
Towards Application-aware In-network Bandwidth
Management in Data Centers

Renhai Xu, Wenxin Li, Keqiu Li, Heng Qi
School of Computer Science and Technology, Dalian University of Technology, China

Keqiu Li is the corresponding author, keqiu@dlut.edu.cn

Abstract—A wide variety of applications nowadays are running
on data centers, making the scarce in-network bandwidth of
data centers become the performance bottleneck. To guarantee
the network performance, an efficient in-network bandwidth
management can be leveraged, however little work has been
done so far. The crux is that existing work mainly relies on
a static or dynamic bandwidth allocation strategy, which lacks
efficient schemes to allow elastic and flexible use of the in-network
bandwidth among different applications. In this paper, we study
the in-network bandwidth management problem in data centers
with a large number of diverse applications. To this end, we first
formulate a max-min bandwidth constraint model to reserve an
amount of bandwidth for each type of application. With this
model, bandwidth can be sharing across different application
types in an elastic and flexible way. We further present a
Borrow-Return-Preempt bandwidth management method (BRP)
to practically allocate bandwidth to individual requests of each
type of applications. Extensive simulation results have shown
that our proposed BRP is capable of improving the in-network
bandwidth utilization as well as providing desirable network
performance for applications, compared to the conventional fair
allocation method.

I. INTRODUCTION

Datacenter, implemented as the underlying infrastructure,

has been increasingly popular in today’s business. Using the

shared pool of computation, storage and bandwidth resources,

providers are able to deploy applications on their infras-

tructures. With the high-speed development of the Internet,

business datacenters are increasingly hosting a wide variety of

applications; from user-facing online services to data-parallel,

HPC and scientific applications [1–6]. As a consequence, a

large number of applications are sharing the intra-datacenter

bandwidth, leading to a strong need for an efficient in-network

bandwidth management scheme. Moreover, since many data

centers are oversubscribed, i.e., as high as 40:1 in some data-

centers [7], applications will suffer unpredictable performance

if there is no bandwidth management.

Today, it is easy to share and manage computation and stor-

age resources among multiple applications effectively. In con-

trast, designing an efficient bandwidth management method on

a shared datacenter, however, is an inherently complex task,

which has the following two challenges. First, the in-network

bandwidth resources are comprised of bandwidth in a large

number of switches, which are interconnected in a complicated

manner [8, 9]). Moreover, the number of applications on a

data center can be larger, and different application may have

different bandwidth requirements. These all make it harder

to manage the in-network bandwidth in modern data centers.

Second, the amount of bandwidth actually consumed by an

application can possibly vary over the time. Simply allocating

the required bandwidth to applications would cause bandwidth

fragmentation and waste because the bandwidth allocated to

one application cannot be used by other applications, even if

it is idle.

To the best of our knowledge, previous work on bandwidth

allocation mainly relies on static allocation or dynamic al-

location, yet has significant limitations in managing the in-

network bandwidth in data centers. On the one hand, the static

bandwidth allocation fairly allocates bandwidth to different

entities. Such entities can be VM [10], VM-pair [11], or tenant

[12]. Once the bandwidth is allocated, each entity will hold the

bandwidth until its data transferring is completed. As a result,

the intra-datacenter bandwidth cannot be efficiently utilized

when entities are not able to fully utilize the bandwidth allo-

cate to them. On the other hand, dynamic allocation is achieved

by enforcing rate limit on traffic among endpoints, like VMs in

virtualized datacenters [13, 14]. Unfortunately, since traffic is

sent by the source, traversing through some intermediate (like,

switches), and finally arrivals the destination, simply enforcing

rate limit in the endpoints cannot capture the dynamic change

in the intra-datacenter network. Furthermore, it will hurt the

application performance, especially the performance for some

latency-sensitive applications. The reason can be that it does

not provide strict priority, even low priority applications, which

should be paused, continue to send packets.

To efficiently manage the in-network bandwidth, there are

more requirements that should be satisfied. First, the band-

width management must be able to enforce different bandwidth

constraints for different type of applications. As we known,

the data centers have become the major platforms for the

cloud computing, which is a multi-user environment. Hence,

applications, submitted by a customer who pays more than

other customers, should be provided with more bandwidth than

others. Second, the bandwidth management must be able to

process at least two parameters: the requested bandwidth and

the priority. Processing requested bandwidth can bring benefit

in providing desirable network performance for applications,

while bandwidth preemption can ensure that a bandwidth

request with high priority can get more bandwidth than that

with low priority.

