
2168-7161 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.2994195, IEEE
Transactions on Cloud Computing

1

Trading Cost and Throughput in Geo-distributed
Analytics with A Two Time Scale Approach

Xinping Xu, Wenxin Li, Renhai Xu, Heng Qi, Keqiu Li, Senior Member, IEEE, and Xiaobo Zhou

Abstract—In the era of global-scale services, analytical queries are performed on datasets that span multiple data centers (DCs).
Such geo-distributed queries generate a large amount of inter-DC data transfers at run time. Due to the expensive inter-DC bandwidth,
various methods have been proposed to reduce the traffic cost in geo-distributed data analytics. However, current methods do not
attempt to address the throughput issue in geo-distributed analytics. In this paper, we target at characterizing and optimizing a
cost-throughput tradeoff problem in geo-distributed data analytics. Our objectives are two-fold: (1) we minimize the inter-DC traffic cost
when serving geo-distributed analytics with uncertain query demand, and (2) we maximize the system throughput, in terms of the
number of query requests that can be successfully served with guaranteed queuing delay. Specifically, we formulate a stochastic
optimization problem that seamlessly combines these two objectives. To solve this problem, we take advantage of Lyapunov
optimization techniques to design and analyze a two-timescale online control framework. Without prior knowledge of future query
requests, this framework makes online decisions on input data placement and admission control of query requests. Rigorous
theoretical analyses show that our framework can achieve a near-optimal solution and maintain system stability and robustness as
well. Extensive trace-driven simulation results further demonstrate that our framework is capable of reducing inter-DC traffic cost,
improving system throughput, and guaranteeing a maximum delay for each query request.

Index Terms—Geo-distributed data analytics, Data placement, Admission control, Lyapunov optimization, Two-timescale Approach.

F

1 INTRODUCTION

G Lobe-scale organizations (e.g., Google [1] and Mi-
crosoft [2]) construct multiple data centers (DCs) across

the world to deliver their services. These services continu-
ously produce large volumes of data when logging user ac-
tivity or monitoring server status [3–5]. These data are born
and stored in multiple DCs, and introduce an interesting
research topic of geo-distributed data analytics (GDA) [6, 7].
Such GDA has a huge impact on the business process and is
of great importance to service providers. For example, GDA
enables service providers to make advertisement decisions
by querying user logs and detect attacks/faults by querying
system logs.

Due to the geo-distributed feature of these datasets,
GDA incurs substantial inter-DC traffic cost. GDA queries
generate a large amount of inter-DC transfers, no matter
they are performed in a centralized or distributed way. The
centralized way aggregates all datasets to a single DC before
executing queries, while distributed way leaves data in-
place and executes queries directly on these geo-distributed
datasets. Clearly, both of the two ways generate a large
volume of inter-DC transfers, caused by either the input
data transfers or intermediate data transfers. In fact, the
amount of daily inter-DC transfers can be up to tens or
hundreds of TBs in typical global-scale organizations (e.g.,
Facebook [8], Twitter [9], Yahoo [10]). While the inter-DC

• X. Xu, W. Li, H. Qi and K. Li are with the School of Computer
Science and Technology, Dalian University of Technology, No 2, Ling-
gong Road, Dalian 116023, China. E-mail: pixxinger@mail.dlut.edu.cn,
toliwenxin@gmail.com, {hengqi, keqiu}@dlut.edu.cn.

• R. Xu and X. Zhou are with the Tianjin Key Laboratory of Advanced
Networking, College of Intelligence and Computing, Tianjin University,
Tianjin 300350, P.R. China. E-mail: {xurenhai, xiaobo.zhou}@tju.edu.cn.

traffic is increasing, inter-DC communication is expensive.
For example, in Amazon EC2, the cost of two machines
communicating at the rate of the average WAN bandwidth
between two DCs is up to 38× of the cost of renting these
two machines [11].

From the economics perspective, it is the need to reduce
or even minimize the inter-DC traffic cost incurred by
GDA queries. Nevertheless, this imposes challenges in max-
imizing the throughput (the number of successfully served
query requests), which is an important performance metric
in the modern GDA system. Typically, a GDA system not
only needs to handle millions of query requests per minute
today. It also must be able to handle the ever-increasing
number of query requests in the future [12]. Purely mini-
mizing inter-DC traffic cost could result in low throughput,
and leads to high queuing delay for each query request due
to the scarce inter-DC bandwidth [7]. Even worse, purely
optimizing system throughput can arbitrarily increase traffic
cost. This is because of the fundamental difference between
the two metrics: cost saving is usually obtained by reducing
the number of successfully served query requests, whereas
throughput improvements incur an increasing amount of
inter-DC traffic.

Hence, we believe that it is crucial to characterize and
optimize a cost-throughput tradeoff for a GDA system. In
other words, how to minimize the involved traffic cost while
maximizing the number of query requests that can be served
with guaranteed delay? Intuitively, it may be a step towards
the right direction to design an offline algorithm to obtain
the optimal solution. However, such offline optimization in-
evitably relies on prior knowledge of future query demand.
The query demand mainly refers to the number of query
requests in each time, and it is typically uncertain over time.

2168-7161 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.2994195, IEEE
Transactions on Cloud Computing

2

Moreover, the arrivals of query requests may not follow any
stationary distributions, yet are not known a prior.

To the best of our knowledge, no existing work is in place
to solve such cost-throughput problem for GDA queries with
uncertain demand. State-of-the-art methods can be divided
into two categories: 1) The first one is to reduce the inter-
DC traffic cost by leveraging efficient data replication, and
task aggregation strategies for GDA queries [7, 13, 14];
2) The second one is to shorten the completion time of
GDA query jobs via efficient data/task placement and flow
scheduling strategies [6, 15–17]. However, all of them ignore
the throughput maximization in the GDA system. One
may wonder at this point that reducing the completion of
GDA queries indirectly leads to high throughput. Nonethe-
less, existing methods suffer from assumptions that are
often unrealistic—such as analytical queries are repeated or
known in advance.

In this paper, we take the first step to study the cost-
throughput problem for large-scale GDA systems, in the
presence of uncertain query demand. Our primary focus is
to minimize the inter-DC traffic cost and maximize the number
of query requests that can be successfully served with guaranteed
delay. To this end, we blend the advantages of both input
data placement and query request admission techniques.
Especially, we formulate a stochastic optimization problem,
which takes into account three constraints: ensuring the
completion of input data placement before queries arrive,
guaranteeing a maximum delay for each query request, and
bounding the involved inter-DC traffic within the capacity.
To solve this problem, we design a practical and provably-
efficient two-timescale online control framework based on
the Lyapunov optimization technique. Without prior knowl-
edge of future query requests, this framework makes online
decisions on the input data placement in time slots of
longer periods of time, and also determines the number of
query requests that can be served with guaranteed delay
in smaller time scales. The key is that such a two-timescale
framework can adaptively re-distribute input data among
different DCs before starting the query requests. This will
reduce the traffic cost in the long-term when continuously
receiving a large number of query requests, and at the
same time, accommodate more query requests in the inter-
DC network. We use rigorous mathematical analysis to
demonstrate that our framework can achieve a near-optimal
solution and maintain system stability and robustness. We
further conduct extensive simulations based on the 7-day
worth of traces from Google Cluster Usage, to show the
effectiveness of our framework in reducing inter-DC traffic
cost, improving system throughput, and guaranteeing a
maximum delay for each query request.

The main contributions of this paper include:

• We take the first step to study a cost-throughput
tradeoff problem in geo-distributed data analytics
without any prior knowledge of future query re-
quests’ arrival patterns. Specifically, we formulate
a stochastic optimization problem, which takes into
account the inter-DC traffic cost, system throughput,
and the maximum queuing delay.

• We present a two-timescale online control framework
to solve the stochastic problem. The key to optimiz-

ing the cost-throughput tradeoff in this framework is
that it adaptively adjusts the input data distribution
among different DCs at the beginning of a longer
time scales, and determines how many query re-
quests to be simultaneously served at the beginning
of each smaller time scales.

• We conduct rigorous theoretical analysis as well as
large-scale trace-driven simulations to evaluate the
performance of our proposed two-timescale frame-
work. Both theoretical and simulation results have
shown that our framework can reduce inter-DC traf-
fic cost, improving system throughput, and guaran-
teeing a maximum delay.

2 BACKGROUND AND PROBLEM STATEMENT

In this section, we first explain the geo-distributed data an-
alytics and then emphasize the problem this paper studied.

2.1 Background
2.1.1 Geo-distributed Data Analytics
A geo-distributed analytics system logically spans multiple
DCs. All DCs are connected to a non-blocking network, via
dedicated uplinks and downlinks. The bottlenecks are only
between DCs and the non-blocking core, which is reason-
able because of recent studies and measurements [6, 18]. In
addition, the bandwidth capacity varies significantly across
different uplinks and downlinks. Data can be generated on
any DCs, and as such, a dataset could be distributed across
many DCs. Here, each dataset can only be used for one
type of query requests. For example, querying for making
advertisement decisions requires user logs, while querying
for detecting DoS attacks requires network logs.

Query Request

Queues
DC-1

(Master)

Input-Data

Placement

DC-2 (Worker) DC-3 (Worker) DC-4 (Worker)

Non-blocking

Request

Allocation

Data for 1-th type

Data for N-th type

… …
Data for 1-th type

Data for N-th type

… …
Data for 1-th type

Data for N-th type

… …

Query Request

Queues
DC-1

(Master)

Input-Data

Placement

DC-2 (Worker) DC-3 (Worker) DC-4 (Worker)

Non-blocking

Request

Allocation

Data for 1-th type

Data for N-th type

… …
Data for 1-th type

Data for N-th type

… …
Data for 1-th type

Data for N-th type

… …

Non-blocking

Master

Worker

Worker

Worker

Request Queue

Input Data

Placement

Request

Admission

Fig. 1. An illustrative example of a GDA system.

Fig. 1 illustrates an example of a GDA system, where
newly arrived query requests are stored in the correspond-
ing queues. The Master DC keeps track of input data loca-
tions across multiple Worker DCs, makes decisions on input
data placement, and determines how many query requests
can be simultaneously executed each time. Once a query
request has been decided to be executed, the Master DC
converts this request’s script into a job (e.g., a MapReduce
[19] or Spark [20] job), which consists of many parallel tasks.
These tasks are then pushed to multiple Worker DCs, for
executing the job to obtain the final query results.

