discovery Layer: cache server.
Dissemination Layer in Zebra acts as an intermediary be-
tween potential hundreds of switches and remote application
servers by congregating requests from switches into various
servers. In the process, a SDN controller frequently requests
resources to avoid contacting the server repeatedly for the
resource and the route information (flow table) has not
changed. The dissemination Layer provides a robust and
efficient communication substrate that connects routers/-
switches with decision elements. While control information
may traverse the same set of physical links as the data
packets, the dissemination paths are maintained separately
from the data paths. So they can be operational without
requiring configuration or successful establishment of paths
in the data layer. In contrast, in today’s networks, control
and management data are carried over the data paths, which
need to be established by routing protocols before use. The
dissemination layer moves management information created
by the decision layer to the data layer and sends state
identified by the discovery layer to the decision layer, but
does not create state itself.

Data Layer: forwarding data. The data layer is the
carrier of SDN network, includes network switches, and any
other network elements that support an interface allowing
Dissemination Layer to read and write the state controlling
the element’s behavior (such as forwarding table entries).
The function of the data layer is mainly confined to packet
forwarding and simple processing. However, it is necessary
to build a flexible and easily configured SDN data layer in
order to adapt changing demands placed on the application
by the end users, the new personalized requirements of data
center network and other network application scenarios.

B. Heterogeneous Controller Management Layer

Heterogeneous Controller Management(HCM) is respon-
sible for managing different controllers, such as floodlight,
pox and maestro. HCM gathers information from these
controller’s API and other event source systems, such as
network monitoring system.

HCM only considers the flow entries export policies in
a domain, while policies between domains is resolved by

614613613613613613

Figure 3. There are five components in HCM, such as frontend, server-end,
control plane, data layer and database.

Domain Relationships Management(DRM).
Figure 3 shows that there are five components in HCM,

such as front-end, server-end, control plane, data layer
and data base. The front-end is responsible for displaying
and managing flow entry, traffic and topology information
in SDN. Server-end aims at collecting network topology
information and statistics, and updating flow entry according
to the change of network topology information or configura-
tion. The control plane only distribute flow entry to switches
and send statistics to Server-end. The function of the data
layer is mainly confined to packet forwarding and simple
processing.

Front-end interacts with server-end by one of java com-
munications flex three ways: flex communicate with ordinary
java class RemoteObject. We make use of the Spring DAOs
and SQL Maps defined by iBATIS ORM, and connect to the
database using Spring JDBC. The SDN controllers provide
APIs in the interaction with server-end.

C. Domain Relationships Management Layer

For a large-scale network, it is generally known that dif-
ferent domains should exchange information. Before design
a large-scale SDN network, it is very important to define
inter-domain relationships. The knowledge of inter-domain
relationships has many applications and usage in routing
decision. First, it is crucial in network service management
decision including the optimal placement of controllers and
switches. Second, it can help domain administrators to
achieve load balancing, congestion avoidance and fault tol-
erance. Third, it can aid domain administrators in planning
for future contractual agreements. Fourth, it can help domain
administrators to reduce the effect of the misconfiguration
and to debug switch configurations.

To address this problem, we propose a controller graph
representation that classifies domain relationships between
children-to-parent (c2p), friend-to-friend (f2f), and sibling-
to-sibling (s2s). In the c2p category, a children pays a
provider for any traffic sent between themselves. In the
f2f category, two domains freely exchange traffic between
themselves and their childrens, but do not exchange traffic
from or to their providers or other friends. In the s2s

Figure 4. Route paths (D1,D2,D3) and (D1,D2,D6,D3) are valley-free
while Route paths (D1,D4,D3) and (D1,D4,D5,D3) are not valley-free.

category, two domains administratively belong to the same
organization and freely exchange traffic between their par-
ents, childrens, friends, or other siblings. Figure 4 gives
a example of domain relationships. Our solution is rather
standard, borrowing heavily from long standing Autonomous
System (AS) deployment practices.

ISPs may friendly exchange information, where multiple
ISPs interconnect at Internet exchange points (IXs), allowing
routing of data between each network, without charging one
another for the data transmittedłdata that would otherwise
have passed through a third upstream ISP, incurring charges
from the upstream ISP.

Table I
ZEBRA EXPORT POLICY

Route Export Export Policy

Children to parent
Only routes received

from children and sibling

Friend to friend
Only routes received

from children and sibling
Parent to children All routes
Sibling to Sibling All routes

Table 1 shows common relationships between domains
and the export policies associated with them. Parents provide
transit to childrens; friends exchange only traffic that is
sourced and sinked by them, their childrens or their siblings;
and siblings provide mutual transit.