To satisfy these requirements, we first present a max-min

2016 IEEE TrustCom/BigDataSE/ISPA

2324-9013/16 $31.00 © 2016 IEEE

DOI 10.1109/TrustCom/BigDataSE/ISPA.2016.338

2208

2016 IEEE TrustCom/BigDataSE/ISPA

2324-9013/16 $31.00 © 2016 IEEE

DOI 10.1109/TrustCom/BigDataSE/ISPA.2016.338

2208

2016 IEEE TrustCom/BigDataSE/ISPA

2324-9013/16 $31.00 © 2016 IEEE

DOI 10.1109/TrustCom/BigDataSE/ISPA.2016.338

2206

2016 IEEE TrustCom-BigDataSE-ISPA

2324-9013/16 $31.00 © 2016 IEEE

DOI 10.1109/TrustCom.2016.338

2206

bandwidth constraint model, where the reserved bandwidth of

each application type is enforced between a minimal value

and a maximum value. The idle part of the minimal reserved

bandwidth for each application type is allowed to be borrowed

by other application types, raising the opportunity to use the

in-network bandwidth in an elastic and flexible way. Based

on this model, we further present a Borrow-Return-Preempt

(BRP) bandwidth management method to allocate bandwidth

to the individual bandwidth requests of each application type.

With the BRP method, the unused fraction of minimal reserved

bandwidth of an application type can be borrowed by band-

width requests from other types of applications. The bandwidth

of an application type borrowed by other application types

can be returned to this application type. Moreover, a high-

priority bandwidth request of an application type is allowed

to preempt the bandwidth from low-priority requests of both

this application type and other application types. To evaluate

the performance of our proposed BRP method, we conduct

comprehensive simulations. The results have shown that BRP

can improve the in-network bandwidth utilization by up to

19.7%, and accommodate 37% more requests with band-

width guaranteed, compared to the conventional fair allocation

method [15].

In summary, our main contributions are as follows:

1) We address the challenging problem of managing the

in-network bandwidth across a mixed variety of appli-

cations in data centers. Specifically, we formulate a max-

min bandwidth allocation model.

2) We present a Borrow-Return-Preempt method to allocate

the in-network bandwidth among different applications

in an elastic and flexible way.

3) We conduct comprehensive simulation to show the ef-

ficiency of our proposed BRP method, with respect to

the performance on both the bandwidth utilization and

request successive rate.

The rest of our paper is organized as follows. We present the

problem statement and bandwidth constraint model in Section

II. In Section III, we present the BRP method. Then, we

show the performance evaluation in Section IV. Section V

summarizes the related work. Finally, we conclude this paper

in Section VI.

II. PROBLEM STATEMENT AND BANDWIDTH CONSTRAINT

MODEL

In this section, we first present some goals of our bandwidth

management framework in a data center hosting a wide

variety of applications. Then, we show the max-min bandwidth

constraint model.

A. Problem Statement

Our focus in this paper is designing an efficient bandwidth

management framework in a shared datacenter that hosts

a mixed multiple applications. We aim to provide the in-

network bandwidth guarantees for applications, and improve

the bandwidth efficiency.

In-network bandwidth guarantees: As we know, shared

by a wide variety of applications, the in-network bandwidth is

usually the bottleneck resource, especially in a data center with

high oversubscription ratio. To ensure predictable performance

for applications, the requested bandwidth should be guaran-

teed. In this paper, we focus on the in-network bandwidth guar-

antee for applications. Such in-network bandwidth guarantee

implies that the requested bandwidth should be guaranteed in

all switches (or nodes) along the routing path of this request.

Efficiency: Traditionally, once an application acquired an

amount of bandwidth, it will hold the bandwidth until its

data transferring is completed. As a result, the bandwidth

cannot be efficiently utilized when applications are not able

to fully utilize the bandwidth allocated to them. Fortunately,

as applications of different types have different bandwidth

requirements, we can enforce the amount of bandwidth of each

application type to be ranged from a minimum to a maximum

value. Once a certain application type consumes an amount of

bandwidth less than its minimum value, the leftover bandwidth

should be lent to applications from other types. In case that it

increases its demand, it must be able to preempt the bandwidth

borrowed by others.