2168-7161 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.2994195, IEEE
Transactions on Cloud Computing

3

Fig. 2. An example of two-timescale GDA. Each coarse-grained time slot
is divided into 5 fine-grained time slots (i.e., T = 5). When T = 1, our
model is reduced to single time scale.

2.1.2 Query Requests
Each query request is viewed as a job such as MapReduce
or Spark job. Input tasks of these query requests (e.g.,
map tasks) are executed on their corresponding input data,
and write their outputs to their respective localities. These
outputs are then fetched by a number of reduce tasks,
which leads to a large amount of intermediate data. In the
geo-distributed setting, the main aspect of cost is massive
amounts of intermediate data that need to be transferred
across multiple DCs. In fact, it has been reviewed that
despite the local aggregation of map outputs, the ratio of
intermediate to input data sizes in Facebook’s analytics
cluster is still high, 0.55 on average, and 24% of jobs have
this ratio ≥ 1 [21, 22].

On the other hand, query requests can continuously
arrive. The number of query requests in a GDA system is
as high as millions per minute and is ever-increasing in
the future. Combining a large amount of intermediate data
generated by each query request, the cost will be extremely
high if the input data are not properly placed because the
distribution of input data significantly carries over to the
distribution of intermediate data.

2.2 Problem Statement
The problem we studied is to design an algorithm to make
decisions on both the input data placement and the admis-
sion control of query requests. The primary objective is to
minimize the incurred inter-DC traffic cost and maximize
the number of query requests that can be served with guar-
anteed queuing delay. The input data placement, determining
how much amount of input data should be placed on each
DC for each query type, is executed in time slots of longer
periods of time. The query request admission, deciding
the number of query requests that can be simultaneously
executed, is performed in smaller time scales.

In this problem, information about future query requests
is not known. Therefore, an online algorithm is desired. In
the following, we start with mathematically formulating the
problem and then leverage Lyapunov optimization tech-
niques to design a two-timescale online control framework.

3 COST-PERFORMANCE TRADEOFF MODEL

We consider a GDA system to logically span a set of DCs,
M={1, 2, . . .,M}. For each DC j, let Uuj and Udj denote
the uplink and downlink bandwidth capacities, respectively.

TABLE 1
Notations and Definitions

Symbol Definition
M The number of DCs, j = 1, 2, . . . ,M
N The number of GDA query types, i = 1, 2, . . . , N
K The number of coarse-grained time slots

T
The number of fine-grained time slots in
each coarse-grained time slot

Uuj The uplink bandwidth capacity for DC j

Udj The downlink bandwidth capacity for DC j

~ The time-length of each fine-grained time slot
Di The total amount of input data for i-th query type

Di,j(t)
The amount of input data placed on DC j at time t,
for i-th type of GDA query.

αi
The ratio of intermediate data to input data,
for i-th type of GDA query.

Ai(τ)
The number of arrived requests of i-th type
of GDA query at time τ .

Si(τ)
The number of served requests of i-th type
of GDA query at time τ .

Qi(τ) The queue backlog for i-th type of GDA query at time τ

f1i,j(t)
The amount of input data to be moved out of
DC j at time t

f1
′
i,j(t)

The amount of input data to be moved in
DC j at time t

f2i,j(τ)
The amount of intermediate data to be uploaded by
DC j at time τ

f2
′
i,j(τ)

The amount of intermediate data to be downloaded by
DC j at time τ

There are N query types, N={1, 2, . . ., N}. Specifically, let
Di denote the total amount of input data for i-th query type.
Inspired by the modeling work in DC networks [23, 24],
we consider the system to operate in a discrete-time mode,
where the time can be divided into K coarse-grained time
slots. Each coarse-grained time slot is further divided into T
fine-grained time slots. Each fine-grained time slot has the
same duration ~, typically 5 or 15 minutes. Fig. 2 shows an
example of such a two-timescale GDA system. Table 1 list
important notations used throughout this paper.

3.1 Control decisions
3.1.1 Input data placement
At the beginning of each coarse-grained time slot
t=kT (k=1, 2, . . .,K), the first control decision is to deter-
mine how much amount of input data should be placed
on each DC for each query type. Specifically, let Di,j(t)
denote such decision variable with respect to j-th DC and
i-th query type.

3.1.2 Query request admission
In each fine-grained time slot τ , a number Ai(τ) of requests
of i-th query type arrive, and are stored in a queue Qi(τ).
Accordingly, another control decision is to determine how
many requests, Si(τ), can be simultaneously executed for
each query type, in time slot τ . The rest of the requests
are then deferred to later times with more available link
bandwidth or lower traffic cost. So, we have the following
queuing dynamics over time for each query type.

Qi(τ + 1) = max{Qi(τ)− Si(τ), 0}+Ai(τ), ∀τ. (1)

These queues takes Ai(τ) as input and Si(τ) as output.
Qi(τ) is called as the backlog at time τ , as it represents the
number of unserved query requests at time τ .

2168-7161 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.2994195, IEEE
Transactions on Cloud Computing

4

3.2 Constraints
The query request arrival rate Ai(τ) are random variables
without any probabilistic assumptions. The following con-
straints should be satisfied.

3.2.1 Ensuring the completion of input data placement
The input data placement must be completed before exe-
cuting the query requests. Specifically, let f1i,j(t) (or f1

′

i,j(t))
denote the amount of input data to be moved out of (or to be
moved in) DC j for i-th query type in time slot t.

f1
i,j(t) = max(Di,j(t− T)−Di,j(t), 0), (2)

f1′
i,j(t) = max(Di,j(t)−Di,j(t− T), 0). (3)

We enforce the input data movement to be completed
within one fine-grained time slot. Thus, we have

N∑
i=1

f1
i,j(t)

Uuj
≤ ~, ∀j, ∀t, (4)

N∑
i=1

f1′
i,j(t)

Udj
≤ ~, ∀j, ∀t, (5)

M∑
j=1

Di,j(t) = Di,∀i, ∀t. (6)

Eq. (4) constrains the outward data movement, while Eq.
(5) enforces the inward data movement. No matter how to
move the input data, the total amount of input data for each
query type should be fixed, as shown in Eq. (6). During
these data movements, no query requests can be served.
This is exactly described in the following two constraints.

Si(τ) = 0,∀i, ∀τ=t, ∀t, (7)
0 ≤ Si(τ) ≤ Qi(τ), ∀i,∀τ=t+1, . . ., t+T−1, ∀t. (8)

It should be noted that the input data movement brings
a negative impact on system throughput. However, it is
performed every T fine-grained time slots and can be
finished within merely one time slot. Hence, it will not
impact the system throughput too much, as query requests
may be admitted at each time slot (except the one for data
movement). By setting a larger value of the parameter T ,
such impact can further be reduced.

3.2.2 Guaranteeing queuing delay of query requests
The queuing delay is closely related to the queue backlog,
and hence we bound the length of the queue backlog. This,
in turn, determines the delay performance for each query
request. Let Q , limt→∞

1
t

∑t−1
τ=0 E|Qi(τ)| denote the time-

averaged expected backlog. To guarantee a maximum delay
lmax, we consider the following two constraints

Q = lim
t→∞

1

t

t−1∑
τ=0

E|Qi(τ)| <∞, (9)

Qi(τ) < Qmax, ∀i, ∀τ, (10)

where Qmax is the maximum backlog. The maximum delay
lmax is a proportional function ofQmax, which we will show
in Section 4.1. So, when the queue backlog is bounded, the
maximal delay can also be guaranteed [23].

3.2.3 Link capacity constraint
Both the uplink and downlink bandwidth capacities should
be satisfied when transferring the intermediate data generated
by query requests. Specifically, define f2i,j(τ) as the amount
of intermediate data to be uploaded by DC j for i-th type of
GDA query in each fine-grained time τ . Then, we have

f2
i,j(τ) = Di,j(t)αi(1−

Di,j(t)

Di
)Si(τ). (11)

Here, the term Di,j(t)/Di represents the fraction of reduce
tasks to place on DC j, which is proportional to the amount
of input data that placed on it. Though such proportional
task placement is usually not a wise choice, we believe that
it can faithfully reflect the distribution of intermediate data,
and is appropriate for characterizing the traffic cost incurred
by a large number of query requests. To further reduce
the cost, one can optimize the reduce task placement via
existing solutions [6, 7], but please note that it is beyond
the scope of this paper. Similarly, we also define the amount
of intermediate data to be downloaded as f2

′

i,j(τ), which is
calculated as follows

f2′
i,j(τ) = (Di −Di,j(t))αi

Di,j(t)

Di
Si(τ). (12)

The link capacity constraints are shown as follows:

N∑
i=1

f2
i,j(τ)

~
≤ Uuj ,∀j, ∀τ, (13)

N∑
i=1

f2′
i,j(τ)

~
≤ Udj , ∀j, ∀τ. (14)

Eq. (13) enforces the consumed bandwidth to not exceed
the uplink capacity of DC j in each fine-grained time slot τ ,
while Eq. (14) is the downlink capacity constraint.

3.3 Characterizing the Cost-Throughput Tradeoff

3.3.1 Inter-DC traffic cost
The inter-DC traffic cost contains two parts: the traffic cost
of input data movement and the traffic cost of intermediate
data transmission. Note that we do not enforce any compli-
cated traffic pricing model, e.g., 95th percentile pricing. The
traffic cost is considered to be proportional to the volume of
traffic. As such, the total inter-DC traffic cost in each coarse-
grained time slot t is calculated as follows.

C(t) =

N∑
i=1

M∑
j=1

f1
i,j(t) +

t+T−1∑
τ=t

N∑
i=1

M∑
j=1

f2
i,j(τ). (15)

Define C(τ) ,
∑N
i=1

∑M
j=1

(
1
T f

1
i,j(t) + f2i,j(τ)

)
, and

then we have C(t) =
∑t+T−1
τ=t C(τ). Here, C(τ) can be

viewed as the total cost in each fine-grained time slot τ .

3.3.2 System throughput
For a large-scale GDA system, another important perfor-
mance metrics is the overall system throughput in terms
of the total number of query requests that can be simulta-
neously served. Specifically, in each fine-grained time slot

2168-7161 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.2994195, IEEE
Transactions on Cloud Computing

5

τ , the system throughput is defined as the summation of
served requests across all query types

S(τ) =

N∑
i=1

Si(τ). (16)

The cost-throughput tradeoff problem can now be for-
mulated as the following stochastic problem P1:

min
Di,j(t),Si(τ)

lim
t→∞

1

t

t−1∑
τ=0

E{C(τ)− λ · S(τ)}

Subject to: Eqs. (1), (4), (5), (6), (7), (8), (9), (10), (13), (14).

