
TINA: A Fair Inter-datacenter Transmission
Mechanism with Deadline Guarantee

Xiaodong Dong1,2, Wenxin Li3, Xiaobo Zhou1,2,∗, Keqiu Li1,2 and Heng Qi4
1College of Intelligence and Computing, Tianjin University, Tianjin, China

2Tianjin Key Laboratory of Advanced Networking (TANK)
3Hong Kong University of Science & Technology, Hong Kong

4School of Computer Science and Technology, Dalian University of Technology, Dalian, China
∗Corresponding author E-mail: xiaobo.zhou@tju.edu.cn

Abstract—Geographically distributed cloud is a promising
technique to achieve high performance for service providers.
For inter-datacenter transfers, deadline guarantee and fairness
are the two most important requirements. On the one hand, to
ensure more transfers finish before their deadlines, preemptive
scheduling policies are widely used, leading to the transfer
starvation problem and is hence unfair. On the other hand,
to ensure fairness, inter-datacenter bandwidth is fairly shared
among transfers with per-flow bandwidth allocation, which leads
to deadline missing problem. A mechanism that achieves these
two seemingly conflicting objectives simultaneously is still miss-
ing. In this paper, we propose TINA to schedule network transfers
fairly while providing deadline guarantees. TINA allows each
transfer to compete freely with each other for bandwidth. More
specifically, each transfer is assigned a probability to indicate
whether to transmit or not. We formulate the competition among
the transfers as an El Farol game while keeping the traffic
load under a threshold to avoid congestion. We then prove that
the Nash Equilibrium is the optimal strategy and propose a
light-weight algorithm to derive it. Finally, both simulations and
testbed experiments results show that TINA achieves superior
performance than state-of-art methods in terms of fairness and
deadline guarantee rate.

I. INTRODUCTION

With the development of cloud computing, service providers
(SPs), large enterprises and organizations heavily rely on
geographically distributed public cloud platforms to achieve
high performance and improve customers quality of experience
(QoE). For purposes of data backup, synchronization, and
computation, etc., data transfers between each pair of data-
centers are always required by these applications to provide
users with better reliability, flexibility, and quality of service
(QoS). Therefore, SPs have to rent wide area network (WAN)
connections from software-defined wide area network (SD-
WAN) vendors or cloud service providers (CSPs). Although
the price of Internet transmission continues to decline by
approximately 30% per year [1], the traffic volume increases
even faster [2]. Therefore, how to efficiently utilize the inter-
datacenter bandwidth is the most critical problem for SPs.

To solve the problem, many studies try to fully utilize
the inter-datacenter bandwidth. Google presents an inter-
datacenter SD-WAN solution, call B4, to improve bandwidth

utilization by leveraging the idea of software-defined network-
ing. It utilizes a centralized traffic engineering server to make
path decisions and allocate network bandwidth according to
transfers’ priorities [3]. However, such a high link utilization
rate easily causes control traffic disruption and congestion,
which may disrupt the control rules and decrease network
performance. Microsoft proposes SWAN to solve these prob-
lems when the bandwidth utilization is high by leaving a small
fraction of bandwidth unused [4]. Leveraging fine-grained per-
flow traffic control, these methods are efficient in achieving
high link utilization. However, the fine-grained traffic control
leaves a high load on the control plane. BwE [5] solves
the problem by adopting a hierarchical bandwidth allocation
infrastructure that allocates bandwidth in applications, tasks,
users and datacenters grains. However, with the rising time-
sensitivity of applications and tenants, completing transfers
before their specific deadlines become one of the most impor-
tant performance requirements, especially for transfers with
the all-or-nothing1 feature, such as inter-datacenter backup,
synchronization, and real-time database query. However, these
methods fail to provide any deadline guarantee2.

To fill this gap, many researches provide deadline guaran-
tee to the transfers with the all-or-nothing feature by prop-
erly scheduling the transmission order and allocating inter-
datacenter bandwidth during their lifetime, e.g., Amoeba [7]
and DCRoute [8]. However, these methods will result in
unfair situations. Take Amoeba as an example, its objective is
finishing as many transfers as possible before their deadlines.
Therefore, short transfers that have smaller transfer volumes
are transmitted first and assigned with higher bandwidth by
Amoeba. It results in that some transfers, especially large
transfer, will be delayed for insufficient inter-datacenter band-
width allocation at the beginning and even get rejected if
their deadlines cannot be guaranteed. It is sure that such an

1The all-or-nothing feature means that a transfer can only obtain utility
when it is completed before its deadline. In other words, a transfer cannot
complete it before its deadline not only lose the utility but also wastes the
precious bandwidth resource.

2In this paper, without otherwise specified, the deadline refers to the hard
deadline. With hard deadline, the transfer will get a penalty if it misses its
deadline. With soft deadline, a fractional completion of the transfer is allowed
if the network bandwidth is not enough [6]. This will be considered in our
future work.

2017

unfair scheduling decision will hurt the performance of some
specific applications or tenants [9]. For example, in modern
public cloud computing platforms, the network resource is
required to be fairly shared by different tenants according to
how much money they spend [10]. Thus, these scheduling
methods conflict with the fairness requirement of public cloud
computing platforms [11].