With the above two objectives, we consider a data center

network with a wide variety of applications. We assume that

each application can be differentiated, and can be classified

in the corresponding application type. With the distributed

bandwidth management, there are four main steps in estab-

lishing a new bandwidth request. First, we compute a shortest

path for the coming request based on the network topology.

Second, we send the requested bandwidth to all nodes along

the computed path. Third, each node on the path maintains a

bandwidth constraint model, and executes the Borrow-Return-

Preempt bandwidth allocation. Finally, it sends a positive reply

to the source. Forth, if all the nodes along the path return

positive replies, then the flow establishing is successful, and

the requested bandwidth will be reserved on all nodes.

B. Max-min Bandwidth Constraint Model

As aforementioned, each node in the data center network

maintains a bandwidth constraint model. We consider that each

node i has a bandwidth capacity Ui and mainly maintains two

matrices, Ci and Ai. The matrix Ci is an Nat×Np matrix,

which is used to record bandwidth consumption, with its

element Ci[k, l] being the bandwidth consumed by application

type k at priority l. Nat is the number of application types,

while Np is the number of priority levels. Similarly, Ai is

used to record the bandwidth availability, with each element

Ai[k, l] being the available bandwidth to application type k at

priority l.
Recall that we aim to design a dynamic bandwidth manage-

ment framework with high bandwidth efficiency. Moreover, the

unused bandwidth of an application type should be used for

other application types. In order to enhance the efficiency, we

let the amount of bandwidth used for a certain application type

be ranged from a minimum to a maximum value. More pre-

cisely, Rmin
i [k] and Rmax

i [k] are the corresponding minimum

2209220922072207

and maximum amount of bandwidth reserved for application

type k on node i, respectively. Let Bi[k1, l, k] denote the

amount of bandwidth, belonging to application type k, that

borrowed by requests from application type k1 with priority l.
Let Ti[k, l] denote the fraction of minimal reserved bandwidth

that consumed by requests of application type k with priority l.
Note that the total amount of bandwidth that is sharable among

all applications can be calculated as Ui −
∑Nat−1

k=0 Rmin
i [k].

So, in the sharable bandwidth, let Si[k, l] denote the bandwidth

consumed by application k with priority l. The total amount

of bandwidth consumed by application type k with priority l
can now be calculated as

Ci[k, l] = Ti[k, l] + Si[k, l] +

Nat−1∑

k1 �=k

Bi[k, l, k1]. (1)

Now, we have the following bandwidth constraint model.

Np−1∑

l=0

Ci[k, l] ≤ Rmax
i [k], 0 ≤ k ≤ Nat − 1 (2)

Rmin
i [k] ≤ Rmax

i [k], 0 ≤ k ≤ Nat − 1 (3)

Nat−1∑

k=0

Rmin
i [k] ≤ Ui, (4)

Nat−1∑

k=0

Np−1∑

l=0

Ci[k, l] ≤ Ui, (5)

Np−1∑

l=0

Ti[k, l] +

Nat−1∑

k1 �=k

Np−1∑

l=0

Bi[k1, l, k] ≤ Rmin
i [k], (6)

Np−1∑

k=0

Np−1∑

l=0

Si[k, l] ≤ Ui −
Nat−1∑

k=0

Rmin
i [k]. (7)

Eq. (2) implies that each application type k has a maximum

amount of bandwidth consumption Rmax
i [k]. As shown in

Eq. (3), the minimum amount of bandwidth reserved for

one application type must be less than its corresponding

maximum value. In order to avoid congestion, the sum of the

minimum amount of reserved bandwidth should not exceed the

bandwidth capacity Ui, as shown in Eq. (4). Eq. (5) means that

the total amount of actually consumed bandwidth should not

exceed the bandwidth capacity. Eq. (6) shows that the sum of

Ti and Bi should not exceed the minimum amount of reserved

bandwidth. In the part of shareable bandwidth, the bandwidth

consumed by application type k with priority l should not

exceed the amount of sharable, as shown in Eq. (7). It is clear

that this model enforces the amount of reserved bandwidth for

each application type to be ranged from a minimal value to a

maximum value, which accounts for the max-min bandwidth

constraint model.

