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Summary

Virtual cluster has recently emerged as a common abstraction for cloud applications or tenants to

specify and reserve resources. Such virtual cluster brings valuable insights into the cloud elastic-

ity when scaling up or down the number of resources on demand. Unfortunately, for global-scale

applications running on geo-distributed datacenters, it is always a challenge to scale the virtual

cluster. Due to the fact that the inter-datacenter bandwidth is an expensive and scarce resource,

it is increasingly important yet typically hard to achieve cost-minimizing bandwidth guarantees

when scaling. However, existing approaches mainly focus on the scaling within intra-datacenter

networks and cannot be simply extended to the inter-datacenter scenario. In this paper, we study

the problem of scaling up a virtual cluster with consideration of both bandwidth cost minimiza-

tion and bandwidth guarantees fulfillment targeting inter-datacenter networks. Specifically, we

first propose an efficient algorithm to scale up the virtual cluster without changing its original

VM placement. With the observation that such VM placement can hinder the cluster scalability,

we further present an optimized algorithm, which exploits VM migration when scaling. Finally,

we conduct extensive simulations to demonstrate the effectiveness of our algorithms, in terms of

both bandwidth cost and the acceptance rate of scaling requests with bandwidth guarantees.
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1 INTRODUCTION

A key feature of cloud computing is its elasticity and capability of scaling up and down the resources on demand, for cloud applications to adapt to

the changes in workload.1 In the meanwhile, the virtual cluster has recently emerged as a common abstraction for cloud applications or tenants to

specify their resource demands.2-5 This eventually leads to an important problem of virtual cluster scaling, which is crucial to the performance of

cloud applications.

While recognizing the significance of virtual cluster scaling to cloud applications, we observe that a number of such applications are deployed on a

geographically distributed infrastructure,6-8 ie, datacenters located in different regions across the globe. Notable examples include Web search,6,9

video streaming,10,11 social networking,12 and wide area big data analytics.13 The trend towards geographical deployment of applications will only

continue and even increasingly include smaller enterprises, with the success of cloud computing. This evolution of application deployment motivates

us to think about a question: How to scale up a virtual cluster across geo-distributed datacenters?

To scale up a virtual cluster across multiple datacenters, we argue that the following two basic requirements should be jointly considered. First,

cloud applications, from their individual perspectives, have a strong desire for predictable network performance. Based on a state-of-the-art study,

bandwidth guarantee is an efficient approach to achieve the predictable performance.14 Because of offering a strong isolation for applications, it

can even provide predictable job completion time for those network-intensive applications (eg, MapReduce across geo-distributed datacenters).

Second, deploying virtual clusters across geo-distributed datacenters consumes significant amount of inter-datacenter bandwidth, which, however,

is often the scarcest, most volatile, and/or most expensive resource. In particular, the annual bandwidth cost may be up to hundreds of millions of

dollars.9 Therefore, from an economic perspective, the bandwidth cost should be considered as a fundamental factor when scaling the virtual cluster

across multiple datacenters.
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(A) Scaling with the method of [18] (B) A better scaling solution

FIGURE 1 An illustrative example of scaling up a virtual cluster from < 4,1 > to < 5,1 > in a 3-datacenter setup where 4 or 5 is the number of
VMs and 1 is the bandwidth requirement between each VM-pair. Here, S represents the number of empty slots of each datacenter, R denotes the
residual bandwidth, and p stands for the price per unit bandwidth, of each inter-datacenter link, respectively

To the best of our knowledge, existing methods on virtual cluster scaling are only applicable to intra-datacenter networks. Most of them focus

on dynamically adjusting the number of VMs in a virtual cluster, with ignoring bandwidth guarantees when scaling.15-17 A recent study in Yu and

Cai18 addresses the bandwidth guarantee problem along with the virtual cluster scaling. The scaling method in Yu and Cai18 actually works within

the intra-datacenter network with a tree-like topology. It first searches empty slots from the leave nodes and then traverses the tree topology

level-by-level in a bottom-up manner till the scaling succeeds. However, it cannot be simply extended to inter-datacenter networks.

To have a comprehensive understanding, we present an illustrative example in Figure 1, where a virtual cluster is desired to be scaled from< 4,1 >

to < 5,1 > in a 3-datacenter setup. Each datacenter only has 1 empty slot. Note that there could be significant heterogeneity both in the bandwidth

capacity and in the price per unit bandwidth of different inter-datacenter links.6,9,19 A key limitation of Yu and Cai18 is that such heterogeneity is

not perceived. Suppose the scaling method of Yu and Cai18 is being applied, followed by the bottom-up traversing manner, it may possibly place

the new VM5 into datacenter 1, as shown in Figure 1A. This is because that placing VM5 into datacenter 1 does not overload any datacenter or

oversubscribe any inter-datacenter link. As such, the corresponding bandwidth cost is 10 because one more unit of bandwidth has to be reserved on

the link between datacenters 1 and 2, to guarantee the bandwidth for each VM-pair. On the contrary, one can easily check a better scaling solution

is to place the new VM5 into datacenter 3 instead, as illustrated in Figure 1B. In this scenario, the bandwidth cost can be significantly reduced to as

minimum as 1; meanwhile, the guaranteed bandwidth requirement can also be satisfied for each VM-pair.