D. Zebra Database

As shown in table 2, there are ten core tables in Zebra
database. The table gives Zebra database table names and
explanations. Eight of ten tables illustrate the information
in a domain: basic information, controller, flow, host, link,
switch, switch port and switch port statistics. Meanwhile
two of ten tables give information between domains. The
s ip domain table displays which IP networks is included
in a domain. The s domain info table shows the relation-
ship between domains as children-to-parent (c2p), friend-to-
friend (f2f), or sibling-to-sibling (s2s).

V. EVALUATION

In this section, we evaluate Zebra in two ways: with a
test application, designed to test Zebra’s performance as a

615614614614614614

Table II
TEN CORE TABLES IN ZEBRA

Table Explanation
s controller info controller type,such as pox,floodlight

s ip domain ip belongs to domain information
s domain info domain information

s domain relation relation between domain
s flow info flow entry information
s host info host information
s link info switch connecting information
s port info switch port information
s port stats port statistics information

s switch info switch information

0 50 100 150 200 250 300 350
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Time(ms)

Pe
rc

en
ta

ge
 o

f
th

e
re

qu
es

ts

1
10
20
30
40
50
75
100

Figure 5. Thread modification percentage of the requests complete in a
certain time(ms)

general platform, and with cbench, used to verify DRM’s
performance. We test two key aspects of a single Zebra
instance: request completion time and memory usage, and
two key scalability-related aspects of DRM: throughput and
latency.

Each HCM instance has to connect the controllers it man-
ages. To stress this interface, we connected three controllers
to a single HCM instance and ran apache benchmark to test
Zebra’s performance as a general platform. The HCM is
the focal point of Zebra, and the performance of Zebra will
depend on the HCM capacity for processing updates. To
measure this throughput, we ran a apache benchmark which
repeatedly acquired exclusive access to the HCM. Figure 5
shows that thread modification percentage of the requests
complete in a certain time. When there is only one thread,
HCM finishes 95% of the requests in 5ms. When the threads
increases, HCM uses much less time to complete a request.
As you can see from Figure 6, it wastes no more than 3ms
to complete 95% of the requests.

Because decision layer in Zebra is a newly established
layer between applications and controllers, it is necessary
to compare the request time before and after decision layer
established. To test the request time, we write an application
which sends 100000 flow table entry update requests and
monitor the time used in processing the requests. Figure
6 shows that request completion time between Zebra and
floodlight is less than 5%. Zebra request’s completion time

0 50 100
0

10

20

30

40

50

60

Zebra Latency(ms)

Fr
ac

tio
n(

%
)

0 50 100
0

10

20

30

40

50

60

Flodlight Latency(ms)

Fr
ac

tio
n(

%
)

Figure 6. Request completion time compare between Zebra and floodlight

0 20 40 60 80 100
25

30

35

40

45

50

55

60

65

Number of flow entries(K)
M

em
or

y
us

ag
e(

M
B

)

Figure 7. Memory usage to add 1 million flow entries

includes floodlight completion time, so the former spend
longer time than the latter. More than 60% of the requests in
Zebra is finished in 5ms, and more than 95% of the requests
finished in 10ms, so does floodlight. The result of this is
identical to that of we do in the previous test. In the worst
case, a flow table entry updates requests in Zebra can be
finished in 100ms.

Figure 7 describes the memory usage status of Zebra when
adding flow entries. It shows that Zebra needs at most 60MB
memory to add 1 million flow entries.

Table III
PC DISPOSITION

Product Name ThinkPad T440
CPU Intel(R) Core(TM) i5-4200U

Standard Memory DDR3L-1600 8 GB
Operating System Windows 7 Professional

In our prototype, each domain has a IP Range or a IP
Range set. In our test, we construct two domain: Domain
A and Domain B. Domain A’s IP Range is 192.168.0.1/24,
and Domain B’s IP Range is 192.168.1.1/24. We do this test
on two PCs with same disposition: one host in Domain A
and another host in domain B. Table III summarizes the
parameters of the PC. Figure 8 describes the throughput
of each controller connected 16 switches changes with the

616615615615615615

1 2 3 4 5 6 7 8 9 10
100

200

300

400

500

600

700

800

900

1000

Number of threads

T
hr

ou
gh

pu
t(

ki
lo

re
qu

es
ts

 p
er

 s
ec

on
d)

Zebra
Floodlight
Maestro

Figure 8. The throughput of each controller connected 16 switches changes
with the number of thread

number of thread. Floodlight and maestro can process 700
kilorequests per second at most. Zebra DRM can process 900
kilorequests per second. Floodlight and maestro do routing
based on network wide view while Zebra do routing based
on simplified network wide view.