1) Update the bandwidth consumption matrix: Once a

certain amount of bandwidth bw on node i is allocated to

or released from application type at at priority level p, the

matrix Ci can then be updated as follow

Ci[k, l] = Ci[k, l] + bw, (8)

where bw has positive value for a bandwidth grant and a

negative value for a bandwidth release.

2) Update the bandwidth availability matrix: Based on

the bandwidth constraint model and the computed bandwidth

consumption matrix, the available bandwidth of application

type k can be computed as the following equation

Ai[at, p]=min{Rmax
i [at]−

p∑

l=0

Ci[at, l], greturn at+

gmin at+gshare+gborrow at+gprt at+gprt ot},
(9)

where

greturn at =

Nat−1∑

k �=at

Np−1∑

l=0

Bi[k, l, at], (10)

gmin at = Rmin
i [at]−

Np−1∑

l=0

Ti[at, l]− greturn at, (11)

gshare = Ui −
Nat−1∑

k=0

Rmin
i [k]−

Nat−1∑

k=0

Np−1∑

l=0

Si[k, l], (12)

gborrow at =

Nat−1∑

k �=at

gmin k, (13)

gprt at =

Np−1∑

l=p+1

Ci[at, l], (14)

gprt ot =

Nat−1∑

k �=at

Np−1∑

l=p+1

(Ci[k, l]− Ti[k, l]). (15)

In Eq. (9), Rmax
i [at] −

p∑
l=0

Ci[at, l] computes the portion

of the maximum bandwidth that is able to the new flows of

application type at with priority p. Additionally, the available

bandwidth for the flows of application type at with priority

p consists of 6 parts: 1) greturn at, the portion of minimal

reserved bandwidth that application type at previously lent

to other application types, which should be returned once

application type at increases its demand (Eq. 10); 2) gmin at,

the portion of minimum reserved bandwidth which is not con-

sumed (Eq. (11)); 3) gshare, the leftover sharable bandwidth

(Eq. (12)); 4) gborrow at, the total unconsumed minimum re-

served bandwidth that can be borrowed by application type at
(Eq. (13)); 5) gprt at, the total amount of consumed bandwidth

by application type at’s flows with priority lower than p (Eq.

(14)); 6) gprt ot, defined as the total amount of consumed

bandwidth minus the total amount of consumed minimum

reserved bandwidth, associated with flows of all application

types except at with priority lower than p (Eq. (15)).

III. BORROW-RETURN-PREEMPT BANDWIDTH

MANAGEMENT MODEL

In this section, we present a bandwidth-return-preempt

bandwidth management model to allocate bandwidth to the

requests issued by a mixed variety of applications.

2210221022082208

Algorithm 1 Borrow Algorithm: at type application borrow

bandwidth from k type application on node i

Input: b bw, gborrow at, gmin k, greturn k, Bi;
Output: A new b bw;

1: gborrow at−=b bw;
2: while b bw > 0 do
3: Search a Application type k(k �= at) with the biggest

gmin k > 0
4: r[np]=min{gmin k, b bw}; b bw−=r[np];
5: gmin k−=r[np]; greturn k+=r[np];
6: Bi[at, p, k]+=r[np];np++;
7: end while
8: return b bw;

A. Design Fundamental

We first present some fundamentals for our bandwidth

management. Once a node receives a request (bw, at, p), it

will invokes the bandwidth allocation for this request. To ease

the presentation, let the unconsumed bandwidth of application

type at at the arrival time of the new request (bw, at, p) be

defined by

unconsumedi[at] = min{Ui −
Nat−1∑

k=0

Np−1∑

l=0

Ci[k, l],

Rmax
i [at]−

Np−1∑

l=0

Ci[at, l]− greturn at},
(16)

which implies that a new request (bw, at, p) can be accommo-

dated with any unconsumed portion of the bandwidth capacity

on the node; that is Ui −
∑Nat−1

k=0

∑Np−1
l=0 Ci[k, l]. Besides,

the accommodation of the new request should not cause

application type at’s consumption to exceed Rmax
i [at].