In this paper, we address the challenging problem of scaling up a virtual cluster across geo-distributed datacenters. Our primary goal is to minimize

the inter-datacenter bandwidth cost and, at the same time, fulfill the bandwidth guarantee for each VM-pair within the cluster. Specifically, we

consider two typical cases of this problem. The first case is to scale up a virtual cluster, without changing its original VM placement. To this end, we

formulate an optimization problem, which takes account of both guaranteed bandwidth requirement and inter-datacenter bandwidth cost. To solve

this optimization problem, we propose a dynamic programming algorithm, which searches for the placement of additional VMs at the lowest cost;

meanwhile, it can still provide bandwidth guarantees for each pair of VMs. Unfortunately, such dynamic programming algorithm may not work in

case that a virtual cluster cannot be scaled without changing its original VM placement. Hence, this emerges as the second case of this problem, which

needs to leverage VM migration to scale up the virtual cluster while minimizing the sum of both bandwidth cost and migration cost. We also present

an optimized algorithm to solve this case. Finally, we conduct extensive simulations to demonstrate the effectiveness of our algorithms. The results

verify that our algorithms are capable of both reducing the inter-datacenter bandwidth cost and satisfying the guaranteed bandwidth requirement

when scaling up a virtual cluster across geo-distributed datacenters.

The rest of this paper is organized as follows. Section 2 first studies the virtual cluster scaling problem in case the original VM placement cannot

be changed. In Section 3, we focus on the virtual cluster scaling with VM migration enabled. In Section 4, we evaluate and analyze the performance

of our proposed algorithms. In Section 5, we discuss current limitations and revelent future research. Section 6 summarizes the related work. Finally,

conclusions are drawn in Section 7.

2 VIRTUAL CLUSTER SCALING WITHOUT VM MIGRATION

In this section, we first describe the problem of scaling a virtual cluster across geo-distributed datacenters and then present a scaling algorithm in

the case where the original VM placement cannot be changed.

2.1 Virtual cluster scaling

We consider a virtual cluster, denoted as < N,B >, where N is the number of VMs and B is the bandwidth requirement between each VM-pair.

In our analysis, we mainly focus on scaling a virtual cluster from < N,B > to < N′,B > (N′ > N). To ease the presentation, the key parameters

used throughout this paper are listed in Table 1. As we mentioned earlier, a number of cloud applications are increasingly deployed on a geo-

graphically distributed infrastructure. Hence, we consider that the virtual cluster is deployed across a set of datacenters. We suppose that every

datacenter is connected to all other datacenters and accordingly use a complete directed graph  = ( , ) to denote the inter-datacenter network,
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TABLE 1 Notations and definitions

Symbol Definition

 The set of datacenters,  = {1,2, … ,M}

li,j,  The set of inter-datacenter links, li,j ∈ 

N,N′ The original cluster size (the number of VMs) and the new size (N′ > N)

Ni The number of VMs in the original cluster located in datacenter i ∈  ,
∑

iNi = N

N′
i

The number of VMs in the scaled cluster located in datacenter i ∈  ,
∑

iN
′
i
= N′

Ri,j The residual bandwidth of the inter-datacenter link, li,j ∈ 

pi,j The price per unit bandwidth of the inter-datacenter link, li,j ∈ 

Si The number of empty slots of datacenter i

B The guaranteed bandwidth requirement of the virtual cluster

W The cost of migrating one VM

Cbw The total cost of inter-datacenter bandwidth reservations

Cmgr The total cost of VM migrations

𝜃 The increment rate of the virtual cluster

where  = {1,2, … ,M} is the set of datacenters and  is the set of inter-datacenter links. In this case, let Ni stand for the number of VMs of the

virtual cluster that are placed in datacenter i ∈  , similarly, Si for the number of empty slots of datacenter i. It is clear that
∑

iNi = N. For each

inter-datacenter link li,j ∈  , let Ri,j denote the residual bandwidth, and pi,j as the price per unit bandwidth.

Now, we are in a position to formulate the problem of scaling a virtual cluster with both bandwidth cost and bandwidth guarantees taken into

account. Consider any inter-datacenter link li,j that connects datacenter i and j. The virtual cluster has Ni VMs in datacenter i, and Nj in datacenter j.