(17)

Here, λ is a weight factor, representing how much
we emphasize the throughput maximization. With such
a weight factor, any desired trade-off point between the
cost and performance can be achieved. We further observe
that P1 is a long-term optimization problem, where the
current control decisions are coupled with future decisions.
For example, current decisions may defer excessive query
requests and hence block the service of future query re-
quests. To solve such long-term optimization, the dynamic
programming technique is a commonly used method [25],
which, however, suffers from dimensionality issue and re-
quires significant knowledge of the query request as well.
Hence, we are motivated to take advantage of the Lyapunov
framework [26] to design online control algorithms, without
requiring prior knowledge of the query requests.

4 A TWO-TIMESCALE ONLINE CONTROL FRAME-
WORK

In this section, we design a two-timescale online framework
for solving the cost-throughput tradeoff problem. We start
by transforming problem P1 to problems that well fits the
Lyapunov optimization technique, and then develop a two-
timescale online algorithm which attempts to achieve a near-
optimal solution without future statistics.

4.1 Transforming into Lyapunov Optimization
The key idea in the Lyapunov optimization technique is to
transform a long-term optimization problem to many sub-
problems, each of which can be solved in one time slot.
To this end, we first introduce a set of delay-aware virtual
queues, which can guarantee a maximal queuing delay lmax
for each query request. Specifically, based on the technique
of ε-persistent queue [27], we construct a group of delay-
aware virtual queues Yi(t), ∀i, as shown in the following.

Yi(t+ 1) = max{Yi(t)− Si(t) + ε1Qi(t)>0, 0}, ∀i, (18)

where 1Qi(t)>0 is an indicator variable that is 1 if Qi(t) >
0 and 0 otherwise. ε is a positive parameter, which is the
key to ensure that Yi(t) grows whenever there are query
requests in Qi(t) that has not been served. The following
Lemma shows that the deferred query requests should be
served within a worst-case delay lmax under any feasible
algorithm.
Lemma 1. If Q(t) < Qmax and Yi(t) < Ymax are satisfied for

any time slot t and any query type i, then any query request

can be guaranteed with a maximal queuing delay lmax defined
as follows

lmax = d(Qmax + Ymax)/εe. (19)

Proof: At any time slot t, the newly arrived query
requests Ai(t) ≥ 0,∀i. We focus on proving that the re-
quests can be served before time t + lmax. If not, there is a
contradiction. During time slots τ ∈ t+ 1, . . . , t+ lmax, we
know Qi(τ) > 0, otherwise Ai(t) can be served before τ .
Thus, 1Qi(τ)>0 = 1. Based on Eq. (18), we have

Yi(τ + 1) ≥ Yi(τ)− Si(τ) + ε,∀i (20)

Summing the above over τ ∈ t+ 1, . . . , t+ lmax, we obtain

Yi(t+ lmax + 1)− Yi(t+ 1) ≥ lmaxε−
t+lmax∑
τ=t+1

Si(τ), ∀i (21)

Using the fact that Yi(t+1) ≥ 0 and Yi(t+lmax+1) ≤ Ymax,
and rearranging the above inequality, we yield

t+lmax∑
τ=t+1

Si(τ) ≥ lmaxε− Ymax, ∀i (22)

Since Qi(t+ 1) < Qmax, we know that Ai(t) will be served
before t + lmax, whenever there are sufficient resource to
serve at least Qmax amount of query requests during τ ∈
t + 1, . . . , t + lmax. Since we have assumed that Ai(t) is
served before t+Ymax, we have

∑t+lmax

τ=t+1 Si(τ) ≤ Qmax,∀i.
Substituting this into the above inequality, we have

Qmax ≥ lmaxε− Ymax (23)

Rearranging the terms, we get lmax < (Qmax + Ymax)/ε,
contradicting the definition of lmax in Eq. (19).

Now, we focus on transforming the original problem P1
into Lyapunov optimization. Let Θ(t) denote the concate-
nated vector of all queues, Θ(t) = [Yi(t), Qi(t)]. Then, we
define the Lyapunov function as follows:

L(Θ(t)) =
1

2

(
N∑
i=1

Y 2
i (t) +

N∑
i=1

Q2
i (t)

)
(24)

This Lyapunov function quantitatively reflects the con-
gestion of all queues [26], which should be persistently
pushed towards a lower congestion state to keep the queue
stabilities. Hence, we introduce T -slot conditional Lya-
punov drift ∆T (Θ(t)), which is defined as follows

∆T (Θ(t)) = E{L(Θ(t+ T))− L(Θ(t))|Θ(t)} (25)

Based on the Lyapunov framework [26], it is the need
to make decisions on Di,j(t), Si(τ) to minimize the drift-
plus-penalty term every T time slots. The drift-plus-penalty is
defined as follows

∆T (Θ(t)) + V E{
t+T−1∑
τ=t

(C(τ)− λS(τ)) |Θ(t)} (26)

where V (≥ 0) is a control parameter representing how
much we emphasize the cost-performance tradeoff (Problem

2168-7161 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.2994195, IEEE
Transactions on Cloud Computing

6

P1) compared to the system stability. The following theorem
gives an upper bound for such drift-plus-penalty term.
Theorem 1. Let V≥0, ε>0, T≥1 and t=kT, τ∈[t, t+T−1].

Assume that there exist certain peak levels for both arrival
and service rates of query requests Amax and Qmax, such
thatAi(τ)≤Amax and Si(τ)≤Qmax,∀i,∀τ . Then, the drift-
plus-penalty can be bounded as follows

∆T (Θ(t)) + V E{
t+T−1∑
τ=t

(C(τ)− λS(τ)) |Θ(t)}

≤H1T + V E{
t+T−1∑
τ=t

(C(τ)− λS(τ)) |Θ(t)}

+ E{
t+T−1∑
τ=t

N∑
i=1

Yi(τ) (ε− Si(τ)) |Θ(t)}

+ E{
t+T−1∑
τ=t

N∑
i=1

Qi(τ) (Ai(τ)− Si(τ)) |Θ(t)}

(27)

where H1 = N
2 (2Q2

max +A2
max + ε2).

Proof: By using the fact that (max{x, 0})2 ≤ x2, we
have the following inequalities

1

2

N∑
i=1

(Y 2
i (τ + 1)− Y 2

i (τ)) ≤ 1

2

N∑
i=1

S2
i (τ)+

1

2

N∑
i=1

(ε1Qi(t)>0)2 −
N∑
i=1

Yi(τ)
(
Si(τ)− ε1Qi(t)>0)

)
1

2

N∑
i=1

(Q2
i (τ + 1)−Q2

i (τ)) ≤ 1

2

N∑
i=1

(
S2
i (τ) +A2

i (τ)
)

−
N∑
i=1

Qi(τ) (Si(τ)−Ai(τ))

Summing these inequalities together and taking expecta-
tions over Qi(τ) and Yi(τ), we obtain the upper bound for
1-slot conditional Lyapunov drift ∆1(Θ(t))

∆1(Θ(t)) ≤H1 +

N∑
i=1

E{Yi(τ) (ε− Si(τ)) |Θ(t)}

+

N∑
i=1

E{Qi(τ) (Ai(τ)− Si(τ)) |Θ(t)}

Adding the term V E{
∑t+T−1
τ=t (C(τ)− λS(τ)) |Θ(t)} to

both sides of the above inequality, over time slot
τ∈[t, t+T−1], the theorem can then be proved.

4.2 Two-timescale Online Control Algorithm
To design an online control algorithm, an intuitive ap-
proach is to minimize the upper bound of drift-plus-penalty
term every T time slots. However, this needs to know
the future concatenated queue backlog Θ(t)=[Yi(t), Qi(t)]
over time slot τ∈[t, t+T−1]. Θ(t) depends on the query
request arrival process Ai(τ) and the decision Si(τ), which,
however, may not always be available. Due to the contin-
uous variations of the system, we therefore approximate
the near future queue backlog as the current value, i.e.,
Yi(τ) = Yi(t), Qi(τ) = Qi(t) for all t < τ < t + T − 1.

This significantly reduces the computational complexity of
designing an online control algorithm. Nevertheless, such
approximation leads to a “loosening” of the upper bound
on the drift-plus-penalty, as shown in the following theorem.
We will prove that our algorithm is robust against such
approximation in Section 4.3.
Theorem 2. Given Theorem 1 under approximation, the upper

bound of the drift-plus-penalty can be loosened as follows

∆T (t) + V E{
t+T−1∑
τ=t

(C(τ)− λS(τ)) |Θ(t)}

≤ H2T + V E{
t+T−1∑
τ=t

(C(τ)− λS(τ)) |Θ(t)}

+ E{
t+T−1∑
τ=t

N∑
i=1

Yi(t) (ε− Si(τ)) |Θ(t)}

+ E{
t+T−1∑
τ=t

N∑
i=1

Qi(t) (Ai(τ)− Si(τ)) |Θ(t)}

(28)

where H2 = H1 + (T−1)N
2 (ε2 + 2Q2

max +A2
max).

Proof: According to Eq. (1) and (14), we have the
following inequalities for any τ∈[t, t+T−1].

Qi(t)− (τ − t)Qmax ≤ Qi(τ) ≤ Qi(t) + (τ − t)Amax (29)
Yi(t)− (τ − t)Qmax ≤ Yi(τ) ≤ Yi(t) + (τ − t)ε (30)

Applying the above inequalities in Eq. (27), we get

t+T−1∑
τ=t

N∑
i=1

Qi(τ)(Ai(τ)− Si(τ))

≤
t+T−1∑
τ=t

N∑
i=1

Qi(t)(Ai(τ)− Si(τ)) +
T (T − 1)N

2
(A2

max +Q2
max)

Similarly, we can also obtain

t+T−1∑
τ=t

N∑
i=1

Yi(τ)(ε− Si(τ))

≤
t+T−1∑
τ=t

N∑
i=1

Yi(t)(ε− Si(τ)) +
T (T − 1)N

2
(ε2 +Q2

max)

By defining H2 = H1+ (T−1)N
2 (ε2+2Q2

max+A2
max) and

using Eq. (27), the theorem can be proved.
By substituting the definitions of C(τ) and S(τ) into Eq.