Figure 9 describes response time (milliseconds) varying
the number of switches for runs with 1 threads. At the be-
ginning, adding more CPUs beyond the number of switches
improve a little latency, however serving far larger number of
switches than available CPUs results in a noticeable increase
in the response time.

VI. RELATED WORK

In DIFANE [26], ”ingress” switches redirect packets to
”authority” switches that store all the forwarding rules while
ingress switches cache flow table rules for the future use.
The controller is responsible for partitioning rules over
authority switches.

HyperFlow [5] uses a logically centralized but physically
distributed controller in which switches connect to the phys-
ically closest part of the controller, which updates the other
physical machines on network events via a publish/subscribe
system. By passively synchronizing network-wide views of
OpenFlow controllers, HyperFlow localizes decision making
to individual controllers, thus minimizing the control plane
response time to data plane requests. However, if a Hyper-
Flow controller fails, its switches must be reconfigured to
connect to a new controller.

ElastiCon [30] addresses controller failure problem by
proposing a dynamic migration protocol between controllers,
and implements a dynamic load balancing system based on
the protocol.

Onix [28] was the first logically centralized but physically
distributed controller to implement a global network view.
To improve the scaling, Onix supports the creation of new
Onix instances with new scopes through aggregation or par-
titioning. Because the new scope is restricted to devices that
are physically close to each other, Onix is a flat architecture
which only supports one level of precesses. Furthermore,

0 50 100 150 200 250
10

15

20

25

30

35

40

Number of switches

La
te

nc
y(

m
s)

Zebra
Floodlight
Maestro

Figure 9. Response time varying the number of switches for runs with 1
threads

because it is the applications to resolve the conflict problem
when it happens in the process of aggregation or partitioning,
which is not easy to define the sub-scope induced by a given
policy.

Onix and HyperFlow decreases the look-up overhead by
enabling communication with local controllers, while still
allowing applications to be written with a simplified central
view of the network. The potential downside are trade-offs
related to consistency and staleness when distributing state
throughout the control plane, which has the potential to
cause applications believe that they have an accurate view
of the network to act incorrectly.

To get high availability and scale-out, ONOS [15] adopts
a distributed architecture and provides a global network
view to applications. Zebra uses a hierarchical distributed
architecture that differs from ONOS.

FRESCO [31] uses independent modular libraries, and
assembles them to provide complex network functions. Our
approach, on the other hand, tries to provide complex
network functions based on existed controllers. Software-
Defined Internet Architecture(SDIA) [24] focuses on how
to decompose Internet service into well-defined tasks and
how to implement those tasks in a modular fashion. Our
approach focus on using Zebra instead of 3-layer architecture
to solve communication problems between heterogeneous
controllers.

VII. CONCLUSIONS

This paper presents the first effort that use SDN four-
layer platform to solve multi-SDN controller problems.
The proposed solution, Zebra, might provoke interesting
discussions on the research community and open the door
to a wide range of innovation opportunities. In a word, we
expect to see a new generation of SDN that is versatile,
flexible, and easy to manage. The proposed architecture has
been designed and implemented in the CENI project.

617616616616616616

ACKNOWLEDGMENTS

This work is supported by the National Science Foun-
dation for Distinguished Young Scholars of China (Grant
No. 61225010); the State Key Program of National Natu-
ral Science of China(Grant No. 61432002); NSFC Grants
61173161, 61173162 and 61272417; the Fundamental Re-
search Funds for the Central Universities; Prospective Re-
search Project on Future Networks from Jiangsu Future
Networks Innovation Institute.

REFERENCES

[1] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McK-
eown, and S. Shenker, “Nox: towards an operating system
for networks,” ACM SIGCOMM Computer Communication
Review, pp. 105–110, 2008.

[2] Z. Cai, Maestro: Achieving Scalability and Coordination
in Centralized Network Control Plane. PhD thesis, Rice
University, 2011.

[3] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu, et al., “B4:
Experience with a globally-deployed software defined wan,”
in Proceedings of the ACM SIGCOMM 2013 conference,
pp. 3–14, 2013.

[4] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill,
M. Nanduri, and R. Wattenhofer, “Achieving high utilization
with software-driven wan,” in Proceedings of the ACM SIG-
COMM 2013 conference, pp. 15–26, 2013.

[5] A. Tootoonchian and Y. Ganjali, “Hyperflow: A distributed
control plane for openflow,” pp. 3–3, 2010.

[6] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner, “Openflow:
enabling innovation in campus networks,” ACM SIGCOMM
Computer Communication Review, pp. 69–74, 2008.

[7] B. Nunes, M. Mendonca, X. Nguyen, K. Obraczka, and
T. Turletti, “A survey of software-defined networking: Past,
present, and future of programmable networks,” IEEE Com-
munication Surveys and Tutorials, 2013.