Then the maximum bandwidth required on link li,j is min(Ni,Nj) ∗ B, because each VM cannot send or receive at a rate higher than B.18 This implies

that we need to reserve min(Ni,Nj) ∗ B amount of bandwidth on each link li,j to guarantee the bandwidth B for each VM-pair. When the virtual cluster

< N,B > is scaled up to < N′,B > without changing the original placement of N VMs, we have to additionally reserve Δbw
i,j

amount of bandwidth on

link li,j accordingly. It is calculated as follows:

Δbw
i,j = (min(N′

i ,N′
j ) − min(Ni,Nj)) ∗ B, (1)

where N′
i

and N′
j

are the number of VMs being placed in datacenter i and j, respectively, after the scaling. We now can formulate the cluster scal-

ing problem P1 of minimizing the bandwidth cost of inter-datacenter links while still guaranteeing the bandwidth requirement for each VM-pair,

as follows:

min
N′

i

C =
∑

li,j

pi,jΔbw
i,j (2)

S.t. N′
i ≥ Ni,∀i, (3)

Δbw
i,j ≤ Ri,j,∀li,j, (4)

N′
i − Ni ≤ Si,∀i, (5)

∑

i

N′
i = N′. (6)

It is clear that the objective in Equation 2 represents the total bandwidth cost. Equation 3 means that in each datacenter, the number of VMs in

the scaled cluster is always no less than that of the original, which also indirectly suggests that the VM placement for the original cluster is always

not changed. Equation 4 enforces that the increase of bandwidth reservation must be no greater than the residual bandwidth of the corresponding

inter-datacenter link. Similarly, Equation 5 implies that the increase of the number of VMs in each datacenter should be limited by its empty slots.

Equation 6 essentially indicates that the sum of the number of VMs in each datacenter should be equal to N′.

2.2 A scaling algorithm

We now present a dynamic programming algorithm to solve the virtual cluster scaling problem P1. Intuitively, it may be a step towards the right direc-

tion to leverage numerical methods (eg, simplex method20) to solve the problem P1. However, it usually requires numerous iterations and inherently

increase the overall computation overhead of the algorithm. Furthermore, we may encounter a case where the decision variables computed are

not integers, which is inconsistent with real-world situations. Hence, we are inspired to design an efficient yet lightweight cluster scaling algorithm

instead, such that the overall computation overhead can be significantly reduced. Moreover, the algorithm can also be triggered in a laissez-fair man-

ner on general cloud platforms. In other words, whenever a cloud application encounters a high workload and wants to scale up the size of its virtual

cluster across geo-distributed datacenters, this scaling algorithm is triggered.
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The key for scaling up a virtual cluster is summarized in Algorithm 1. The algorithm requires the information of inter-datacenter networks topol-

ogy, the number of empty slots in each datacenter, the residual bandwidth, and the price per unit bandwidth of each inter-datacenter link, as well

as the current VM placement for the virtual cluster to be scaled. Given these inputs, it generates a VM placement for the scaled cluster. To scale up

a virtual cluster, the algorithm performs the following steps: it first identifies the increase in the size of the virtual cluster (Step 1), initializes some

auxiliary variables (Step 2), then uses a While loop to scale the cluster to the target size in a gradual manner, ie, each time it scales the cluster with

only one more VM. More precisely, as illustrated in Steps 5 to 13, it searches a datacenter that will produce the lowest bandwidth cost, also does

not lead to overloading any associated links, as well as having sufficient empty slots to accommodate the new VM if placing one more. After finding

such datacenter, the algorithm places the new VM in it (Step 14). Finally, for the datacenter being searched, the algorithm updates the number of

empty slots and the residual bandwidth of all associated links (Steps 15-16).

It should be noted that this algorithm makes no changes to the original VM placement for the virtual cluster. In what follows, we present an

optimized algorithm to cope with the case where VM migration is necessary and required.

3 VIRTUAL CLUSTER SCALING WITH VM MIGRATION

In this section, we first discuss the motivation for scaling the virtual cluster with VM migration and then illustrate the detailed algorithm design.

3.1 Benefits of VM migration

The above proposed Algorithm 1 aims to properly allocate additional VMs to the virtual cluster when scaling across geo-distributed datacen-

ters. However, it may still turn out to be an impossible task to find a workable solution in the end, even if we actually had enough resources to

accommodate such virtual cluster with a scaled size.
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(A) (B)

FIGURE 2 A motivating example: A, no feasible allocation exists for scaling the virtual cluster; B, the virtual cluster can be scaled if one VM (eg,
VM 3) is migrated from datacenter 2 to datacenter 3

To have a comprehensive understanding, we discuss a motivating example in Figure 2, where there are 3 datacenters, and a virtual cluster similarly

needs to be scaled from < 4,1 > to < 5,1 >. The number of empty slots of each datacenter, the residual bandwidth, and the price per unit band-

width of each link, as well as the current VM placement for the virtual cluster are all shown in Figure 2A. It can be easily verified that in Figure 2A,

the virtual cluster is unable to be scaled because a new VM cannot be added to any datacenter. For example, if placing VM 5 in datacenter 1, then the

link between datacenters 1 and 2 will be overloaded. Similarly, placing VM 5 in datacenter 3 will also lead to link congestions between datacenters

2 and 3. In addition, datacenter 2 cannot accommodate VM 5 as well due to the lack of empty slots. That is, no feasible solution can be constructed.