A lot of work has been done to achieve fairness among
network transfers, e.g., max-min fairness bandwidth allocation
[12]. A max-min fairness bandwidth allocation maximizes the
minimum bandwidth allocation. However, these bandwidth
allocation methods cannot provide deadline guarantees, es-
pecially for transfers with the all-or-nothing feature. This is
because the scare inter-datacenter bandwidth is simply fairly
allocated to each transfer without being properly scheduled.
Hence, some transfers with high bandwidth requirements
may receive insufficient bandwidth to complete before their
deadlines. Therefore, these methods cannot satisfy the time-
sensitivity requirements of applications and tenants. In sum-
mary, fairly scheduling transfer with deadline guarantee is a
challenging problem with two seemingly conflicting objec-
tives. On the one hand, the system needs to concentrate the
scare inter-datacenter bandwidth on some specific transfers to
provide deadline guarantees. On the other hand, the scare inter-
datacenter bandwidth is also required to be fairly shared by
all transfers to achieve fairness.

In this paper, we investigate the transfer scheduling prob-
lem in inter-datacenter networks, and propose a fair inter-
datacenter transmission mechanism with deadline guarantees,
called TINA, to schedule the transfers between each pair of
datacenters in a fair way. The key idea of TINA is allowing
each transfer to compete freely with each other for inter-
datacenter bandwidth resource. More specifically, each transfer
will be assigned a probability to indicate whether to transmit
or not. First, we formulate the competition between all the
transfers as an El Farol game with the aim of maximize the
utility of each transfer, while avoiding congestion and collision
by keeping the traffic load of the link under a certain threshold
to guarantee transfer deadlines. Then, we prove that its Nash
Equilibrium is the optimal traffic schedule strategy, and present
a light-weight algorithm to derive the Nash Equilibrium. In
summary, the main contributions of this paper are outlined as
follows:
• We propose a fair inter-datacenter transfers scheduling

mechanism with deadline guarantees, called TINA, which
allows each transfer to compete freely with each other for
the bandwidth resource, while avoiding congestion and
collision by keeping the traffic load of the link under a
certain threshold to guarantee transfer deadlines.

• We model the competition among all the transfers be-
tween each pair of datacenters as an El Farol bar game,
where each transfer aims at maximizing its own utility.
We further prove that its Nash Equilibrium is the optimal
traffic schedule strategy.

• We show that TINA can be extended to a tenant level
fairness traffic schedule algorithm that schedules transfers

2

Bandwidth
F1=<1,1>

F3=<3,2>

55

1

1 2 3 t0

F2=<1,1>

(a) Amoeba tries to finish as many
transfers as possible before their dead-
lines.

F1=<1,1>

F2=<1,1>

F3=<3,2>2

Bandwidth

56

F2=<1,1>

1

1 2 3 t0

(b) Feasible scheduling strategy.

F1=<1,1>

F2=<1,1>

F3=<3,2>2

Bandwidth

56

F2=<1,1>

1

1 2 3 t0

(c) Feasible scheduling strategy.

1

2

Bandwidth F1=<1,1>

F2=<1,1>

F3=<3,2>

20

1

1 2 3 t0

(d) Max-min fairness strategy.

Fig. 1: Fairness and deadline guarantee are two conflicting
objectives when scheduling inter-datacneter transfers.

fairly from tenant’s perspective.
• We conduct both simulation and testbed experiments

against state-of-art methods, the experiment results show
that TINA achieves fair inter-datacenter transfer schedul-
ing with deadline guarantee, and the network performance
in terms of link utilization, acceptance ratio, and total
utility.

The rest of the paper is structured as follows. Section
II presents the motivation and preliminary of this paper. In
Section III, we overview the system and formulate the problem
as an El Farol game. The algorithm that derives the optimal
sending probability of each transfer is presented in Section
IV. Section V presents performance evaluations. Related work
is reviewed in Section VI. At last, Section VII concludes the
paper.

II. MOTIVATION

A. The Unfairness of Existing Work

Consider the fact that transfers compete with each other
for the scare inter-datacenter bandwidth. To accommodate
these two conflicting objectives, we introduce the concept
of Rabin fairness to describe the fairness of the competition
relationship between transfers, which is used to describe the
fairness in wireless network admission control [13]. The Rabin
fairness model implies that each participant will treat the other
participants kindly if the other participants treat him kindly,
and each participant will treat the other participants badly if
the other participants treat him badly. A strategy is referred to
as fair equilibrium if such a situation holds, which means that
the competition between these participants is fair. Leveraging
Rabin fairness, we can judge whether transfers are fairly
competing with each other for the network bandwidth or not.
As long as the competition is fair, the scheduling decision is
fair for all transfers in the network system. Motivated by [13],
we argue that an admission control mechanism can achieve

2018

such a fair competition environment by assigning each transfer
a probability that indicates whether to transmit it or not, while
avoiding the link from being congested, which can further
guarantee the accepted transfers’ deadlines.

We present a simple example to illustrate the unfairness
of the existing work in Fig. 1. More specifically, at the
current time slot, there are three transfers each belong to one
specific application waiting to be scheduled, denoted by a
tuple consists of traffic volume and deadline, i.e., f1 = {1, 1},
f2 = {1, 1} and f3 = {3, 2}. As shown in Fig. 1a, in order to
complete as many transfers as possible before their deadline,
Amoeba accepts f1 and f2 for the low cost they introduce,
but rejects f3 for insufficient bandwidth. Nevertheless, f3
can also be completed before its deadline with the strategy
shown in Fig. 1b and Fig. 1c. According to [13], such
a deterministic scheduling strategy achieved by Amoeba is
the most unfair strategy, which will cause serious problems
mentioned in the previous section. As shown in Fig. 1d, with a
max-min fairness bandwidth allocation strategy, the minimum
bandwidth allocation is maximized. Hence, without being
assigned with sufficient bandwidth, all three transfers miss
their deadlines. This example clearly shows that fairness and
deadline guarantee are two seemingly conflicting objectives.