(28), we get the following relaxed problem P2:

minV E{
N∑
i=1

M∑
j=1

max{Di,j(t− T)−Di,j(t), 0}|Θ(t)}

+ V E{
t+T−1∑
τ=t

N∑
i=1

M∑
j=1

Di,j(t)αi(1−
Di,j(t)

Di
)Si(τ)|Θ(t)}

− E{
t+T−1∑
τ=t

N∑
i=1

(Yi(t) + V λ)Si(τ)|Θ(t)}

+ E{
t+T−1∑
τ=t

N∑
i=1

Qi(t) (Ai(τ)− Si(τ)) |Θ(t)}

Subject to: Eqs. (1), (4), (5), (6), (7), (8), (9), (10), (13), (14).

(31)

2168-7161 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.2994195, IEEE
Transactions on Cloud Computing

7

Algorithm 1 2TGDA Online Control Algorithm
1: In the beginning of every coarse-grained time slot
t=kT, k=1, 2, . . ., observing system stateQi(t) and Yi(t)
(∀i), determine the control decisions Di,j(t) to minimize
the following problem P3:

min
Di,j(t)

V E{
N∑
i=1

M∑
j=1

max{Di,j(t− T)−Di,j(t), 0}|Θ(t)}

+ V TE{
N∑
i=1

M∑
j=1

Di,j(t)αi(1−
Di,j(t)

Di
)Qi(t)|Θ(t)}

Subject to: Eqs. (4), (5), (6).
(32)

2: At each fine-grained time slot τ∈[t, t+T−1], with the
observed Qi(t), Yi(t), and the newly decisions Di,j(t),
decide Si(τ) to minimize the following problem P4:

min
Si(τ)

E{
N∑
i=1

Qi(t) (Ai(τ)− Si(τ)) |Θ(t)}

− E{
N∑
i=1

(Yi(t) + V λ)Si(τ)|Θ(t)}

Subject to: Eqs. (1), (7), (8), (9), (10), (13), (14)

(33)

3: Update the queue backlogs Qi(t), Yi(t) according to
equalities (1) (18) and the newly determined decisions.

In the relaxed problem P2, the decision variables, Di,j(t)
and Si(τ), are still coupled with each other in the term of
V E{

∑t+T−1
τ=t

∑N
i=1

∑M
j=1Di,j(t)αi(1 − Di,j(t)

Di
)si(τ)|Θ(t)}.

In our online algorithm, we replace Si(τ) with Qi(t) in this
term, so as to enable the decision-making on two timescales.
Our online two-timescale 2TGDA control algorithm is il-
lustrated in Algorithm 1. Specifically, at the beginning of
each coarse-grained time slot t, 2TGDA decides how much
amount of input data to be placed on each DC for each
query type, by solving problem P3. Then, at the beginning
of each fine-grained time slot τ∈[t, t+T−1], it determines
how many query requests can be executed simultaneously,
by solving problem P4. At the end of each fine-grained time
slot, it updates the queue backlogs.

Our 2TGDA is computationally efficient. The dominate
operation of it is to solve a convex program (i.e., P3) and
a linear program (i.e., P4). While both programs can be
solved with classical optimization approaches, e.g., interior
point method [28, 29], which can have a low computational
complexity (usually polynomial time). We denote CP (x, y)
(LP (x, y)) as the time complexity of solving a convex pro-
gram (linear program) with x variables and y constraints.
Then, 2TGDA can run in O(O(CP (O(MN), O(MN)) +
O(T ·LP (O(N), O(N+M))). An additional source of over-
head is the time to gather input information and distribute
new decisions at the beginning of each coarse time slot t.
This messaging delay could be about tens of milliseconds as
similar to [30], which can be negligible as compared to the
length of a coarse time slot.

We highlight 2TGDA’s two interesting properties. First,
2TGDA enables flexible tradeoff point between traffic cost

and system throughput by tuning the weight factor λ, while
also guarantees a maximal delay and system stability by
appropriately tuning the control parameter V and delay
control parameter ε. Second, 2TGDA may choose not to
serve query requests in a particular time slot, even if the
queue backlog Qi(t) > 0, due to a high traffic cost. This
may introduce additional queuing delay but can reduce
the inter-DC traffic cost. 2TGDA provides opportunities for
traffic cost savings because the accumulate intermediate
data of continuous arriving query requests may be larger
than the input-data in size. While the distribution of input-
data carries over to the distribution of intermediate data.
So, this motivates us to re-distribute the input-data ahead of
time to reduce the traffic cost.

4.3 Performance analysis
We now analyze the performance achieved by 2TGDA. Let
O(τ) = C(τ) − λS(τ), and let Oopt denote the optimal
objective value of the original problem P1. The following
theorem shows the gap between the result achieved by our
2TGDA and the optimal solution
Theorem 3 (Performance Bound Analysis). Assume that there

exist certain perk level for the ration of intermediate data to
input data αmax, such that αi ≤ αmax. Then, for any V >0,
2TGDA can achieve the following performance guarantee:

lim
t→∞

1

t

t−1∑
τ=0

E{O(τ)|Θ(t)} ≤ H2

V
+Oopt+DαmaxQmax (34)

Θ̄ ≤ H2 + V Oopt + V DαmaxQmax
ξ

(35)

where ξ > 0 is a positive parameter and Θ̄ is the
time-averaged queue length that is computed as Θ̄ =
limt→∞

1
K

∑K−1
k=0

∑N
i=1(Qi(kT) + Yi(kT)).

Proof: It has been proved in [26] that there exists at
least one randomized stationary control policy Πopt that
chooses feasible control decisions Di,j(t) every T time slots,
and chooses Si(τ) every time slot, and yields the following
steady state values:

t+T−1∑
τ=t

O(τ) = TOopt; ε = Si(τ)− µ;Ai(τ) = Si(τ)− ν (36)

Since 2TGDA solves P3 and P4 every T time slots, integrat-
ing Eq. 36 into Eq. (28), using the factQi(t) ≤ Qmax, αi(t) ≤
αmax and defining D =

∑M
j=1

∑N
i=1Di,j(t), we get

∆T (t) + V E{
t+T−1∑
τ=t

(C(τ)− λS(τ)) |Θ(t)}

≤ H2T + V TOopt

+ E{
t+T−1∑
τ=t

M∑
j=1

N∑
i=1

V Di,j(t)αi(1−
Di,j(t)

Di
)(Qi(t)− Si(τ))}

+ E{
t+T−1∑
τ=t

N∑
i=1

Yi(t) (ε− Si(τ)) +Qi(t) (Ai(τ)− Si(τ)) |Θ(t)}

≤ H2T + V TOopt + V TDαmaxQmax − T
N∑
i=1

(µYi(t) + νQi(t))

(37)

2168-7161 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.2994195, IEEE
Transactions on Cloud Computing

8

Rearranging the terms, we get

V E{
t+T−1∑
τ=t

O(τ)|Θ(t)}≤H2T+V TOopt+V TDαmaxQmax (38)

Summing the above over t=kT, k=0, 1, 2, . . .,K−1, and
dividing both sides by KTV , we have:

1

KT
E{

KT−1∑
τ=0

O(τ)|Θ(t)}≤H2

V
+Oopt+DαmaxQmax (39)

Taking limit asK →∞, we can yield Eq. (34). Now, defining
ξ = min{µ, ν}, we also obtain the following inequality by
rearranging the terms of Eq. (37).

Tξ

N∑
i=1

Yi(t)+Qi(t)≤H2T+V TOopt+V TDαmaxQmax (40)

Summing the above over t=kT, k=0, 1, 2, . . .,K−1, divid-
ing both sides by KTV , and taking limit as K → ∞, we
can yield Eq. (35).

Recall that 2TGDA approximates the future concate-
nated queue backlogs Θ(t)=[Yi(t), Qi(t)] as its current
value. So, what happens when 2TGDA makes decisions
based on queue backlog estimates Θ̂(t) that differs from
the actual backlogs? The following theorem shows that
our 2TGDA algorithm is robust against the queue backlogs
estimation errors.

Theorem 4 (Robustness of 2TGDA). Suppose that there exists
a constant σ, such that at all time t, the estimated backlog
satisfy |Ŷi(t) − Yi(t)| ≤ σ and |Q̂i(t) − Qi(t)| ≤ σ. Then,
under the 2TGDA algorithm, we have

ORobust , lim
t→∞

1

t

t−1∑
τ=0

E{O(τ)|Θ(t)}

≤ H3

V
+Oopt +DαmaxQmax

(41)

where H3 = H2 + Tσ(2V Dαmax + N(ε + 2Qmax +
Amax)).

Proof: Denote eY (t) = Ŷi(t) − Yi(t) and eQ(t) =
Q̂i(t)−Qi(t). O(Θ̂(t)) can then be calculated as:

O(Θ̂(t)) = O(Θ(t)) + E{
t+T−1∑
τ=t

N∑
i=1

eY (t) (ε− Si(τ)) |Θ(t)}

+ E{
t+T−1∑
τ=t

N∑
i=1

M∑
j=1

eQ(t)V Di,j(t)αi(1−
Di,j(t)

Di
)|Θ̂(t)}

+ E{
t+T−1∑
τ=t

N∑
i=1

eQ(t) (Ai(τ)− Si(τ)) |Θ(t)}

Using the fact that |a− b| ≤ |a|+ |b|, we have |1−Di,j(t)
Di
| ≤

1 +
Di,j(t)
Di

≤ 2, |ε − Si(τ)| ≤ ε + Qmax, |Ai(τ) − Si(τ)| ≤
Amax + Qmax. Denote the minimum value of O(Θ̂(t)) and
O(Θ(t)) as Ô and O∗, respectively. Then, we have

Ô ≤ O∗ + Tσ(2V Dαmax +N(ε+ 2Qmax +Amax)) (42)

20 40 60 80 100 120 140 160
0

200

400

600

800

1000

Time Slot (Hour)

Th
e

n
u

m
b

er
 o

f q
u

er
y

re
q

u
es

ts

Type 1
Type 2
Type 3
Type 4

Fig. 3. 7-day real world traces from [31].