[8] Y. Wang and I. Matta, “Sdn management layer: Design
requirements and future direction,” in Network Protocols
(ICNP), 2014 IEEE 22nd International Conference on,
pp. 555–562, 2014.

[9] “Beacon project.” https://openflow.stanford.edu/display/Beacon/.

[10] “floodlight project.” http://www.projectfloodlight.org/floodlight/.

[11] “pox project.” http://www. noxrepo.org/pox/about-pox/.

[12] “ryu project.” http://osrg.github.io/ryu/.

[13] “trema project.” http://trema.github.io/trema/.

[14] J. Medved, R. Varga, A. Tkacik, and K. Gray, “Opendaylight:
Towards a model-driven sdn controller architecture,” in 2014
IEEE 15th International Symposium on, pp. 1–6, 2014.

[15] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi,
T. Koide, B. Lantz, B. O’Connor, P. Radoslavov, W. Snow,
et al., “Onos: towards an open, distributed sdn os,” in Pro-
ceedings of the third workshop on Hot topics in software
defined networking, pp. 1–6, 2014.

[16] “Opendaylight project.” http://www.OpenDaylight.org/.

[17] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers,
J. Rexford, G. Xie, H. Yan, J. Zhan, and H. Zhang, “A
clean slate 4d approach to network control and management,”
ACM SIGCOMM Computer Communication Review, pp. 41–
54, 2005.

[18] M. Caesar, D. Caldwell, N. Feamster, J. Rexford, A. Shaikh,
and J. van der Merwe, “Design and implementation of a rout-
ing control platform,” in Proceedings of the 2nd conference on
Symposium on Networked Systems Design & Implementation-
Volume 2, pp. 15–28, 2005.

[19] M. Handley, E. Kohler, A. Ghosh, O. Hodson, and P. Ra-
doslavov, “Designing extensible ip router software,” in Pro-
ceedings of the 2nd conference on Symposium on Networked
Systems Design & Implementation-Volume 2, pp. 189–202,
2005.

[20] M. Casado, T. Garfinkel, A. Akella, M. J. Freedman,
D. Boneh, N. McKeown, and S. Shenker, “Sane: A protection
architecture for enterprise networks.,” in Usenix Security,
2006.

[21] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown,
and S. Shenker, “Ethane: taking control of the enterprise,” in
ACM SIGCOMM Computer Communication Review, pp. 1–
12, 2007.

[22] M. Casado, T. Koponen, S. Shenker, and A. Tootoonchian,
“Fabric: a retrospective on evolving sdn,” in Proceedings of
the first workshop on Hot topics in software defined networks,
pp. 85–90, 2012.

[23] M. Reitblatt, N. Foster, J. Rexford, and D. Walker, “Consis-
tent updates for software-defined networks: Change you can
believe in!,” in Proceedings of the 10th ACM Workshop on
Hot Topics in Networks, p. 7, 2011.

[24] B. Raghavan, M. Casado, T. Koponen, S. Ratnasamy, A. Gh-
odsi, and S. Shenker, “Software-defined internet architecture:
Decoupling architecture from infrastructure,” 2012.

[25] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller,
M. Casado, N. McKeown, and G. Parulkar, “Flowvisor: A
network virtualization layer,” OpenFlow Switch Consortium,
Tech. Rep, 2009.

[26] M. Yu, J. Rexford, M. J. Freedman, and J. Wang, “Scalable
flow-based networking with difane,” ACM SIGCOMM Com-
puter Communication Review, pp. 351–362, 2011.

[27] C. Monsanto, J. Reich, N. Foster, J. Rexford, D. Walker, et al.,
“Composing software defined networks.,” in NSDI, pp. 1–13,
2013.

[28] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski,
M. Zhu, R. Ramanathan, Y. Iwata, H. Inoue, T. Hama,
et al., “Onix: A distributed control platform for large-scale
production networks.,” in OSDI, pp. 1–6, 2010.

618617617617617617

[29] A. D. Ferguson, A. Guha, C. Liang, R. Fonseca, and S. Krish-
namurthi, “Participatory networking: An api for application
control of sdns,” in ACM SIGCOMM Computer Communica-
tion Review, pp. 327–338, 2013.

[30] A. Dixit, F. Hao, S. Mukherjee, T. Lakshman, and R. R.
Kompella, “Elasticon: an elastic distributed sdn controller,” in
Proceedings of the tenth ACM/IEEE symposium on Architec-
tures for networking and communications systems, pp. 17–28,
2014.

[31] S. Shin, P. A. Porras, V. Yegneswaran, M. W. Fong, G. Gu,
and M. Tyson, “Fresco: Modular composable security services
for software-defined networks.,” in NDSS, 2013.

619618618618618618