B. Preliminary

The El Farol bar game was first introduced by Arthur [14]
as a framework to investigate how to model the bounded
rationality in economics. The original problem is described
as follows: there is a finite population of people and every
Thursday night all of them want to go to the El Farol bar.
However, the El Farol bar is quite small, and it is not enjoyable
to go there if it is too crowded where the following rules are
in place:
• If less than 60% of the population go to the bar, those

who go have a more enjoyable evening at the bar than
they would have had if they stayed at home.

• If 60% or more of the population go to the bar, those
who go have a worse evening at the bar than they would
have had if they stayed at home.

It is proved that there exists a symmetric unique mixed Nash
equilibrium [15] that each person determines to go to the
bar with a specific probability. According to [16], the Nash
equilibrium of this game is proved to be fair equilibrium.

Therefore, leveraging the idea of El Farol bar game, we
can design an admission control mechanism to assign each
transfer with a probability to determine whether to transmit it
or not, while guaranteeing the fairness of competition between
transfers without modifying transmission protocol. However,
in our scenario, transfers between each pair of datacenters have
various bandwidth requirements, which makes our problem
different from the original El Farol bar game where each
person occupies only one seat of the bar. Thus, the symmetric
mixed Nash equilibrium of the original model is inapplicable
to our model. We proved that there is an asymmetric mixed
Nash equilibrium to the problem considered in this paper,
which is detailed in Theorem 1 in Section IV.

Site 1

Site 3

Site 2

Inter-datacenter
Network

TINA

TINA

TINA

Fig. 2: The architecture of inter-datacenter network.

III. DESIGN OF TINA

In this section, we present the detail of TINA. First, we
present the system overview. Then we formulate the competi-
tion between all the transfers as an El Farol game.

A. System Overview

Geographically distributed public cloud is a technology to
provide resources, e.g. virtual machines, storage and network
to users from multiple geographic locations. To connect data-
centers form different locations, the cloud service provider has
to rent WAN connections with fixed uplink bandwidth from
SD-WAN vendors or ISPs. A direct graph (N,L) is used to
represent the inter-datacenter network. N denotes the node
set, where each node n ∈ N can be a datacenter. L denotes
the link set, where each lmn ∈ L represents the virtual link
from datacenter m to datacenter n with corresponding link
capacity Cmn. Fig. 2 illustrates the system architecture of the
geographically distributed public cloud platform, where the
inter-datacenter is congestion free. TINA works distributively
at the side of each datacenter independently.

B. Problem Formulation

We consider the system that operates in a discrete-time
mode with T time units. Since TINA works independently
at each datacenter and makes scheduling decisions for each
link, we omit the source datacenter index m and destination
datacenter index n for simplicity. Then, on a specific link l,
A transfer represents a tenant’s data delivery demand from
the source datacenter to the destination datacenter, which is
specified as a tuple fi = {Vi, T s

i , T
d
i , ei}, where Vi is the

traffic volume, T s
i is the transmission starting time, T d

i is the
deadline and ei is the expected transfer rate. ei can be obtained
by

ei =
Vi

T d
i − T s

i

. (1)

Further, at a specific time slot t, we organize all existing
transfers that are waiting to be transmitted from the source
site as a set Ft and denote the total number of transfers as
|Ft|. Similarly, the transmitting transfers set is represented as
At, and we use Wt to represent the bandwidth these transfers
have occupied, which is calculated as

Wt =
∑

fi∈At

ei. (2)

2019

TABLE I: Notations

Symbols Definitions
N Datacenter set
L Virtual link set

fi = {Vi, T s
i , T

d
i , ei} Transfer

Vi Traffic volume of fi
T s
i Starting time of fi
T d
i Deadline of fi
ei Expected transfer rate of fi
Ft Waiting transfer set at time slot t
At Transmitting transfer set at time slot t
Wt Occupied bandwidth at time slot t
C Link capacity
α Congestion threshold
ϑ Link state index
Si The utility for not sending fi
πi Utility function of fi
Gi The utility for sending fi without causing

congestion
Bi The utility for sending fi but causing

congestion
pi The probability for sending fi to the network
S(·) Feasible scheduling decision set
Γ El Farol bar game

Let C represent the link capacity, and α denote the congestion
threshold. We use a boolean variable ϑ to indicate the state of
the link, denoted as

ϑ =

0,

∑
fi∈Ft

xiei > α · C −Wt,

1,
∑
fi∈Ft

xiei ≤ α · C −Wt,
(3)

where xi = 1 denotes fi is accepted and xi = 0 denotes that
fi is not going to be sent at this moment. If ϑ = 0, the link is
regarded as congested. Otherwise, we believe the link is free
of congestion. More specifically, xi ∈ {0, 1} follows Bernulli
distribution, which is denoted as

xi =

{
0, 1− pi
1, pi.