This shows that Eq. (28) holds with Qi(t), Yi(t), replaced by
Q̂i(t), Ŷi(t), andH2 replaced byH3 = H2+Tσ(2V Dαmax+
N(ε + 2Qmax + Amax)). The rest of the proof is similar to
the proof of Eq. (34) in theorem 3.

5 PERFORMANCE EVALUATION

We evaluate the performance of our proposed algorithm
through large-scale trace-driven simulation.

5.1 Experiment setup

Datasets: To simulate the arrival patterns of query requests,
we use Google cluster traces [31], which contain the infor-
mation about job submissions during a period of 29 days.
Each job is viewed as a query request. These jobs are divided
into four types, as the scheduling class information in this
trace indicates the type of the job and its value ranges from
0 to 3. Specifically, we extract the information of jobs in a
7-day duration. The extracted traces contain 168 time slots,
with each time slot being 1 hour. Fig. 3 plots the number of
requests every 1-hour, for all query types.

Parameters settings: We consider a GDA system with
30 DCs, which is a common size in typical service com-
panies [6]. In this 30-DC setup, the uplink and downlink
bandwidths of each DC are all randomly distributed within
[1, 10]Gbps. Initially, for each query type, the amount of
input data stored on each DC is randomly generated as
a uniform distribution within [1, 10]Gb. The ratios of in-
termediate data to input data for the four query types
(e.g., αi,∀i) are set to be 0.5, 0.7, 0.9, 1.1, respectively. We
conduct sensitivity analysis on critical parameters, e.g., T ,
V , λ and ε, to evaluate their impact on the performance
of our algorithm, in terms of the time-averaged cost, the
time-averaged throughput, and the maximum delay. Specif-
ically, these parameters are varied as follows: T ∈ [5, 40],
V ∈ [10−3, 10], λ ∈ [1, 108], ε ∈ [0.25, 3].

Compared algorithms: We compare our 2TGDA with
the following three algorithms. The first algorithm aims at
minimizing the traffic cost caused only by intermediate data
while maximizing the throughput, which is also designed
based on the Lyapunov optimization techniques. It is differ-
ent from our 2TGDA as it ignores the input data placement,
and hence we refer it as “GDA-wo-dp”. The second algorithm
is an online algorithm that always schedules query requests
immediately at each time slot to maximize throughput,
regardless of the inter-DC traffic cost, which is referred to
as “Impatient”. The last algorithm schedules query requests

2168-7161 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.2994195, IEEE
Transactions on Cloud Computing

9

−3 −2 −1 0 1
7.4773

7.4773

7.4774

7.4774

7.4775

7.4775

7.4775

7.4776

7.4776

7.4777

7.4777
x 10

7

Ti
m

e−
av

er
ag

ed
 c

o
st

log(V) (T=10, λ=1,ε=1)

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
0.05

0.965

1.88

2.795

3.71

4.625

5.54

6.455

7.37

8.285

9.2
x 10

7

Ti
m

e−
av

er
ag

ed
 c

o
st

2TGDA
GDA−wo−dp
Impatient
SWAG−like

(a) Varying V

5 10 15 20 25 30 35 40
6.5

6.664

6.828

6.992

7.156

7.32

7.484

7.648

7.812

7.976

8.14
x 10

7

Ti
m

e−
av

er
ag

ed
 c

o
st

T (V=10, λ=1,ε=1)

5 10 15 20 25 30 35 40
0.05

0.965

1.88

2.795

3.71

4.625

5.54

6.455

7.37

8.285

9.2
x 10

7

Ti
m

e−
av

er
ag

ed
 c

o
st

2TGDA
GDA−wo−dp
Impatient
SWAG−like

(b) Varying T

0 2 4 6 8
7.26

7.282

7.304

7.326

7.348

7.37

7.392

7.414

7.436

7.458

7.48
x 10

7

Ti
m

e−
av

er
ag

ed
 c

o
st

log(λ) (T=10,V=10, ε=1)

0 2 4 6 8
0.05

0.965

1.88

2.795

3.71

4.625

5.54

6.455

7.37

8.285

9.2
x 10

7

Ti
m

e−
av

er
ag

ed
 c

o
st

2TGDA
GDA−wo−dp
Impatient
SWAG−like

(c) Varying λ

0.5 1 1.5 2 2.5 3
7.477

7.4779

7.4788

7.4797

7.4806

7.4815

7.4824

7.4833

7.4842

7.4851

7.486
x 10

7

Ti
m

e−
av

er
ag

ed
 c

o
st

ε (T=10,V=10, λ=1)

0.5 1 1.5 2 2.5 3
0.05

0.965

1.88

2.795

3.71

4.625

5.54

6.455

7.37

8.285

9.2
x 10

7

Ti
m

e−
av

er
ag

ed
 c

o
st

2TGDA
GDA−wo−dp
Impatient
SWAG−like

(d) Varying ε

Fig. 4. The performance of time-averaged cost under different values of (a) control parameter V , (b) the number T of fine-grained time slots in each
coarse-grained time slot, (c) weight factor λ and (d) delay-associated parameter ε.

greedily based on their estimated finish time. For each query
request, its estimated finish time contains two parts: the
completion time when it exclusively occupies all links and
the waiting time of its flow transfers on relevant links.
This algorithm essentially takes the existing workload at
local links into consideration and is conceptually equivalent
to the Workload-Aware Greedy Scheduling (SWAG) [16].
Hence, we denote it as “SWAG-like”. We evaluate the above
algorithms with the following three performance metrics by
default: time-averaged cost, time-averaged throughput, and
maximum queuing delay.

5.2 Experiment results
5.2.1 Inter-DC traffic cost
The inter-DC traffic cost is one of the most important per-
formance metrics for the GDA system. To have a compre-
hensive understanding, we study the impacts of different
parameters (e.g., V , T , λ, ε) on the time-averaged cost, as
shown in Fig. 4. Note that when evaluating the impact of
each parameter on the inter-DC traffic cost, we fix the values
of other parameters to be constants. From Fig. 4, we have the
following observations. First, no matter how the parameters
change, the time-averaged cost achieved by both Impatient
and SWAG-like will never change. This is because these
two algorithms immediately schedule the query requests
at each time slot, as long as meeting the link bandwidth
capacity. Second, the time-averaged cost achieved by GDA-
wo-dp decreases significantly with the increasing of V , while
increases as λ increases. One reason is that GDA-wo-dp uses
Lyapunov optimization techniques [23]. Another reason is
that GDA-wo-dp also studies the cost-performance problem,
and λ emphasizes the importance of the system throughput
maximization. Hence, this eventually enforces GDA-wo-dp
to achieve a higher cost with a larger value of λ. As GDA-wo-
dp ignores the input data placement, it always maintains a

stable cost regardless of the change of long-term time slot T .
Furthermore, the time-averaged cost achieved by GDA-wo-
dp will never change, as the increase of ε. One reason may be
that ε is not sufficiently large to make the delay-aware queue
backlog Yi(t) to be changed across all time slots. Third, the
time-averaged cost achieved by our 2TGDA has different
trends with the increasing of the parameters. More precisely,
it decreases as the control parameter V increases. This
directly confirms the Theorem 3. On the contrary, it increases
with the increase of T , which verifies the effectiveness of
input data replacement in reducing the inter-DC traffic cost.
An interesting observation is that the time-averaged cost
achieved by our 2TGDA algorithm decreases slightly as the
increasing of λ, which is the weight factor indicating the
importance of system throughput maximization. The main
reason is that our 2TGDA algorithm tactfully considers the
input-data placement, saving the traffic cost for intermediate
data. Moreover, more cost can be saved if there are more
concurrent query requests. We further observe that the time-
averaged cost of 2TGDA maintains at a low value with small
ε, and has a higher value when ε = 2.5 or 2.75. The time-
averaged cost of our 2TGDA is higher than that of GDA-wo-
dp for some of the cases, but is always lower than that of
Impatient and SWAG-like. However, our 2TGDA can reduce
significant inter-DC traffic cost by choosing a higher value
of V (e.g., V = 10), a lower value of T (e.g., T = 5), a higher
value of λ (e.g., λ = 100000), and a lower value of ε (e.g.,
ε = 0.25).

5.2.2 System throughput
Another important performance metric is the overall system
throughput in terms of the number of query requests that
can be simultaneously served. We can also observe that
the time-averaged throughput achieved by both Impatient
and SWAG-like always maintains a stable value, irrespec-
tive of the change of any parameters, e.g., V , T , λ and

2168-7161 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.2994195, IEEE
Transactions on Cloud Computing

10

−3 −2 −1 0 1
650

660

670

680

690

700

710

720

730

740

750

Ti
m

e−
av

er
ag

ed
 t

h
ro

u
g

h
p

u
t

log(V) (T=10, λ=1,ε=1)

−3 −2 −1 0 1
0

75

150

225

300

375

450

525

600

675

750

Ti
m

e−
av

er
ag

ed
 t

h
ro

u
g

h
p

u
t

2TGDA
GDA−wo−dp
Impatient
SWAG−like

(a) Varying V

5 10 15 20 25 30 35 40
600

612

624

636

648

660

672

684

696

708

720

Ti
m

e−
av

er
ag

ed
 t

h
ro

u
g

h
p

u
t

T (V=10, λ=1,ε=1)

5 10 15 20 25 30 35 40
0

75

150

225

300

375

450

525

600

675

750

Ti
m

e−
av

er
ag

ed
 t

h
ro

u
g

h
p

u
t

2TGDA
GDA−wo−dp
Impatient
SWAG−like

(b) Varying T

0 2 4 6 8
670

673

676

679

682

685

688

691

694

697

700

Ti
m

e−
av

er
ag

ed
 t

h
ro

u
g

h
p

u
t

log(λ) (T=10,V=10, ε=1)

0 2 4 6 8
0

75

150

225

300

375

450

525

600

675

750

Ti
m

e−
av

er
ag

ed
 t

h
ro

u
g

h
p

u
t

2TGDA
GDA−wo−dp
Impatient
SWAG−like

(c) Varying λ

0.5 1 1.5 2 2.5 3
670

670.5

671

671.5

672

672.5

673

673.5

674

674.5

675

Ti
m

e−
av

er
ag

ed
 t

h
ro

u
g

h
p

u
t

ε (T=10,V=10, λ=1)

0.5 1 1.5 2 2.5 3
0

75

150

225

300

375

450

525

600

675

750

Ti
m

e−
av

er
ag

ed
 t

h
ro

u
g

h
p

u
t

2TGD A
GDA−wo−dp
Impatient
SWAG

(d) Varying ε

Fig. 5. The performance of time-averaged throughput under different values of (a) control parameter V , (b) the number T of fine-grained time slots
in each coarse-grained time slot, (c) weight factor λ and (d) delay-associated parameter ε.