Given the unconsumedi[at], the node can perform band-

width allocation for the coming request (bw, at, p). It first

checks whether the requested bandwidth bw is less than or

equal to the available bandwidth Ai[at, p]. If yes, our algo-

rithm computes the unconsumed bandwidth unconsumedi[at]
based on Eq. (16). The unconsumed bandwidth for application

type at may contain the unused minimum reserved bandwidth,

the sharable bandwidth, and the bandwidth that previously

borrowed by other application types. So, the key idea in

designing the bandwidth allocation on each node is to make

decisions on bandwidth borrowing, bandwidth returning and

bandwidth preemption.

B. Borrow-Return-Preempt Allocation

We seamlessly combine the following three algorithms, and

design a BRP method to allocate bandwidth to each coming

request.

Borrow algorithm: If the bandwidth request bw exceed the

sum of gmin at and gshare, this means that the gmin at and

gshare cannot satisfy the bandwidth requirement. It is nec-

essary to borrow bandwidth from other application types, as

shown in Algorithm 1. The b bw is the amount of bandwidth

Algorithm 2 Return Algorithm: k type application return

bandwidth to at type application on node i

Input: r bw, greturn at, Ti, Bi, Ci;

Output: A new r bw;

1: greturn at−=r bw;
2: Ti[at, p]+=r bw;
3: while r bw > 0 do
4: Search a non-zero item Bi[k, l, at](k �= at) with the

biggest l ≤ Np − 1
5: r[np]=min{Bi[k, l, at], r bw}; r bw−=r[np];
6: Bi[k, l, at]−=r[np];Ci[k, l]−=r[np];np++;
7: end while
8: return r bw;

that application at needs to borrow. Step 3 means that each

time we borrow bandwidth from application k with the biggest

gmin k which is the unconsumed bandwidth in the minimum

reserved bandwidth Rmin[k]. Finally, update the Bi[at, p, k]
and gmin k.

Return algorithm: If bw is bigger than unconsumedi[at]
but less than or equal to the sum of unconsumedi[at] and

greturn at, the unconsumed bandwidth is insufficient. Hence,

the application type at with priority p should retrieve band-

width which has been borrowed by application type k(k �= at).
As shown in Algorithm 2, the parameter r bw is the amount of

bandwidth that other applications should return to application

at. The algorithm searches a non-zero item Bi[k, l, at](k �=
at) with the biggest l ≤ Np − 1, until r bw reduces to 0.

Finally, it updates the greturn at, Ti[at, p] and Bi[k, l, at].

Preemption algorithm: The node may discover that the

requested bandwidth is less than or equal to the available

bandwidth Ai[at, p], but there is inadequate bandwidth to

accommodate the new request because a portion of the avail-

able bandwidth has been occupied by the existing flows with

priorities lower than p. In this case, the bandwidth preemption

will be invoked. The preemption process is summarized in

Algorithm 3. The preemption decisions are made based on

both the priority level and the bandwidth consumption sta-

tus, so as to minimize the amount of bandwidth preempted.

As shown in step 1-13, to accommodate this request, this

algorithm first preempts bandwidth from application type at
with priority lower than p. If preempted bandwidth still cannot

satisfy the requested bandwidth, then this algorithm preempts

bandwidth from other application type k with priority lower

than p, as shown in step 14-24. It should be noted that a

necessary condition when invoking the Algorithm 3 should

be satisfied: the requested bandwidth must be larger than the

summation of unconsumedi[at] and greturn at.

Finally, the bandwidth consumption matrix Ci and the

bandwidth availability matrix Ai should be updated, and a

flag should also be returned to indicate whether the request is

successfully served on node i.