(4)

Here, pi represents the probability that fi will be transmitted.
Further, the utility function can be written as

πi(ϑ) =

Si, ϑ = 1, xi = 0,

Si, ϑ = 0, xi = 0,

Gi, ϑ = 1, xi = 1,

Bi, ϑ = 0, xi = 1.

(5)

More specifically, each flow fi consists of an unconditional
utility for not sending, denoted by Si, and a condition utility
for sending the transfer, denoted by Gi or Bi, depending on
the state of the link. Clearly, there are two states of the link,
congested or not, and the state is determined by the remaining
|Ft|−1 flows. Consider the all-or-nothing feature of transfers
in this paper, we have Gi > Si > Bi. The notations are
summarized in Table I.

Consider the fact that each transfer competes with each
other for bandwidth and make independent decision to maxi-
mize their expected utility in the network. According to von

Neumann’s Minimax Theorem, the objective of each transfer
in such a fair competition scenario can be modeled as

max
pi

E
(
πi(ϑ)

)
s.t. pj ∈ (0, 1),∀fj ∈ Ft,

(6)

where
E
(
πi(ϑ)

)
=(1− pi)Si + piPi(Ft,Wt,pt)Gi

+ pi
(
1− Pi(Ft,Wt,pt)

)
Bi,

(7)

and Pi(Ft,Wt,pt) represents the probability that the other
transfers of the remaining |Ft| − 1 transfers choose to send
occupy less than αC − Wt − ei bandwidth with pt =<
p1, ..., p|Ft| >, which is defined by the following binomial
probability

Pi(Ft,Wt,pt) =
∑

S(Wt,i)

Ft∏
fj ,j 6=i

p
xj
j (1− pj)1−xj ,∀fi ∈ F, (8)

where S(Wt, i) is the feasible scheduling decision set, which
is represented as

S(Wt, i) =

{
< xj >

Ft
fj ,j 6=i |

Ft∑
fj ,j 6=i

xjej ≤ αC −Wt − ei
}
.

(9)
Therefore, the objective of TINA can be represented as opti-
mization problem P1

max
pt

∑
fi∈Ft

E
(
πi(ϑ)

)
s.t. pj ∈ (0, 1),∀fj ∈ Ft,

pi = arg max
pi

E
(
πi(ϑ)

)
,∀fi ∈ Ft,

(10)

Given the above preliminaries, at each time slot, we define
the El Farol bar game as a single stage game with objective
described as P1.

Definition 1: The El Farol game is defined as a single stage
game, denoted as a vector, Γ =< Ft,pt, π,Wt >.

IV. ALGORITHMS

In this section, we first prove its Nash Equilibrium is the
optimal solution to maximize the total system utility while
guaranteeing the fairness of each transfer and propose a light-
weight algorithm to derive a near-optimal solution. Then,
we also design another tenant level fairness traffic schedule
algorithm to provider tenant fairness.

A. Nash Equilibrium and Solution

According to [17], each transfer obtains the maximum
expected utility only when it adopts the Nash equilibrium
which is also the solution of problem P1.

Theorem 1: In the El Farol game, there is a mixed strat-
egy equilibrium where each transfer play the mixed strategy
defined by the strategy tuple {pi, 1 − pi}. Furthermore, pi is
defined by the following relationships∑

S(Wt,j)

Ft∏
fi,i6=j

pxii (1− pi)1−xi =
Sj −Bj

Gj −Bj
, ∀fj ∈ F, (11)

2020

Proof: The proof can be referred to the Appendix.
Organizing pt =< p1, ..., p|Ft| >, (11) can be written into

a matrix, pt = Y (pt). It is obvious that the Nash equilibrium
of El Farol game forms a series of nonlinear equations. To
derive the optimal pt, a direct iteration method is adopted to
solve the problem. To stop the algorithm in finite steps, we
introduce an escape threshold ω ∈ (0, 1). The iteration stops
when |pn+1

t −pn
t | < ω and the current solution pn+1

t is viewed
as the solution.

To accelerate the computing procedure, at each time slot t,
we introduce a baseline flow f̃ =< Ṽ , T s, T d, ẽ > where Ṽ
and ẽ are the average transfer volume and expected transfer
rate of transfers in Ft. Correspondingly, f̃ is a associated with
utility function π̃ where G̃ =

∑|Ft|
i

Gi
|Ft| , S̃ =

∑|Ft|
i

Si
|Ft| and

B̃ =
∑|Ft|

i
Bi
|Ft| . Since transfers with higher utility and smaller

expected transfer rate have higher probability to get access to
the network, we define

pi = p̃
ẽ
ei

+
λ(S̃−B̃)(Gi−Bi)
(G̃−B̃)(Si−Bi) , (12)

where p̃ is the probability of sending f̃ and λ is the weight.
When calculating p̃, we assume that each transfers in Ft is
same as f̃ . According to (11), we have

bαC−Wt
ẽ c∑

m=1

C|Ft|m p̃m(1− p̃)|Ft|−m =
S̃ − B̃
G̃− B̃

. (13)

Moreover, the total expected transfer rate of accepted trans-
fers may exceed the link capacity because each transfer has a
certain probability to get access to the network. This problem
can be solved by iteratively conducting TINA’s admission con-
trol mechanism until the link capacity constraint is satisfied.
The details of TINA are summarized in Algorithm 1. The lines
3-8 remove the transfers that cannot be completed before their
deadlines. The lines 10-20 calculate pt. The line 21 determines
whether each transfer should be transmitted or not according to
pt. The lines 22-27 guarantee the traffic load is under the pre-
defined threshold α and line 28 updates the system state. It is
clear that the complexity of TINA is O(|Ft|) at each time slot.
Moreover, without leveraging per-flow bandwidth allocation,
we make the following two improvements to guarantee transfer
deadlines: 1) Only remove transfer from At when its deadline
is passed. 2) Assign transfers approaching their deadlines with
high priority. Besides, the higher ei is, the higher the priority
is assigned. Note that existing work has already proved that
per-flow rate control and bandwidth allocation leaves 17%
CPU and 30% memory overhead on end host [18], without
leveraging per-flow bandwidth allocation and rate control on
the end host, TINA achieves traffic scheduling in a light-
weight style. In the following section, the experiment results
show the effectiveness of TINA.