ε. For the GDA-wo-dp algorithm, it achieves a decreasing
throughput as V increases and an increasing throughput as
λ increases. GDA-wo-dp maintains a stable value of time-
averaged throughput, regardless of the change of T and ε.
For our 2TGDA algorithm, the time-averaged throughput
does not change with the increase of the control parameter
V . The root reason is that the increase of V will not influ-
ence the decision-making process of problem P4. With the
increase of T , the time-averaged throughput achieved by
2TGDA also increases. This is because the number of time
slots with Si(τ) = 0 is less, which indirectly improves the
time-averaged throughput. 2TGDA achieves an increasing
time-averaged throughput with the increasing of λ since λ
is exactly the weight factor emphasizing the importance of
system throughput maximization. We further observe that
2TGDA maintains a relatively stable time-averaged through-
put as ε increases. This is because that ε decides the value of
Yi(t), while Yi(t) does not affect the decision Si(t) too much
in problem P4. In general, the time-averaged throughput
of 2TGDA is between that of GDA-wo-dp (SWAG-like) and
Impatient. Moreover, 2TGDA can achieve acceptable system
throughput by choosing appropriate values of critical fac-
tors, e.g., V = 10, T = 40, λ = 100000, ε = 0.25.

5.2.3 Queuing delay

Last but not the least, we investigate the performance of
different algorithms on queuing delay. Recall that the our
model can guarantee a maximum queuing delay lmax for
each query request, and lmax is given in lemma 1. We
therefore use the maximum queuing delay lmax as the per-
formance metric. Specifically, we plot the impact of different
parameters on the maximum queuing delay, as shown in
Fig. 6. It can easily be checked that both Impatient and
SWAG-like can maintain a stable values of the maximum

queuing delay, regardless the changes of any parameters,
e.g., V , T , λ and ε. For GDA-wo-dp, the maximum queuing
delay lmax increases as V increases, which directly verifies
an decreasing of time-averaged throughput in Fig. 5(a).
Furthermore, GDA-wo-dp achieves a stable value of lmax
regardless of the change of T , and has a decreasing value of
lmax as λ or ε increases. This is due to the following reasons:
1) GDA-wo-dp ignores the data placement in each coarse-
grained time slot, 2) a larger λ leads to a larger throughput,
and 3) a larger ε leads to a smaller lmax based on the
definition in Eq. (19). For our 2TGDA algorithm, the maxi-
mum queuing delay is maintained at a stable value with the
increasing of V because of the unchanged throughput. Fur-
thermore, the maximum queuing delay achieved by 2TGDA
decreases as the value of T or ε increases. The root reason
can be derived from the throughput achieved by 2TGDA
and the definition of the maximum queuing delay lmax.
Note that lmax achieved by 2TGDA increases as λ increases,
while the throughput achieved by 2TGDA also increases
with the increasing of λ. One of reason may be that a higher
value of λ always leads to higher Qmax or Ymax, but leads
to a lower value of the average queue backlog across all
time slots and all query types. In most cases, the maximum
queuing delay guaranteed by our 2TGDA falls between
GDA-wo-dp and Impatient (SWAG-like). Furthermore, with
appropriate values of V = 10, T = 40, λ = 1, ε = 3, 2TGDA
can achieve a considerable low delay for each query request.
One may further wonder why SWAG-like achieves inferior
performance on maximum queuing delay, since it is mindful
of the finish time of query requests. The underlying reason
is that the finish time estimated by SWAG-like considers only
the flow transmission time and the waiting time in each link,
without the queuing time at the centralized scheduler.

2168-7161 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.2994195, IEEE
Transactions on Cloud Computing

11

−3 −2 −1 0 1
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3
x 10

4

M
ax

im
u

m
 q

u
eu

in
g

 d
el

ay

log(V) (T=10, λ=1,ε=1)

−3 −2 −1 0 1
0

0.8

1.6

2.4

3.2

4

4.8

5.6

6.4

7.2

8
x 10

4

M
ax

im
u

m
 q

u
eu

in
g

 d
el

ay

2TGDA
GDA−wo−dp
Impatient
SWAG−like

(a) Varying V

5 10 15 20 25 30 35 40
1

1.06

1.12

1.18

1.24

1.3

1.36

1.42

1.48

1.54

1.6
x 10

4

M
ax

im
u

m
 q

u
eu

in
g

 d
el

ay

T (V=10, λ=1,ε=1)

5 10 15 20 25 30 35 40
2.7

3.2

3.7

4.2

4.7

5.2

5.7

6.2

6.7

7.2

7.7
x 10

4

M
ax

im
u

m
 q

u
eu

in
g

 d
el

ay

2TGD A
GDA−wo−dp
Impatient
SWAG−like

(b) Varying T

0 2 4 6 8
1

1.21

1.42

1.63

1.84

2.05

2.26

2.47

2.68

2.89

3.1
x 10

4

M
ax

im
u

m
 q

u
eu

in
g

 d
el

ay

log(λ) (T=10,V=10, ε=1)

0 2 4 6 8
2.3

2.87

3.44

4.01

4.58

5.15

5.72

6.29

6.86

7.43

8
x 10

4

M
ax

im
u

m
 q

u
eu

in
g

 d
el

ay

2TGDA
GDA−wo−dp
Impatient
SWAG−like

(c) Varying λ

0.5 1 1.5 2 2.5 3
0

0.48

0.96

1.44

1.92

2.4

2.88

3.36

3.84

4.32

4.8
x 10

4

M
ax

im
u

m
 q

u
eu

in
g

 d
el

ay

ε (T=10,V=10, λ=1)

0.5 1 1.5 2 2.5 3
0.25

0.535

0.82

1.105

1.39

1.675

1.96

2.245

2.53

2.815

3.1
x 10

5

M
ax

im
u

m
 q

u
eu

in
g

 d
el

ay2TGDA
GDA−wo−dp
Impatient
SWAG−like

(d) Varying ε

Fig. 6. The performance of maximum queuing delay lmax under different values of (a) control parameter V , (b) the number T of fine-grained time
slots in each coarse-grained time slot, (c) weight factor λ and (d) delay-associated parameter ε

0 2 4 6 8
0

1.1

2.2

3.3

4.4

5.5

6.6

7.7

8.8

9.9

11
x 10

7

Ti
m

e−
av

er
ag

ed
 c

o
st

log(λ) (T=10,V=10, ε=1)

0 2 4 6 8
0

75

150

225

300

375

450

525

600

675

750

Ti
m

e−
av

er
ag

ed
 t

h
ro

u
g

h
p

u
t

Cost (with dp & adm.)
Cost (with adm. only)
Throughput (with dp & adm.)
Throughput (with adm. only)

Fig. 7. Cost-throughput tradeoff achieved by our algorithm.

5.2.4 Cost-throughput tradeoff

Fig. 7 shows the performance on trading off the cost mini-
mization and throughput maximization for our algorithm.
We observe that when input data placement and query
request admission control are both enabled, our algorithm
can maintain a slightly increasing throughput and a slightly
decreasing cost, with the increasing of λ. This implies that
our algorithm can achieve low cost and high throughput
simultaneously with an appropriate λ. One may question
why the cost can decrease as λ increases since λ is a weight
factor for throughput maximization. The root reason lies in
the input data placement optimization, and more requests
enable this optimization to save more cost. On the contrary,
if we disable the input data placement, we find that the
cost can hike significantly with the increase of λ, while
the throughput can keep increasing. So, by choosing an
appropriate value of λ, our algorithm can well tradeoff the
cost minimization and the throughput maximization.

6 DISCUSSION

Considering delay or query completion time: Our work
only considers queuing delay for each query request (or
job) at the master DC, instead of the total completion time
of the job. In fact, a job’s completion time is composed of
the waiting time (at both the master DC and the worker
DCs) as well as the job service time [16]. To consider such
completion time in our work, a simple approach could
do the following. Let W1(τ) denote the waiting time of a
query job at the master DC, which could be expressed as
some function of the queue backlogs

∑
iQi(τ). Let W2(τ)

indicate the waiting time of every job at worker DCs. W2(τ)
can be computed as maxj(max(Luj (τ)/Uuj ,Ldj (τ)/Udj)) if
each DC uses FIFO to schedule its flow transfers, where
Luj (τ) and Ldj (τ) indicate the accumulated traffic load to be
uploaded and downloaded by DC j at time τ , respectively.
Let W i

3(τ) represent the minimum transfer time required
for the flows of an i-th type job at time τ , which can be cal-
culated by maxj(max(Di,j(t)αi(1−Di,j(t)/Di)/U

u
j , (Di −

Di,j(t))αiDi,j(t)/Di/U
d
j)). Summing up W1(τ), W2(τ) and

W i
3(τ) and enforcing the summation to not exceed a given

budget (e.g., Cmax) at each time slot τ , one can incorporate
a maximum completion time constraint for each query job
into our problem formulation. The last thing is to redesign
queuing dynamics to solve the problem with the Lyapunov
optimization techniques. We leave it to future work.

Handling hybrid cloud scenarios: Our work is only
applicable to a private cloud or public cloud, not a hy-
brid environment with a mix of private and public clouds.
Actually, in a hybrid cloud scenario, some regulatory and
privacy concerns might forbid the input data movements
for specific DCs [6, 32]. To handle this scenario, one simple
approach could do the following. Let vi,j (≥ 0) denote

2168-7161 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.2994195, IEEE
Transactions on Cloud Computing

12

the volume of input data must be kept at DC j for i-
th query type. The value of vi,j can be specified by the
operator based on its regulatory concerns, and a value of
zero implies that there is no constraint on the relevant input
data movement. Given the definition above, one can add the
following constraint: Di,j(t) ≥ vi,j ,∀t,∀i,∀j, to the prob-
lem formulation in Sec. 3.3. Then, one can design heuristic
to avoid a DC being violated its input data constraint, to
solve the problem. Alternatively, one can reuse the basic
framework of our 2TGDA algorithm, and replace Step 1 by
formulating and solving a new problem P3 that incorporates
the data constraint above.