However, in Figure 2B, it is obvious that the size of this virtual cluster can be successfully scaled to 5. This implies that the original VM placement

may hinder the scalability of a virtual cluster. To tackle this issue, we leverage VM migration to optimize the placement of the original VMs to accom-

modate new ones. As illustrated in Figure 2B, after a VM (VM 3) is migrated from datacenter 2 to datacenter 3, we can place a new VM (VM 5) in

datacenter 1 without overloading any inter-datacenter link. Therefore, we are motivated to consider the virtual cluster scaling with VM migration

enabled. Given the VM migration brings service downtimes, and the performance isolation among different virtual clusters is usually expected in

the cloud, nevertheless, we only consider the VM migration within the virtual cluster to be scaled. Furthermore, VM migration generates significant

inter-datacenter traffic, which directly incurs high cost because of the expensive inter-datacenter bandwidth. Hence, we need to incorporate such

traffic cost when designing the cluster scaling algorithm with VM migration enabled.

The key for designing the algorithm is to hypothetically remove the original virtual cluster < N,B >, release the bandwidth reserved on each

link and the slots occupied in each datacenter, then find a valid allocation for the scaled cluster < N′,B >. To ease the presentation, we formu-

late an optimization problem to guide the design of such cluster scaling algorithm with VM migration enabled. Specifically, there are two types of

cost incurred by the scaled cluster: the cost of inter-datacenter bandwidth reservation Cbw and the cost of VM migration Cmgr, which are defined

as follows:

Cbw =
∑

li,j

pi,j min(N′
i ,N′

j ) ∗ B, (7)

Cmgr =
∑

i

max(Ni − N′
i ,0) ∗ W, (8)

where W is the cost of migrating one VM. Cbw is calculated as the summation of the cost of each link li,j, where the term min(N′
i
,N′

j
) ∗ B is the amount of

bandwidth that must be reserved on each link li,j, to guarantee the bandwidth requirement B for each VM-pair. In Equation 8, the term max(Ni−N′
i
,0)

is the number of VMs to be moved out of datacenter i, and accordingly, Cmgr equals to the summation of the migration cost across all datacenters.

Note that we can enforce different settings for W on different datacenters. However, it is a complicated, time-consuming, and often thankless task.

It is undetermined which setting would be better and more practical, with the significant variability in both the size of VM instances, and the price

per unit bandwidth across different datacenters. We believe that such unified setting can approximately reflect the cost of migrating one VM and is

also appropriate to be adopted for the purpose of guiding the algorithm design with VM migration enabled.

Based on the above two types of cost, we now can formulate a new optimization problem P2:

min
N′

i

Cbw + Cmgr (9)

S.t. min(N′
i ,N′

j ) ∗ B ≤ Ri,j+min(Ni,Nj) ∗ B,∀li,j, (10)

N′
i ≤ Si + Ni,∀i, (11)

∑

i

N′
i = N′. (12)
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Equation 9 is the objective function that incorporates both the bandwidth cost and the migration cost. Note that by adding a weight factor in front

of each type of cost, any desired trade-off between these two types of cost can be achieved. For the sake of simplicity, we assume that the weight

factor is 1 here. Equation 10 enforces the reserved bandwidth must be no greater than the total available bandwidth of the link, which is the sum of

the corresponding residual bandwidth, and the bandwidth released by hypothetically removing of the original cluster. Similarly, Equation 11 implies

that the number of VMs in each datacenter should also be limited by its total available slots after the same procedure. Finally, it is obvious that the

sum of VMs being placed in each datacenter should be equal to the scaled cluster size N′, as indicated by Equation 12.

3.2 Algorithm design

Algorithm 1 can find a feasible solution if it does exist; otherwise, it fails. In this case, we terminate it and turn to a new scaling method with VM

migration enabled, summarized as Algorithm 2.

Algorithm 2 starts by hypothetically removing of the original cluster, updating the available bandwidth Ri,j and the empty slots Si, as described in

Steps 1 to 2. It can then leverage a heuristic idea to place each VM of the scaled cluster in an appropriate datacenter. Specifically, when placing each

VM, it eliminates the datacenter that has insufficient empty slots or inadequate bandwidth (Steps 6-13) and then searches the remaining ones to

find a datacenter at the lowest cost (including both the bandwidth cost and the migration cost) if placing one more VM in it (Step 14). Finally, the

algorithm updates the number of empty slots of each datacenter (Step 15) as well as the residual bandwidth on each inter-datacenter link (Step 16)

then continues to allocate another VM until all VMs of the scaled cluster have been placed.