B. Tenant Level Fair TINA

According to the above descriptions, TINA allows each
transfer to compete with each other to maximize its own utility.
In this subsection, we show that TINA can also be easily

Algorithm 1: TINA
Input: Link capacity C; Maximum iteration number T ;

Waiting transfer set F ; Transmitting transfer set A;
Utility function π;

Output: pt;
Initialize: Congestion threshold α;

Link capacity C; Escape threshold ω;
1: for(t=1;t≤ T ;t++)
2: Update Ft;
3: foreach(fi ∈ Ft)
4: calculate ei according to (1);
5: if(ei > αC −Wt)
6: Ft = Ft − fi;
7: endif
8: endfor
9: while(True)

10: calculate f̃ =< Ṽ , Ts, Td, ẽ > and π̃;
11: Initialize p̃ = Y (p̃) according to (13);
12: Initialize n = 0 and p̃0
13: while(True)
14: p̃n+1 = Y (p̃n);
15: if(|p̃n+1 − p̃n| < ω)
16: p̃ = p̃n+1;
17: break;
18: n = n+ 1;
19: endwhile
20: calculate pt according to (12);
21: Determine X according to pt;
22: if(

∑
fi∈Ft

xiei ≤ α · C −Wt)
23: break;
24: else
25: Ft = {fi|xi = 1};
26: endif
27: endwhile
28: Update At and Wt;
29: endfor

extended to a tenant level fair transmission mechanism. In
tenant level transmission mechanism, the tenants with a huge
amount of transfers may occupy most of or even all of the
bandwidth, which results in unfairness in tenant level, even if
the transfer level fair transmission mechanism is applied.

At a time slot t, we assume that there are M tenants
coexisting in the system, and each one of them is associated
with its waiting transfers set Fm

t and transmitting transfers
set Am

t , respectively. For each transfer, its utility function
πm
i is pre-known. To provide tenant level fairness, the link

capacity of each tenant is set to Cm = C/M . Then the
problem is transformed into determining pm

t for Fm
t with the

constraints Cm and Wm
t , which can be solved in the same

way as TINA. Note that the transfer scheduling decision of
each tenant is independent with each other, it can be divided
into a set of sub-problems of each tenant, which can be solved
in parallel. Besides, we can also set Cm according to some
specific weights to implement weighted fairness.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of TINA against
Tempus [21] and Amoeba through large-scale simulations and
small-scale testbed experiments. Tempus aims to maximize the
minimum fraction of transfers completes before their deadline,
while Amoeba tries to finish as many transfers before their
deadlines as possible.

2021

0

50

100

150

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
om

pu
ta

tio
na

l o
ve

rh
ea

d

Traffic load

Amoeba
Tempus
TINA

(a) Computational overhead of different mechanisms.

0

0.2

0.4

0.6

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ja
in

's
 fa

irn
es

s

Traffic load

Amoeba Tempus Tina

(b) Average fairness of different mechanisms.

0

50

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
ea

dl
in

e
gu
ar
an
te
e

ra
te

Traffic load

Amoeba
Tempus
TINA

(c) Deadline guarantee rate of different mechanisms.

Fig. 3: Simulation results on computational overhead, fairness
and deadline guarantee rate.

A. Large-scale Simulation

Experiment Setting: We first simulate a WAN with 15
sites, where each pair of sites is connected with a bandwidth
committed link. The bandwidth capacity of each link is set
to be 200 Gbps. Moreover, according to [6], we reserve 5%
to 15% bandwidth for background traffic. Meanwhile, we set
α = 0.8, G = V , S = 0 and B = −V , and each time slot
is 5 minutes. The lifetime of the simulation experiments is
288 time slots. We randomly select a pair of datacenters as
the source and the destination. Similar to previous work [19]
[20], inter-datacenter transfers are generated with the following
parameters:
• Request arrival time is modeled as a Possion process with

arrival rate µ per second.
• V

Td−T s follows an exponential distribution with a mean
of 2 Gbps.

• The transfer deadline follows an exponential distribution
with a mean of 10 time slots.

• Each transfer contains 1 session.
The following metrics are taken into consideration: link

utilization, utility, deadline guarantee rate, acceptance ratio,
fairness, and computational overhead. As TINA is proved to

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ac
ce

pt
an

ce
 ra

tio

Traffic load

Amoeba
Tempus
TINA

(a) Acceptance ratio of different mechanisms.

0

100

200

300

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Traffic load

Amoeba
Tempus
TINA

U
til

ity
 x

10
00

00
00

0

(b) Total utility of different mechanisms.