Enhancing theoretical contribution: Our work is based
on the standard Lyapunov optimization technique, as we
believe it can solve our problem efficiently, and enhancing
the Lyapunov optimization tool is beyond the scope of this
paper. But of course, the standard Lyapunov technique is
not without problem. For example, it relies on solving the
decomposed sub-problems optimally. If the sub-problems
happen to be NP-hard or large in scale and cannot be solved
optimally, it is unclear whether the standard Lyapunov tech-
nique can still provide a theoretical performance guarantee.
One can assume an error in minimizing (or maximizing)
the sub-problem and try to analyze if the Lyapunov opti-
mization technique can tolerate such error and provide a
performance guarantee with respect to the original (perhaps
stochastic) problem. As such, the theoretical contribution
of using the Lyapunov optimization technique could be
somehow strengthened. We leave it as an open problem.

Implementation issues: The proposed algorithm is eval-
uated through large-scale trace-driven simulations only,
without real system-based implementation over real geo-
distributed DCs (e.g., Amazon EC2 DCs). The reasons are as
follows. First, existing GDA systems (e.g., MapReduce and
Spark) largely lack interfaces to dynamically or arbitrarily
split and migrate the input data on each DC, and developing
such interfaces from scratch requires substantial efforts.
Second, our model and algorithm require all query jobs or
requests must be completed before performing the input
data movement; otherwise, the system may be crashed. To
meet this requirement, the operator may need to understand
the job workload beforehand and precisely determine the
scale of a time slot. Last but not least, since the problem
we solved is a long-term optimization, the high cost of
renting computational instances for a long time prohibits
us from building a testbed on commodity cloud platforms
(e.g., Google Cloud Engine or Amazon EC2). In view of the
reasons above, we leave the real testbed implementation to
future work.

7 RELATED WORK

In this section, we will summarize the most related work
in geo-distributed data analytics, which can be divided into
two categories based on their objectives. They mainly focus
on reducing the amount of inter-DC traffic or shortening job
completion time.

To reduce the bandwidth costs, Vulimiri et al. solve
an integer linear program to optimize the query execution
plan and aggressively cache the results of prior queries for
the subsequent queries [7]. However, they do not consider

the constraints on the data movement, and sometimes the
algorithm they used is slow. Pixida is a scheduler that
takes advantage of the graph partition method to minimize
the data transfers among datacenters [13]. WANalytics is
an extended version of Pixida, and also uses an efficient
cache mechanism to reduce data transfer among datacenters
[14]. It will cause overhead for caching and computations
within a datacenter. Ariel et al. propose JetStream, which
uses aggregation and degradation for reducing the traffic
cost in stream processing across wide area networks [4].
Relative to JetStream, Heintz et al. study a tradeoff problem
between timeliness and accuracy in geo-distributed stream-
ing analytics [33]. Nevertheless, both of them care about the
bandwidth constraints by trading streaming query accuracy
while our work preserves the data fidelity. Though those
solutions can somehow reduce the inter-DC bandwidth cost,
they do not consider the size relationship between input
data and the intermediate data generated by many queries.
Moreover, they do not consider any performance issues
related to the geo-distributed data analytics queries, e.g.,
the job completion time or system throughput (the number
of queries that can be served).

To reduce the job completion time, Iridium optimizes
the placement of both the input data and reduce task
[6]. Nevertheless, Iridium cannot guarantee the input data
movement among datacenters to be completed before the
query arrives. Wang et al. propose Turbo to dynamically
adjust the execution plan for a geo-distributed analytical
query by predicting the time cost of a plan with machine
learning [34]. Turbo is a single-query solution, which ignores
the scheduling of multiple queries. Hung et al. propose
SWAG, which optimizes the average completion time of jobs
running across multiple geo-distributed DCs by greedily
scheduling the job with the shortest estimated finish time
[16]. The estimated finish time of each job considers the
remaining size/progress of the job and the queue length
among all DCs. Nonetheless, SWAG is not aware of the opti-
mization of data placement. Convolbo et al. propose GeoDis
to jointly consider data replication and task migration to
minimize the makespan of jobs [35]. Though SWAG and
GeoDis show very promising performance improvement in
makespan minimization, they both ignore the inter-DC traf-
fic minimization and also make no attempt to improve the
number of successfully served jobs/queries per unit time.
Hwang et al. propose to replicate stream processing opera-
tors, with the aim of achieving fast and reliable processing
for geo-distributed analytics [36]. Pietzuch et al. investigate
to design a layer between a stream-processing system and
the physical network that manages operator placement,
with a series of objectives, e.g., improving network utiliza-
tion and providing low stream latency [37]. They both focus
on optimizing the operator placement and are orthogonal
to our work. CLARIENT is a recently proposed solution for
reducing the query completion time, which uses heuristics
to jointly selects the placements and schedules of tasks
[17]. CLARIENT is applicable to both single-query and
multi-query scenarios. However, CLARIENT is unaware of
the inter-DC traffic generated by analytics queries. It may
end up incurring massive amounts of inter-DC traffic that
uses the entire WAN budget even if the improvement in
query completion time is negligible. Moreover, despite the

2168-7161 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.2994195, IEEE
Transactions on Cloud Computing

13

unawareness of inter-DC traffic, CLARIENT’s assumption
on simultaneous query arrivals is also unrealistic.

There also exist other works that try to reduce job or
query completion time while being mindful of reducing
inter-DC traffic (cost). For example, Iridium [6] uses a pre-
configured WAN (Wide Area Network) usage budget to
prevent causing too much bandwidth cost. Practically, it
is hard to set an optimal budget as we have no insight
into the amount of traffic workload in WAN. Jayalath et al.
propose G-MR, which considers both job completion time
and cost when executing a sequence of jobs [15]. Hsieh et
al. propose Gaia [11] to speed up machine learning training
over WAN. Its key idea is to transfer only the gradients that
are significant enough for model refining, so as to reduce
communication overhead over WAN while retaining the
accuracy of a machine learning algorithm. Heintz et al. [38]
focus on optimizing the tradeoff between delay and traffic
cost for windowed grouped aggregation in geo-distributed
streaming analytics, while Kumar et al. [39] concern such
delay-cost tradeoff for continuous aggregation. Our work is
different from both these works. First, we consider the opti-
mization of geo-distributed analytics over batch data rather
than streaming data. Second, we focus on the throughput-
cost tradeoff instead of delay-cost tradeoff.

Besides, a growing body of recent work has leveraged
Lyapunov optimization techniques to solve a variety of
problems in DC networks. For example, Liu et al. [40]
and Yao et al. [24] propose to use Lyapunov optimization
techniques to manage the power or energy consumption
efficiently in DC networks. Chen et al. [41] develop a Lya-
punov optimization based transport to schedule a mixture
of deadline/non-deadline flows in DC networks. Li et al.
[42] leverage Lyapunov optimization framework to explore
the free time slots for inter-DC traffic transmission. Our
work is different, as we use Lyapunov techniques to derive
the joint decisions of input data placement and query re-
quest admission for the GDA system, to minimize the inter-
DC traffic cost and improve the system throughput.

8 CONCLUSIONS

This paper studies the problem of jointly considering in-
put data placement and admission control to minimize
the inter-DC traffic cost and maximize throughput (i.e.,
the number of simultaneously served requests) for a GDA
system. We take advantage of Lyapunov optimization to
design a two-timescale online control framework. Without
requiring a prior knowledge of subsequent query requests,
2TGDA makes online decisions on input data placement
at the beginning of each coarse-grained time slot, and the
query request admission at the beginning of each fine-
grained time slot. We conduct rigorous theoretical analysis
to demonstrate the optimality and robustness of our pro-
posed algorithm. Finally, we use trace-driven simulation to
verify that our algorithm is effective in arbitrating the cost-
performance tradeoff and guaranteeing the queuing delay
for query requests.

ACKNOWLEDGMENT

This work was supported partly by the NSFC General Tech-
nology Basic Research Joint Funds under Grant U1836214;

the State Key Program of National Natural Science of
China under Grants 61832013; the Artificial Intelligence
Science and Technology Major Project of Tianjin under Grant
18ZXZNGX00190; the National Key R&D Program of China
under Grant 2019QY1302; the NSFC under Grant 61672379;
the National Key R&D Program of China under Grant
2019YFB2102404; the NSFC-Guangdong Joint Funds under
Grant U1701263; the Natural Science Foundation of Tianjin
under Grant 18ZXZNGX00040; the National Key R&D Pro-
gram of China under Grant 2018YFB1004700; the NSFC un-
der Grants 61872265, 61672131; the Key research and Devel-
opment Program for Guangdong Province 2019B010136001;
the NSFC under Grants 61772112, U1811463; the Science In-
novation Foundation of Dalian under Grant 2019J12GX037.

REFERENCES
[1] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,

S. Venkata, J. Wanderer, J. Zhou, M. Zhu et al., “B4: Experience
with a globally-deployed software defined wan,” in Proc. of ACM
SIGCOMM, 2013.

[2] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nan-
duri, and R. Wattenhofer, “Achieving high utilization with
software-driven wan,” in Proc. of ACM SIGCOMM, 2013.

[3] A. Gupta, F. Yang, J. Govig, A. Kirsch, K. Chan, K. Lai, S. Wu, S. G.
Dhoot, A. R. Kumar, A. Agiwal et al., “Mesa: Geo-replicated, near
real-time, scalable data warehousing,” in Proceedings of the VLDB,
2014.

[4] A. Rabkin, M. Arye, S. Sen, V. S. Pai, and M. J. Freedman,
“Aggregation and degradation in jetstream: Streaming analytics
in the wide area,” in Proceedings of USENIX NSDI, 2014.

[5] Z. Wu, M. Butkiewicz, D. Perkins, E. Katz-Bassett, and H. V. Mad-
hyastha, “Spanstore: Cost-effective geo-replicated storage span-
ning multiple cloud services,” in Proceedings of ACM SOSP, 2013.

[6] Q. Pu, G. Ananthanarayanan, P. Bodik, S. Kandula, A. Akella,
P. Bahl, and I. Stoica, “Low latency geo-distributed data analytics,”
in Proceedings of ACM SIGCOMM, 2015.

[7] A. Vulimiri, C. Curino, P. B. Godfrey, T. Jungblut, J. Padhye,
and G. Varghese, “Global analytics in the face of bandwidth and
regulatory constraints,” in Proceedings of USENIX NSDI, 2015.