2211221122092209

Algorithm 3 Preemption Algorithm: preempt application with

priority l(l > p) on node i

Input: p bw,Ci, Ti, Si, Bi;

Output: A new p bw;

1: while p bw > 0 do
2: Search a non-zero item Ci[at, l] with the biggest l > p
3: p[np]=min(Ti[at, l], p bw);
4: update p bw, Ti[at, l] and Ti[at, p];
5: p[np]=min(Si[at, l], p bw);
6: update p bw, Si[at, l] and Si[at, p];
7: while p bw > 0 do
8: Search a non-zero item Bi[at, l, k] with k �= at
9: p[np]=min(Bi[at, l, k], p bw);

10: update p bw, Bi[at, l, k] and Bi[at, p, k];
11: end while
12: np++;
13: end while
14: while p bw > 0 do
15: Search a non-zero item Ci[k, l] with the biggest l > p
16: p[np]=min(Si[k, l], p bw);
17: update p bw, Si[k, l] and Si[at, p];
18: while p bw > 0 do
19: Search a non-zero item Bi[k, l, k1] with (k1 �= at)
20: p[np]=min(Bi[k, l, k1], p bw);
21: update p bw, Bi[at, p, k1] and Bi[k, l, k1];
22: end while
23: np++;
24: end while
25: return p bw;

IV. PERFORMANCE EVALUATION

In this section, we conduct comprehensive simulations to

evaluate our proposed BRP method.

A. Experiment Setting

To evaluate the performance of our Borrow-Return-Preempt

bandwidth allocation method, we use a 10-node Fat-Tree

topology. Without loss of generality, the bandwidth capacity

of each node is uniformly set to 2Gbps. We consider 10

types of applications, e.g., Nat = 10, and the total number

of priority levels is set to 100 (Np = 100). For a certain

period of time, there are Nat × Np flows in total. Each

flow has an amount of bandwidth ranging from 0Mbps to

100Mbps. The minimal reserved bandwidth configured for

each application type is randomly selected in the range of

[0, 50]Mbps. For the maximum reserved bandwidth, we vary it

based on the minimum reserved bandwidth. More previously,

if the minimum reserved bandwidth for a node is 10Mbps,

then the corresponding maximum reserved bandwidth is set

to 1×, 2×, · · · , 50 × 10Mbps. So, we actually conduct 50

runs in our experiments. We compared BRP with the default

fair bandwidth allocation method, which allocates a same

amount of bandwidth to each active flow on a node [15].

It should be noted that we also maintains the max-min

bandwidth constraint model for the fair bandwidth allocation

(a) Bandwidth utilization on each node

(b) Bandwidth utilization with varying Rmax/Rmin

Fig. 1. The performance on bandwidth utilization

in our experiments. We focus on evaluating the following two

metrics: the bandwidth utilization and the request success rate.

B. Bandwidth Utilization

We first evaluate the performance on the bandwidth u-

tilization. Fig. 1(a) first presents the bandwidth utilization

across all nodes. It is clear that across all nodes, our BRP

method achieves a higher bandwidth utilization rate than

the fair allocation method. More previously, the BRP can

improve the bandwidth utilization by up to 19.7%, compared

to fair allocation method. The average improvement on the

bandwidth utilization is 11.8%. The root reason is that though

we maintain the max-min bandwidth constraint model for the

fair allocation method, the unused minimal reserved bandwidth

of each application type cannot be used for other application

types, even it is idle. This confirms that our BRP enables

elastic and flexible bandwidth use among a mixed variety of

applications.

To evaluate the impact of Rmax/Rmin on the bandwidth

utilization, we plot the bandwidth utilization for both BRP and

fair allocation methods, with varying values of Rmax/Rmin

in Fig. 1(b). As we can see, the bandwidth utilization of both

BRP and fair allocation methods increases at the beginning,

and then maintains a stable value when Rmax/Rmin increases

to 35. Moreover, BRP can fully utilize the bandwidth when

2212221222102210

(a) Request success rate across all nodes (b) Request success rate with varying
Rmax/Rmin

(c) Request success rate at different priority lev-
els

Fig. 2. The performance on request success rate

Rmax/Rmin increases to 35, while fair allocation method can

only utilize 69.3% of bandwidth. This result again verifies that

our BRP method can allocate bandwidth in a dynamic way,

raising the opportunity to fully utilize the bandwidth across

all nodes.