Discussions: We discuss two interesting issues concerning the above algorithm. First, it may also not work when there are insufficient resources,

eg, empty slots or available bandwidth to accommodate all VMs of the scaled cluster. In this case, our algorithm will strive to place as many VMs as

possible while satisfying all the guaranteed bandwidth requirements of the placed VMs. Second, our algorithm generates N′
i

as output. It is necessary

to practically place new VMs as well as migrate the original VMs to archive the desired result. This brings us to a new question: How to migrate VMs

with the VM placement for both the original cluster and the scaled cluster? To further reduce the migration cost, we take advantage of the variability in

the price per unit bandwidth to design an efficient migration strategy.



XU ET AL. 7 of 12

4 PERFORMANCE EVALUATION

In this section, we investigate the performance of our proposed scaling algorithms from 3 different perspectives: the bandwidth cost of

inter-datacenter links, the acceptance rate of scaling requests, and the cost of VM migrations.

4.1 Experimental settings

Experiment Setup:In our experiment, we decide to use MATLAB environment as a simulator and create an inter-datacenter network with 30 dat-

acenters, which is commonly seen in typical cloud networks, eg, Microsoft.9 The number of available slots of each datacenter is set to be a uniform

random integer within the range [10,100]. In our experiments, we vary the bandwidth of inter-datacenter links between 1Gbps and 10Gbps, hop-

ing to mimic the heterogeneous bandwidth environment across geo-distributed datacenters. In fact, such environment can be achieved by utilizing

Linux Traffic Control.21 We develop a tiered structure of the price per unit bandwidth, where an inter-datacenter link with larger bandwidth capac-

ity has a relatively lower unit cost. To demonstrate an exact pricing relation, we choose Amazon EC2 Data Transfer Pricing.22 For instance, if the

data transfer price is $0.0012/Mb, then the price per unit bandwidth is assumed to be $0.0012/Mbps accordingly. Table 2 summarizes such tiered

bandwidth pricing relation in detail.

Evaluation Methodology:To evaluate the performance of our proposed scaling algorithms, we mainly focus on the following 3 performance met-

rics: the bandwidth cost of inter-datacenter links, the acceptance rate of scaling requests, and the cost of VM migrations. To ease the presentation, we denote

the scaling algorithm in Section 2 as “Scaling-wo-M,” and the algorithm in Section 3 as “Scaling-w-M.” Similarly, we use “Scaling-wo-BwC” to rep-

resent the scaling algorithm in Yu and Cai18 as a baseline, which exploits VM migration to scale up virtual clusters within a single datacenter, while

simply ignoring the bandwidth cost when performing the scaling.

We consider that there are 10 jobs. Each job specifies a virtual cluster < N,B >. Initially, we deploy only one VM in each datacenter for each

job. We randomly generate 200 scaling requests, each request attempts to scale up the virtual cluster of one job with the same increase ratio 𝜃. We

handle these scaling requests in a first-in-first-out (FIFO) manner. The cost of migrating one VM across different datacenters is always set to 1, ie,

W = 1.

4.2 Experiment results

4.2.1 Impact of parameters

We first investigate the impact of the parameters, ie, the bandwidth requirement per virtual cluster B and the increase rate of a virtual cluster 𝜃, on

the performance of our proposed scaling algorithms. To this end, we first vary the increase rate 𝜃 from 0.1 to 1, meanwhile keeping the guaranteed

bandwidth B as 100 Mbps. Then we vary B from 10 to 100 Mbps, meanwhile keeping 𝜃 as 0.2.

Figure 3A first shows the bandwidth cost variation under different increase rate 𝜃. It is clear that the bandwidth cost of Scaling-w-M is lower

than that of Scaling-wo-M, with most of 𝜃's. The reason is that Scaling-w-M hypothetically removes the original cluster and reallocates all VMs in

the scaled cluster. This significantly increases the possibility of finding an optimized solution with reduced bandwidth cost. We can further observe

that Scaling-w-M always achieves a lower bandwidth cost, comparing with Scaling-wo-BwC. This is because though Scaling-wo-BwC considers the

migration cost, it simply ignores the bandwidth cost when scaling up a virtual cluster. We further evaluate the impact of guaranteed bandwidth

requirement B on the bandwidth cost, as illustrated in Figure 3B, under fixed increase rate𝜃 = 0.2. One can easily check that the bandwidth cost of all

these three algorithms (Scaling-wo-M, Scaling-w-M, and Scaling-wo-BwC) increases along with the growth of guaranteed bandwidth requirement

B. Moreover, under all settings of B, Scaling-wo-BwC is the worst in minimizing the bandwidth cost, and for most of B's, Scaling-w-M achieves a little

bit lower bandwidth cost than Scaling-wo-M.