0

50

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Li
nk

 U
til

iz
at

io
n

Traffic load

Amoeba
Tempus
TINA

(c) Link utilization of different mechanisms.

Fig. 4: Simulation results on acceptance ratio, total utility and
link utilization.

be fair equilibrium, to quantitatively measure the fairness of
the inter-datacenter transmission mechanisms, we use Jain’s
fairness index which is defined as

J(Ft) =
(
∑|Ft|

i=1 piei)
2

|Ft|
∑|Ft|

i=1(piei)2
. (14)

Experiment Results: We compare TINA, Amoeba, and
Tempus in terms of computational overhead, fairness, and
deadline guarantee rate in Fig. 3a, 3b, and Fig. 3c, respec-
tively. As depicted in Fig. 3a, the computational overhead
for Tempus, Amoeba, and TINA increase as the traffic load
increases. It is clear that the computational overhead of
TINA is significantly lower than the computational overhead
of Tempus and Amoeba. This is because TINA utilizes a
simple direct iteration method to derive the optimal strategy
without solving complex optimization problems adopted by
Aemon and Tempus. The results of average Jain’s fairness
with different traffic loads are shown in Fig. 3b. It is obvious
that TINA is the fairest method among them and Tempus
obtains slightly better fairness than Amoeba. Fig. 3c depicts
the results of the deadline guarantee rate. It can be found that
the deadline guarantee for both TINA and Amoeba decreases

2022

Controller

Host 2 Host 1Host 3 Host 4 Host 5 Host 6

Switch 1 Switch 2 Switch 3 Switch 4 Switch 5 Switch 6

Virtual Machine

Fig. 5: The topology of testbed.

as the increase of traffic load, and Tempus achieves the
lowest deadline guarantee rate. This is because TINA offers
each transfer with a fair competition environment where each
transfer has a probability to transmit. Tempus tends to transmit
a fraction of each transfer without providing all-or-nothing
deadline guarantee. Amoeba aims to complete as many as
transfers as possible and simply rejects transfers that cannot
be completed before their deadlines, which results in transfers
with large traffic volume are more likely rejected. Moreover,
Amoeba achieves a higher deadline guarantee rate than TINA
when the traffic load is higher than 0.8. This is because that
TINA views the network as congested when the traffic load
is larger than 0.8. To avoid network congestion and deadline
missing, TINA does not fully utilize the bandwidth.

We also compare TINA, Amoeba, and Tempus in terms of
acceptance ratio, utility and link utilization in Fig. 4a, 4b,
4c, respectively. Fig. 4a depicts the results of the acceptance
ratio. It is clear that the acceptance ratio decreases for both
TINA and Amoeba when the traffic load increases, and
Tempus accepts all transfers. Meanwhile, TINA achieves a
higher acceptance ratio than Amoeba when the traffic load
is lower than 0.8. Fig. 4b and 4c depict the utility and link
utilization. Obviously, TINA achieves the highest utility and
link utilization when the traffic load is lower than 0.6, and
Amoeba obtains the best performance when the traffic load
is larger than 0.6, while Tempus achieves the highest link
utilization but the lowest utility. These results are consistent
with the objectives of Tempus, Amoeba, and TINA. Tempus
aims to maximize the minimum faction of transfers before
their deadline. However, it fails to confirm that transfers can
complete before their deadline, which leads to high acceptance
ratio and link utilization but low deadline guarantee rate. While
Amoeba aims to complete as many transfers as possible before
their deadlines and rejects transfers that cannot be fully served,
which leads to low acceptance ratio and link utilization but a
high deadline guarantee rate. TINA rejects transfers when the
traffic load is too high to avoid network congestion. The reason
why TINA is inferior to Amoeba when the traffic load is high
is because the congestion threshold is set to be 0.8 during the
experiment.

B. Small-scale Testbed Implementation

Experiment Setting: We also emulate a small topology
on a server with 8 10-core Intel Xeon E7-4820 2.00 GHz
CPU, 256 G memory, 500 GB hard disk, Broadcom BCM5719

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
ea

dl
in

e
gu

ar
an

te
e

ra
te

Traffic load

TINA
Amoeba
Tempus

(a) Deadline guarantee rate of different mechanisms.

0

5000

10000

15000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Th
ro

ug
hp

ut
 (K

Bp
s)

Traffic load

TINA
Amoeba
Tempus

(b) Throughput of different mechanisms.

Fig. 6: Testbed experiment results.

NetXtreme Gigabit Ethernet NIC, running Ubuntu 16.04 with
Linux 4.4.0 kernel. The topology contains 6 switches, 6 hosts
and 11 bidirectional links, which is shown in Fig. 5. Each
host and switch runs in separate virtual machine (VM) with 4
cores, 2 G memory and 20 GB hard disk. The end host VMs
run Ubuntu 12.04 operating system with 2.26.38 kernel, the
switch VMs run Ubuntu 16.04 operating system with 4.4.0
kernel. The capacity of each link is 100 MB and RTT=100
ms. We assume all the switches are homomorphism and each
switch has 8 M memory shared by all its’ queues. We also set a
large enough Ternary Content Addressable Memory (TCAM)
space to store flow entries. To eliminate the impact of control
traffic, the controller runs on the server and is connected in
an out-band style, and communicates with all switches with
OpenFlow 1.3.