[8] A. Thusoo, Z. Shao, S. Anthony, D. Borthakur, N. Jain,
J. Sen Sarma, R. Murthy, and H. Liu, “Data warehousing and
analytics infrastructure at facebook,” in Proc. of ACM SIGMOD,
2010.

[9] G. Lee, J. Lin, C. Liu, A. Lorek, and D. Ryaboy, “The unified
logging infrastructure for data analytics at twitter,” Proc. of the
VLDB Endowment, vol. 5, no. 12, pp. 1771–1780, 2012.

[10] “Yahoo cross data-center data movement,” 2010. [Online].
Available: http://yhoo.it/1nPRImNl

[11] K. Hsieh, A. Harlap, N. Vijaykumar, D. Konomis, G. R. Ganger,
P. B. Gibbons, and O. Mutlu, “Gaia: Geo-distributed machine
learning approaching lan speeds,” in Proc. of USENIX NSDI, 2017.

[12] R. Ananthanarayanan, V. Basker, S. Das, A. Gupta, H. Jiang, T. Qiu,
A. Reznichenko, D. Ryabkov, M. Singh, and S. Venkataraman,
“Photon: fault-tolerant and scalable joining of continuous data
streams,” in Proceedings of ACM SIGMOD, 2013.

[13] K. K. M. M. N. Preguiça and R. Rodrigues, “Pixida: Optimizing
data parallel jobs in bandwidth-skewed environments,” in Pro-
ceedings of VLDB Endowment, 2015.

[14] A. Vulimiri, C. Curino, B. Godfrey, K. Karanasos, and G. Vargh-
ese, “Wanalytics: Analytics for a geo-distributed data-intensive
world.” in CIDR, 2015.

[15] C. Jayalath, J. Stephen, and P. Eugster, “From the cloud to the
atmosphere: running mapreduce across data centers,” IEEE Trans-
actions on Computers (TC), vol. 63, no. 1, pp. 74–87, 2014.

[16] C.-C. Hung, L. Golubchik, and M. Yu, “Scheduling jobs across
geo-distributed datacenters,” in Proceedings of the Sixth ACM Sym-
posium on Cloud Computing. ACM, 2015, pp. 111–124.

[17] R. Viswanathan, G. Ananthanarayanan, and A. Akella, “Clarinet:
Wan-aware optimization for analytics queries,” in Proceedings of
USENIX OSDI, 2016.

[18] “Measuring internet congestion: A preliminary
report,” https://ipp.mit.edu/sites/default/files/
documents/Congestion-handout-final.pdf,2014.

2168-7161 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.2994195, IEEE
Transactions on Cloud Computing

14

[19] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing
on large clusters,” Communications of the ACM, vol. 51, no. 1, pp.
107–113, 2008.

[20] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed
datasets: A fault-tolerant abstraction for in-memory cluster com-
puting,” in Proceedings of USENIX NSDI, 2012.

[21] “How map and reduce operations are actually carried out,” http:
//wiki.apache.org/hadoop/HadoopMapReduce.

[22] Y. Yu, P. K. Gunda, and M. Isard, “Distributed aggregation for
data-parallel computing: interfaces and implementations,” in Pro-
ceedings of ACM SIGOPS, 2009.

[23] W. Deng, F. Liu, H. Jin, and C. Wu, “Smartdpss: cost-minimizing
multi-source power supply for datacenters with arbitrary de-
mand,” in Proceedings of IEEE ICDCS, 2013.

[24] Y. Yao, L. Huang, A. Sharma, L. Golubchik, and M. Neely, “Data
centers power reduction: A two time scale approach for delay
tolerant workloads,” in Proceedings of IEEE INFOCOM, 2012.

[25] D. P. Bertsekas, D. P. Bertsekas, D. P. Bertsekas, and D. P. Bert-
sekas, Dynamic programming and optimal control. Athena Scientific
Belmont, MA, 1995, vol. 1, no. 2.

[26] M. J. Neely, “Stochastic network optimization with application
to communication and queueing systems,” Synthesis Lectures on
Communication Networks, vol. 3, no. 1, pp. 1–211, 2010.

[27] M. J. Neely, A. S. Tehrani, and A. G. Dimakis, “Efficient algorithms
for renewable energy allocation to delay tolerant consumers,” in
Proc. of IEEE SmartGridComm, 2010.

[28] G. B. Dantzig, Linear programming and extensions. Princeton
university press, 1998, vol. 48.

[29] Y. Nesterov and A. Nemirovskii, Interior-point polynomial algorithms
in convex programming. Siam, 1994, vol. 13.

[30] D. Xu, X. Liu, and Z. Niu, “Joint resource provisioning for internet
datacenters with diverse and dynamic traffic,” IEEE Transactions
on Cloud Computing, vol. 5, no. 1, pp. 71–84, 2014.

[31] C. Reiss, J. Wilkes, and J. Hellerstein, “Google cluster-usage
traces,” http://code.google.com/p/googleclusterdata.

[32] P. Mohan, A. Thakurta, E. Shi, D. Song, and D. Culler, “Gupt:
privacy preserving data analysis made easy,” in Proc. of ACM
SIGMOD, 2012.

[33] B. Heintz, A. Chandra, and R. K. Sitaraman, “Trading timeliness
and accuracy in geo-distributed streaming analytics,” in Proceed-
ings of ACM SoCC, 2016.

[34] H. Wang, D. Niu, and B. Li, “Turbo: Dynamic and decentralized
global analytics via machine learning,” IEEE Transactions on Paral-
lel and Distributed Systems, vol. 31, no. 6, pp. 1372–1386, 2020.

[35] M. W. Convolbo, J. Chou, C.-H. Hsu, and Y. C. Chung, “Geodis:
towards the optimization of data locality-aware job scheduling in
geo-distributed data centers,” Springer Computing, vol. 100, no. 1,
pp. 21–46, 2018.

[36] J.-H. Hwang, U. Cetintemel, and S. Zdonik, “Fast and reliable
stream processing over wide area networks,” in Proceedings of the
IEEE 23rd International Conference on Data Engineering Workshop,
2007.

[37] P. Pietzuch, J. Ledlie, J. Shneidman, M. Roussopoulos, M. Welsh,
and M. Seltzer, “Network-aware operator placement for stream-
processing systems,” in Proceedings of IEEE ICDE, 2006.

[38] B. Heintz, A. Chandra, and R. K. Sitaraman, “Optimizing timeli-
ness and cost in geo-distributed streaming analytics,” IEEE Trans-
actions on Cloud Computing, 2017.

[39] D. Kumar, J. Li, A. Chandra, and R. Sitaraman, “A ttl-based ap-
proach for data aggregation in geo-distributed streaming analyt-
ics,” Proceedings of ACM on Measurement and Analysis of Computing
Systems, vol. 3, no. 2, pp. 1–27, 2019.

[40] F. Liu, Z. Zhou, H. Jin, B. Li, B. Li, and H. Jiang, “On arbitrating
the power-performance tradeoff in saas clouds,” IEEE Transactions
on Parallel and Distributed Systems, vol. 25, no. 10, pp. 2648–2658,
2014.

[41] L. Chen, K. Chen, W. Bai, and M. Alizadeh, “Scheduling mix-
flows in commodity datacenters with karuna,” in Proc. of ACM
SIGCOMM, 2016.

[42] W. Li, X. Zhou, K. Li, H. Qi, and D. Guo, “Trafficshaper:
shaping inter-datacenter traffic to reduce the transmission cost,”
IEEE/ACM Transactions on Networking, vol. 26, no. 3, pp. 1193–1206,
2018.

Xinping Xu is currently a Ph.D. candidate in
the School of Computer Science and Technol-
ogy, Dalian University of Technology, China. His
research interests include datacenter networks
and cloud computing.

Wenxin Li received the B.E. degree from the
School of Computer Science and Technology,
Dalian University of Technology, China, in 2012.
Currently, he is a Ph.D. candidate in the School
of Computer Science and Technology, Dalian
University of Technology, China. His research
interests include datacenter networks and cloud
computing.

Renhai Xu received the B.E. degree from the
School of Computer Science and Technology,
Dalian University of Technology, China, in 2014.
Currently, he is a third-year master student in
the School of Computer Science and Technol-
ogy, Dalian University of Technology, China. His
research interests include datacenter networks
and cloud computing.

Heng Qi was a Lecture at the School of Com-
puter Science and Technology, Dalian University
of Technology, China. He got bachelor’s degree
from Hunan University in 2004 and master’s
degree from Dalian University of Technology in
2006. He servered as a software engineer in
GlobalLogic-3CIS from 2006 to 2008. Then he
got his doctorate degree from Dalian University
of Technology in 2012. His research interests in-
clude computer network, multimedia computing,
and mobile cloud computing. He has published

more than 20 technical papers in international journals and conferences,
including ACM Transactions on Multimedia Computing, Communications
and Applications (ACM TOMCCAP) and Pattern Recognition (PR).

Keqiu Li received the bachelors and masters
degrees from the Department of Applied Math-
ematics at the Dalian University of Technology
in 1994 and 1997, respectively. He received the
Ph.D. degree from the Graduate School of In-
formation Science, Japan Advanced Institute of
Science and Technology in 2005. He also has
two-year postdoctoral experience in the Univer-
sity of Tokyo, Japan. He is currently a professor
in the School of Computer Science and Technol-
ogy, Dalian University of Technology, China. He

has published more than 100 technical papers, such as IEEE TPDS,
ACM TOIT, and ACM TOMCCAP. He is an Associate Editor of IEEE
TPDS and IEEE TC. He is a senior member of IEEE. His research inter-
ests include internet technology, data center networks, cloud computing
and wireless networks.

Xiaobo Zhou recieved the B.Sc. in Electronic In-
formation Science and Technology from Univer-
sity of Science and Technology of China (USTC),
Hefei, China, in 2007, the M.E. in Computer Ap-
plication Technology from Graduate University
of Chinese Academy of Science (GUCAS), Bei-
jing, China, in 2010, and the Ph.D. degree from
School of Information Science, Japan Advanced
Institute of Science and Technology (JAIST),
Ishikawa, Japan, in 2013. He is currently an
Associate Professor with the School of Com-

puter Science and Technology, Tianjin University. Prior to that, he was
a researcher with Centre for Wireless Communications, University of
Oulu, Finland from 2014 to 2015. His research interests include joint
source-channel coding, cooperative wireless communications, network
information theory, cloud computing and software defined networking.