It should be noted that the Scaling-w-M algorithm may be effective in reducing the bandwidth cost of inter-datacenter links, while as a conse-

quence, it also introduces a significant amount of migration costs. To quantitatively formulate this issue, Figure 4 presents the migration cost of

Scaling-w-M and Scaling-wo-BwC. Specifically, Figure 4A and 4B plots the migration cost with various parameters, 𝜃 and B, respectively. One can

easily check that the migration cost of these two algorithms decreases with the increasing of both 𝜃 and B. Furthermore, one may wonder at this

point that Scaling-wo-BwC achieves a lower migration cost than the proposed Scaling-w-M. This is because Scaling-wo-BwC scales up a virtual clus-

ter with only a single objective of minimizing the migration cost. That is why Scaling-wo-BwC incurs almost the top bandwidth costs as illustrated in

TABLE 2 Tiered bandwidth pricing

Bandwidth capacity, Mbps Price, $/Mbps

< 2000 0.0012

2000 − 4000 0.0009

4000 − 6000 0.0007

6000 − 8000 0.0005

> 8000 0.0003
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FIGURE 3 The performance on bandwidth cost achieved by Scaling-wo-M, Scaling-w-M, and Scaling-wo-BwC algorithms: A, the bandwidth cost
vs the increase rate 𝜃, with fixed bandwidth B = 100 Mbps; B, the bandwidth cost vs the guaranteed bandwidth B, with fixed rate 𝜃 = 0.2

FIGURE 4 The performance on migration cost of Scaling-w-M and Scaling-wo-BwC algorithms: A, the migration cost vs the increase rate 𝜃, with
fixed bandwidth B = 100 Mbps; B, the migration cost vs the guaranteed bandwidth B, with fixed rate 𝜃 = 0.2

FIGURE 5 The performance on acceptance rate of scaling-wo-M and scaling-w-M algorithms: A, the acceptance rate of scaling requests vs the
increase rate 𝜃, with fixed bandwidth B = 100 Mbps; B, the acceptance rate of scaling requests vs the guaranteed bandwidth B, with fixed rate
𝜃 = 0.2

Figure 3. It should also be noted that one can easily make the migration cost of Scaling-w-M arbitrarily close to that of Scaling-wo-BwC, by choosing

appropriate parameters 𝜃 and B, eg, B = 100 Mbps and 𝜃 = 0.2.

One of the most important metrics when scaling the cluster across multiple datacenters is the guaranteed bandwidth requirement. For each scal-

ing request, it is acceptable only if the guaranteed bandwidth requirement of each VM-pair can be satisfied. The acceptance rate is then calculated

as the number of accepted requests dividing by the number of all requests has been raised. Figure 5A first demonstrates the acceptance rate of

scaling requests with various 𝜃. It is clear that the acceptance rate decreases with the increasing of 𝜃. We further observe that the acceptance rate

of Scaling-w-M is higher than that of Scaling-wo-M, irrespective of any variety in 𝜃, and the acceptance rate of Scaling-wo-BwC is in the middle.

Towards a more comprehensive understanding, we further plot the acceptance rate under different settings of guaranteed bandwidth requirement

B, as illustrated in Figure 5B. We also notice that in all these three algorithms, the acceptance rate remains almost unchanged when B ≤ 30 Mbps.

However, Scaling-w-M can accommodate more scaling requests than the remaining two algorithms, when B > 30 Mbps.
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FIGURE 6 The impact of the number of jobs: A, the bandwidth cost vs the number of jobs; B, the migration cost vs the number of jobs

TABLE 3 The bandwidth cost, migration cost, and acceptance rate of scaling requests when handling multiple
requests under different scaling algorithms

Bandwidth cost ($) Migration cost ($) Acceptance rate of scaling requests

Original scaling-wo-M 751.2 0 0.14

Combining SCF and scaling-wo-M 742.4 0 0.175

Original scaling-w-M 534.1 1982 0.17

Combining SCF and scaling-w-M 401.5 2322 0.2

4.2.2 Impact of the number of jobs

In the above experiments, only 10 jobs are running. We now evaluate the impact of the number of jobs on the performance of proposed scaling

algorithms. To this end, we vary the number of jobs from 10 to 100, then run the experiment 10 rounds. We randomly generate the scaling requests,

with the number of requests equalling jobs each round. Across all rounds of experiments, we set B = 10 Mbps and 𝜃 = 0.1. Figure 6A first plots the