We develop a client/server model packet generator to gen-
erate traffic. Host 1 generates request to other hosts to fetch
data, and the other hosts respond with the requested data. Each
time slot is 1s, and the experiment consists of 120 time slots.

Experiment Results: The performance of TINA on testbed
matches with the results of simulation experiments. Since the
testbed experiment results on fairness, computational over-
head, acceptance ratio, and utility are similar to the results
of simulation experiments, for the sake of space limitation,
we just omit the discussion on these metrics. The deadline
guarantee rate and the throughput are shown in Fig. 6. The
deadline guarantee rates of different methods are shown in
Fig. 6a. It is clear that the experiment results almost match
the results in the simulation experiment. However, the deadline
guarantee rates of different methods in the testbed experiment
are lower than the results in the simulation experiment. This is
because there are many short transfers that miss their deadlines
even before their connection are established. Fig. 6b shows the

2023

throughput of different methods. Note that Tempus performs
worst when the traffic load is lower than 0.7, which conflicts
with the results of simulation experiments. This is because
that there are many short flows which are so short that the
bandwidth allocation granularity is even larger than their size
when the traffic load is low. Complete a fraction of them
will cause bandwidth allocation redundancy. In summary, the
experiment results further validate the conclusion we made
previously.

VI. RELATED WORK

Inter-datacenter traffic scheduling: There is plenty of
work focus on traffic scheduling in inter-datacenter networks
from different aspects. To increase link utilization, NetStitcher
[22] uses a store-and-forward algorithm to schedule data trans-
fers, and adapts to resource and traffic fluctuations. Google
presents their inter-DC SD-WAN in 2013, called B4 [3].
With a centralized traffic engineering controller, it drives
links to full utilization by per-flow routing management and
bandwidth allocation. To avoid control traffic congestion under
high link utilization, SWAN [4] reserves a small amount of
link capacity to apply network configuration and updates. To
avoid the high control plane overhead caused by per flow
management, BwE [5] uses a hierarchical bandwidth allocation
infrastructure to allocate bandwidth in applications, service,
users, datacenters groups. In MON [23], a mission optimized
overlay network architecture is proposed to maximize total
utility with a combination of two tiers system where an offline
tier makes scheduling and routing decision and an online tier
monitors the network condition. In [24], the authors present
QuickCast, which minimizes the total completion time by
multicasting inter-datacenter transfers leveraging optimized
multiple forwarding trees. However, these methods fail to
manage transfer deadline that is a very critical performance
requirement.

Deadline guarantee: In [21], the authors present an online
traffic scheduling method, called TEMPUS, which appropri-
ately schedules long-term transfers across network paths and
future time slots. In [6], the authors maximize the total utility
with taking both soft deadline and hard deadline into account,
where a transfer’s utility will decrease after the soft deadline
is violated. However, these methods do not provide an all-
or-nothing deadline guarantee. While Amoeba [7] considers
the all-or-nothing feature of transfers and tries to finish as
many transfers as possible before their deadlines. Nevertheless,
it relies on solving a high complexity optimization problem
to make scheduling decisions. DCRoute [8] is proposed to
schedule traffic with deadline guarantee in a fast and efficient
way with a greedy algorithm only utilizing the remained
bandwidth. Nevertheless, both of them neglect the fact that
fairness is required in a modern public cloud computing
platform, so that there is a mismatch between these methods
and the fairness requirements of the modern public cloud
service providers that we have already explained.

Fairness: A common and well studied notion of fair-
ness is max-min fairness. However, finding a max-min fair

allocation requires an iterative solution of multiple linear
programs, which brings in high computational overhead. To
solve this problem, a novel relaxation of max-min fairness
and an efficient combinatorial algorithm which is proved to
be converged are presented in [12]. HUG [9] also shares the
network bandwidth for coflows in a max-min fairness manner
while maintaining a high network utilization rate. However,
these methods only fairly share network bandwidth among
transfers. As mentioned above, how to fairly schedule inter-
datacenter transfers while guaranteeing transfer deadlines is
still a challenging problem.

VII. CONCLUSION

In this paper, we investigate whether inter-datacenter trans-
fers can be scheduled in a fair style while still guaranteeing
their deadlines. To this end, we present TINA, a novel inter-
datacenter transfer mechanism, which allows each transfer to
compete freely with each other for the bandwidth resource.
More specifically, each transfer will be assigned a probability
to indicate whether to transmit or not. First, we model the
competition between transfers as an El Farol bar game with
the aim of maximize the utility of each transfer, while keeping
the traffic load under a threshold to avoid congestion and col-
lisions. Then, we obtain the optimal sending probabilities by
deriving its Nash Equilibrium. Moreover, we show TINA can
also be easily extended to a tenant level fair inter-datacenter
transmission mechanism. Finally, to verify the performance of
TINA, we conduct both simulation and testbed experiments
against the state-of-art methods. The simulation and testbed
experiment results show that TINA achieves superior perfor-
mance in terms of both fairness and deadline guarantee rate,
without sacrificing the throughput, link utilization, total utility,
and acceptance ratio. As future work, we will consider soft
deadlines to enable a more flexible transmission mechanism.