C. Request success rate

We now evaluate the performance on the request success

rate for both BRP and fair allocation methods. Fig. 2(a)

first plots the request success rate across all nodes. It is

clear that the BRP method can achieve a higher request

success rate across all nodes. More preciously, across all

nodes, the maximum improvement in the request success

rate is 37%. Averagely, BRP can accommodate 21.9% more

requests the fair allocation method across all nodes. The

crux is that BRP can use the leftover part of the minimal

reserved bandwidth for each application type. We also conduct

sensitivity analysis on the request success rate by varying the

value of Rmax/Rmin. As shown in Fig. 2(b), the request

success rate increases as the increase of Rmax/Rmin. With

a sufficient large value of Rmax/Rmin, e.g., 40, BRP can

accommodate 86% requests, while fair allocation method only

accommodates 40% requests. To understand on a microcosmic

level, we also conduct quantitatively analysis on the success

rate for requests at different priority levels. As show in Fig.

2(c), BRP method ensures that requests with high-priority are

more likely to be successfully served than requests with lower

priorities. However, fair allocation seems to achieve a request

success rate irrespective to the priorities of different requests.

This is because that fair allocation method equally allocates

bandwidth to the concurrent requests. Given these results, we

can conclude that our proposed BRP method can achieve a

higher request success rate than the default bandwidth sharing

method.

V. RELATED WORK

In this section, we mainly summarize the related work on

bandwidth allocation in data centers, as this is mostly related

to our work. Existing methods on bandwidth allocation can be

generally classified into two folds: static bandwidth allocation

and dynamic bandwidth allocation. However, none of them can

address the problem of managing the in-network bandwidth in

a data center with a mixed variety of applications.

Regarding the static bandwidth allocation, some methods

focus on reserving bandwidth during the virtual machine

(VM) placement, while some methods focus on the bandwidth

allocation after VM placement. For example, SecondNet [16]

reserves bandwidth for each VM-to-VM pari. Lee et al.

propose a new network abstraction TAG (tenant application

graph) and reserve bandwidth at the application level [17].

Zhu et al. [18] focus on the problem of VM allocation

under the consideration of providing bandwidth guarantees

with both homogeneous and heterogeneous bandwidth demand

considered. For allocating bandwidth after the VM placement,

existing methods mainly focus on fairly allocate bandwidth

to different entities. For instance, Faircloud presents three

methods for allocating bandwidth on congested links, which

can achieve the VM-pair fairness [11]. Guo et al. propose an

allocation strategy based on game theory, which keeps fairness

among different VMs [10]. NetShare [12] provides tenant-

level fairness on congested links and achieves proportional

bandwidth sharing by using weighted fair queues. Chen et al.

focus on application-level fairness and they introduce a rigor-

ous definition of performance-centric fairness with the guiding

principle that the performance of data parallel applications

should be proportional to their weights [19]. These methods

mainly focus on static bandwidth allocation with ignoring

the highly dynamic bandwidth request of VMs, leading to

insufficient in utilizing the bandwidth in a flexible and elastic

way.

Regarding the dynamic bandwidth allocation, existing meth-

ods mainly enforcing rate limit on the endpoints such as

servers and VMs. For example, Popa et al. present Elastic-

Switch to dynamic utilize the spare bandwidth to the newly

coming flows [13]. It can be fully implemented in hypervisors,

but it has fluctuations under bursty traffic when the rate

limit is beyond the guarantee. Guo et al. take advantage of

the Logistic Model to design a novel distributed bandwidth

allocation algorithm, with the aim of coping with highly

dynamic traffic in the datacenter network [14]. To perform

bandwidth allocation, most of them rely on a technique of rate

limit on the endpoints. However, such rate limit has significant

2213221322112211

limitations: since each network flow traverses through multiple

switches among its routing path, such rate limit is unaware of

the in-network status of data centers. This eventually hurts the

performance of applications.

VI. CONCLUSION

This paper studies the challenging problem of managing the

in-network bandwidth in data centers multiplexed with a mixed

variety of applications. The primary objective is to improve

the bandwidth utilization while providing desirable network

performance for applications. To achieve this objective, we

first present a max-min bandwidth constraint model, which

enforces a minimal as well as a maximum amount of band-

width reserved for each type of application. Then, we present

a Borrow-Return-Preempt method to allocate bandwidth to

the individual bandwidth requests of each type of application.

Finally, we conduct comprehensive simulations to show the

efficiency of our proposed BRP method in terms of both the

bandwidth utilization and the request success rate.