bandwidth cost incurred by Scaling-wo-M, Scaling-w-M, and Scaling-wo-BwC algorithms, under different number of jobs. Obviously, the bandwidth

cost incurred by all these algorithms increases along with the growth of the number of jobs, and Scaling-wo-M algorithm performs the worst saving

the bandwidth cost. We further observe that Scaling-w-M can achieve a lower bandwidth cost than Scaling-wo-Bwc, irrespective of the number of

jobs changing. Figure 6B further plots the migration cost introduced by Scaling-w-M and Scaling-wo-BwC algorithms, through varying the number

of jobs. We can see that even though Scaling-wo-BwC aims only at minimizing the migration cost, Scaling-w-M achieves almost the same migration

cost with Scaling-wo-BwC, across all settings of the number of jobs. This implies that our Scaling-w-M can leverage VM migration to scale up a

virtual cluster in a more cost-effective way. Note that all requests in each round of experiment have been accepted; we therefore do not show the

acceptance rate of these scaling requests further.

4.2.3 Handling concurrent scaling requests

So far, we have only focused on the scenario where the scaling requests are handled one by one with FIFO scheduling policy. However, in most

real-world cases, there are typically more than one job submitting scaling requests concurrently. Simply scheduling these requests with FIFO is

insufficient to minimize the bandwidth cost as well as the migration cost. Hence, we need to decide which virtual cluster to be scaled each time.

To this end, we apply a shortest-cost-first (SCF) scheduling policy. In other words, each time when we are ready to handle a request, we sort all

requests that have not been served in an ascending order based on the cost each will incur. Then we select a request with the lowest cost and scale

up its corresponding virtual cluster with the proposed Scaling-wo-M and Scaling-w-M algorithms. With regard to the experiment, we still generate

10 jobs and 200 requests, with fixed B = 100 Mbps and 𝜃 = 0.5. Then these 200 scaling requests are handled by four algorithms: (1) the original

Scaling-wo-M with FIFO, (2) the algorithm by combining SCF with Scaling-wo-M, (3) the original Scaling-w-M with FIFO, and (4) the algorithm by

combining SCF scheduling with Scaling-w-M. Table 3 presents the bandwidth cost, migration cost, and acceptance rate under all four algorithms. We

can easily check that when combining the SCF scheduling with scaling-wo-M, the bandwidth cost can be reduced to 742.4 and the acceptance rate of

requests can be increased to 0.175. On the other hand, combining the SCF scheduling with scaling-w-M, the bandwidth cost can be reduced further;

meanwhile, the migration cost would also be increased at the same time, due to a larger acceptance rate. The above results demonstrate that when

there are more than one concurrent scaling request, the methods of request scheduling and virtual cluster scaling should be jointly considered to

optimize the overall costs.

5 DISCUSSION

Taking energy into consideration: Energy expenses account for a large potion of the overall datacenter operation costs.23,24 To incorporate it into

our proposed algorithms, a simple approach is to leverage the varying energy prices across different datacenters when scaling up a virtual cluster.
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Furthermore, it would be even better to leverage the time-varying energy prices24 to decide when to scale dynamically. We leave this as one direction

of our future work.

Avoiding frequent scaling-up/scaling-down: In this paper, we only focus on scaling up a virtual cluster. However, since the workload

of the upper-level applications changes over time, the virtual cluster also needs to be scaled down when necessary. To avoid frequent

scaling-up/scaling-down, we can introduce kind of adaptive damping mechanism to limit the number of scaling requests permitted at any given

duration, as another direction of our future work.

Reducing the cost of migration over wide-area networks: Migrating VMs over the wide-area network (WAN) could incur high cost, because

WAN bandwidth is always limited. One possible approach would be to combine a block-level solution with pre-copying and write throttling.25 We

can also use CloudNet, which provides a set of optimizations that minimize the cost of storage and VM memory transfer over low-bandwidth and

high-latency WAN links during the migration.26 We leave this as an open issue in the literature.

6 RELATED WORK

The proposed scaling algorithms mainly focus on allocating network resources of datacenters to virtual clusters. There is a large spectrum of related

work. Here, we only review the most closely related ones in the fields of network resource sharing either within a single datacenter, or across

geo-distributed datacenters, respectively.

6.1 Network resource sharing within a single datacenter

Towards the resource sharing among virtual clusters within a single datacenter, the proposed methods so far can be roughly classified into two cat-

egories: reserving network resources to virtual clusters with fixed requirements and reserving network resources to virtual clusters with varying

requirements. Regarding the former category, SecondNet2 first presents VDC (virtual data center) as an abstraction for describing the bandwidth

requirement between each VM-pair and allocates bandwidth via the hypervisor of servers to provide bandwidth guarantees at VM-to-VM level.

Lee et al propose a new network abstraction TAG (tenant application graph) and execute a workload placement algorithm to guarantee the band-

width specified by TAGs.5 Oktopus3 designs a virtual cluster model and leverages an efficient VM placement algorithm, as well as a static rate limit

to enforce the bandwidth guarantee on the virtual cluster. However, Oktopus ignores the highly variable demand on the bandwidth by the VMs.

With such insight, Xie et al4 suggest a TIVC (temporally interleaved virtual cluster) model, which makes time-varying bandwidth reservation based

on different bandwidth specifications during different time intervals. In addition to the network abstraction model, some other solutions focus on

providing the minimum bandwidth guarantees. For example, EyeQ27 presents such method by reserving a minimum bandwidth for each endpoint

on resource provisioning. Gatekeeper28 leverages a distributed mechanism to reserve the bandwidth for VMs of a tenant. Although all the above

methods can provide bandwidth guarantee to the virtual cluster, they do not consider the changes of the resource requirements of a virtual clus-

ter. This urges the elastic resource sharing, which dynamically scales the resources of a VM or cluster so as to adapt to workload changes of cloud

applications. For example, Pedala et al design a feedback control system to dynamically make reservations of CPU and disk resources for VMs, with

overlooking the network resources.29 Instead of the feedback mechanism, Gong et al perform the resource scaling based on a lightweight online

prediction scheme.30 For the resource scaling at cluster-level, Nguyen et al propose AGILE, which dynamically adjusts the number of VMs being

allocated to a cloud application based on its SLO (Service Level Objectives).16 Taking it one step further, Herodotou et al target on automatically

determining the cluster size as well as the instance type of VMs, to archive the desired performance for a given workload.17 Han et al jointly con-

sider the resource scaling at both VM-level and cluster-level.15 Those scaling methods do not consider the guaranteed bandwidth requirement in

general. To tackle this issue, Yu et al address the bandwidth guarantees problem of virtual cluster scaling,18 while their method is only applicable

to the intra-datacenter scenario. Niu et al focus on dynamically booking a minimum bandwidth from multiple cloud providers for video-on-demand

applications, by designing a predictive resource auto-scaling system.1 However, they actually reserve the intra-datacenter bandwidth from different

cloud providers, far from the inter-datacenter scenario concerned.

In addition to resource reserving, there are also a large number of existing methods that allocate datacenter network resources to VMs or virtual

clusters after the placements have been fixed, 14,31-33 or schedule the workflow of applications running on top of these virtual clusters.34

6.2 Network resource sharing across geo-distributed datacenters

Regarding network resource sharing across geo-distributed datacenters, Li et al35 propose an ADMM-based algorithm to provide bandwidth guar-

antees to inter-datacenter traffic at the minimum bandwidth cost. The ADMM-based algorithm can work in conjunction with our proposals. This

is because that ADMM-based algorithm targets on optimizing the transmission of inter-datacenter traffic in a bandwidth-guaranteed manner by

assuming fixed VM placement of an application, while our proposed algorithms focus on scaling up the resources of an application to adapt to its

workload changes instead.

There are a large body of recent researches aim at reducing the cost of inter-datacenter traffic. For example, Feng et al propose to optimally

routing the inter-datacenter video traffic to minimize the cloud provider's operation costs. Liu et al36 propose efficient data replication scheme
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to reduce the amount of inter-datacenter traffic, therefore save the traffic cost accordingly. Laoutaris et al37 present efficient store-and-forward

method for inter-datacenter bulk data transfers.38

Regarding energy or carbon reduction, Khosravi et al23 take advantages of the diverse carbon footprint rates and PuEs across different datacen-

ters to design a novel VM placement algorithm. Their algorithm can efficiently reduce the CO2 emission and power consumption. Lin et al39 propose

a two-time-scale Lyapunov optimization–based approach to dynamically make decisions on the number of active servers based on the incoming

workload, so as to save significant amount of energy.

Regarding the cost of VM migration, Voorsluys et al40 investigate the impact of live VM migration on the performance of applications running on

top of the VM. Their results demonstrate that the migration overhead is acceptable in most cases.

7 CONCLUSION

This paper takes a first step towards addressing the problem of scaling up a virtual cluster across geo-distributed datacenters, with the aim of

reducing the bandwidth cost of inter-datacenter links as well as fulfilling the guaranteed bandwidth requirement for each VM-pair of the cluster.

We formulate the problem of virtual cluster scaling as an optimization problem. Specifically, we present two scaling algorithms: one is to scale up

a virtual cluster with the original VM placement unchanged, and the other is to scale the cluster with VM migration enabled. We have conducted

extensive simulations to demonstrate the performance of the proposed algorithms. The results verify that our algorithms are effective in both the

bandwidth cost minimization and the guaranteed bandwidth requirement satisfaction. The results further demonstrate that the scalability of the

virtual cluster can be significantly improved with VM migration enabled.
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