ACKNOWLEDGE

This work is supported by the National Science Founda-

tion for Distinguished Young Scholars of China (Grant No.

61225010); the State Key Program of National Natural Science

of China (Grant 61432002).

REFERENCES

[1] J. Dean and S. Ghemawat, “Mapreduce: simplified data

processing on large clusters,” Communications of the
ACM, vol. 51, no. 1, pp. 107–113, 2008.

[2] Q. He, S. Zhou, B. Kobler, D. C. Duffy, and T. M-

cGlynn, “Case study for running HPC applications in

public clouds,” in Proceedings of ACM HPDC, Chicago,

Illinois, USA, 2010.

[3] E. Walker, “Benchmarking amazon ec2 for high-

performance scientific computing,” USENIX Login,

vol. 33, no. 5, pp. 18–23, 2008.

[4] “Storm: Distributed and fault-tolerant realtime computa-

tion,” http://storm-project.net/.

[5] “Spark,” http://spark.apache.org/.

[6] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly,

“Dryad: distributed data-parallel programs from sequen-

tial building blocks,” in Prooceedings of ACM EuroSys,

2007.

[7] N. Farrington and A. Andreyev, “Facebooks data center

network architecture,” in Proceedings of IEEE Optical
Interconnects, Santa Fe, NM, 2013.

[8] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable,

commodity data center network architecture,” in Pro-
ceedings of ACM SIGCOMM, 2008.

[9] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula,

C. Kim, P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta,

“Vl2: a scalable and flexible data center network,” in

Proceedings of ACM SIGCOMM, 2009.

[10] J. Guo, F. Liu, D. Zeng, J. Lui, and H. Jin, “A cooperative

game based allocation for sharing data center networks,”

in Proceedings of IEEE INFOCOM, Turin, Italy, 2013.

[11] L. Popa, G. Kumar, M. Chowdhury, A. Krishnamurthy,

S. Ratnasamy, and I. Stoica, “Faircloud: sharing the

network in cloud computing,” in Proceedings of ACM
SIGCOMM, Helsinki, Finland, 2012.

[12] T. Lam, S. Radhakrishnan, A. Vahdat, and G. Varghese,

“Netshare: Virtualizing data center networks across ser-

vices,” University of California, San Diego, Tech. Rep.,

2010.

[13] L. Popa, P. Yalagandula, S. Banerjee, J. C. Mogul,

Y. Turner, and J. R. Santos, “Elasticswitch: practical

work-conserving bandwidth guarantees for cloud com-

puting,” in Proceedings of ACM SIGCOMM, 2013.

[14] J. Guo, F. Liu, X. Huang, J. C.S.Lui, M. Hu, Q. Gao,

and H. Jin, “On efficient bandwidth allocation for traffic

variability in datacenters,” in Proceedings of IEEE IN-
FOCOM, Toronto, Canada, 2014.

[15] B. Briscoe, “Flow rate fairness: Dismantling a reli-

gion,” ACM SIGCOMM Computer Communication Re-
view, vol. 37, no. 2, pp. 63–74, 2007.

[16] C. Guo, G. Lu, H. J. Wang, S. Yang, C. Kong, P. Sun,

W. Wu, and Y. Zhang, “Secondnet: a data center network

virtualization architecture with bandwidth guarantees,”

in Proceedings of the ACM CoNEXT, Philadelphia, PA,

USA, 2010.

[17] J. Lee, Y. Turner, M. Lee, L. Popa, S. Banerjee, J.-

M. Kang, and P. Sharma, “Application-driven bandwidth

guarantees in datacenters,” in Proceedings of ACM SIG-
COM, Chicago, USA, 2014.

[18] J. Zhu, D. Li, J. Wu, H. Liu, Y. Zhang, and J. Zhang,

“Towards bandwidth guarantee in multi-tenancy cloud

computing networks,” in Proceedings of IEEE ICNP,

Austin, TX, USA, 2012.

[19] L. Chen, Y. Feng, B. Li, and B. Li, “Towards

performance-centric fairness in datacenter networks,” in

Proceedings of IEEE INFOCOM, Toronto, Canada, 2014.

2214221422122212