ACKNOWLEDGMENT

This work was supported in part by National Key R&D
Program of China under Grant 2019QY1302, in part by the
NSFC General Technology Basic Research Joint Funds under
Grant U1836214, in part by the State Key Program of National
Natural Science of China under Grants 61832013, in part
by the Artificial Intelligence Science and Technology Major
Project of Tianjin (Grant No. 18ZXZNGX00190), in part
by the National Natural Science Foundation of China under
Grant 61672379, in part by National Key R&D Program
of China under Grant 2019YFB2102404, in part by NSFC-
Guangdong Joint Funds under Grant U1701263, in part by
the Natural Science Foundation of Tianjin under Grant No.
18ZXZNGX00040, in part by National Key R&D Program of
China under Grant 2018YFB1004700, in part by the National
Natural Science Foundation of China under Grant 61872265,
in part by the National Natural Science Foundation of China
under Grant 61672131, in part by the Key research and Devel-
opment Program for Guangdong Province 2019B010136001.

2024

APPENDIX
PROOF OF THEOREM 1

Existence: In particular, in the mixed strategy Nash equilib-
rium, each transfer fi should be indifferent between sending
or not sending. Therefore, we have

E[πi(ϑ)|xi = 1] = E[πi(ϑ)|xi = 0],∀fi ∈ Ft. (15)

Consider (5), we have

E[πi(ϑ)|xi = 1] = GiPi(Ft,Wt,pt)

+Bi

(
1− Pi(Ft,Wt,pt)

)
, ∀fi ∈ Ft,

(16)

E[πi(ϑ)|xi = 0] = Si,∀fi ∈ Ft. (17)

By substituting (16) and (17) into (15), we have

Pi(Ft,Wt,pt) =
Si −Bi

Gi −Bi
,∀fi ∈ Ft. (18)

Therefore, the existence of Theorem 1 is proved.
Uniqueness: It is clear Pi(Ft,Wt,pt) is continuous function

over interval [0, 1]. Given that limp→0 Pi(Ft,Wt,pt) = 1 and
limp→1 Pi(Ft,Wt,pt) = 0, Theorem 1 has a unique solution
if the partial derivative of Pi(Ft,Wt,pt) is less than 0. For
the sake of simplicity, we calculate one partial derivative of
Pi(Ft,Wt,pt) as the following

∂Pi(Ft,Wt,pt)

∂pk
=
∂
∑

S(Wt,i)

∏Ft
fj ,j 6=i p

xj
j (1− pj)1−xj

∂pk

=
∑

S(Wt,i)

{
xkp

xk−1
k (1− pk)1−xk−

(1− xk)pxkk (1− pk)−xk
} Ft∏

fj ,j 6=i,k

p
xj
j (1− pj)1−xj

(19)

Obviously, if xk = 1, we have

∂Pi(Ft,Wt,pt)

∂pk
=

∑
S(Wt,i|xk=1)

Ft∏
fj ,j 6=i,k

p
xj
j (1− pj)1−xj ,

(20)
otherwise, if xk = 0, we have

∂Pi(Ft,Wt,pt)

∂pk
= −

∑
S(Wt,i|xk=0)

Ft∏
fj ,j 6=i,k

p
xj
j (1− pj)1−xj ,

(21)
where S(Wt, i|xk) denotes the feasible set with corresponding
xk value.

Since for every element in S(Wt, i|xk = 1), there is a
corresponding element in S(Wt, i|xk = 0) that only changes
xk from 1 to 0, therefore we have

|S(Wt, i|xk = 1)| ≤ |S(Wt, i|xk = 0)|. (22)

Moreover, consider that
∏Ft

fj ,j 6=i,k p
xj
j (1 − pj)1−xj is a non-

negative fixed value, therefore, we have

∂Pi(Ft,Wt,pt)

∂pk
<= 0, (23)

Similar conclusion can be obtained by replacing pk. Thus, the
uniqueness of Theorem 1 is proved.

REFERENCES

[1] W. B. Norton. Drpeering white paper. http://drpeering.net/white-
papers/Internet-Transit-Pricing-Historical-And-Projected.php.

[2] C. Labovitz, S. I.-Johnson, D. McPherson, J. Oberheide, and F. Jaha-
nian. Internet inter-domain traffic. In Proc. of ACM SIGCOMM 2010
Conference, pp. 75–86, 2010.

[3] S. Jain, A. Kumar and S. Mandal et al. B4: experience with a
globally-deployed software defined wan. In Proc. ACM SIGCOMM 2013
Conference, pp. 3–14, 2013.

[4] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri,
and R. Wattenhofer. Achieving high utilization with software-driven
WAN. In Proc. ACM SIGCOMM 2013 Conference, pp. 15–26, 2013.

[5] A. Kumar, S. Jain et al. Bwe: Flexible, hierarchical bandwidth allocation
for WAN distributed computing. In Proc. of ACM SIGCOMM 2015
Conference, pp. 1–14, 2015.

[6] L. Luo, H. Yu, Z. Ye, and X. Du. Online deadline-aware bulk transfer
over inter-datacenter wans. In Proc. IEEE INFOCOM 2018 Conference,
pp. 630–638, 2018.

[7] H. Zhang, K. Chen, W. Bai, D. Han, C. Tian, H. Wang, H. Guan, and
Ming Zhang. Guaranteeing deadlines for inter-data center transfers.
IEEE/ACM Trans. Netw., vol. 25 no. 1, pp. 579–595, 2017.

[8] M. Noormohammadpour, C. S. Raghavendra, and S. Rao. Dcroute:
Speeding up inter-datacenter traffic allocation while guaranteeing dead-
lines. In Proc. IEEE HiPC 2016 Confernce, pp. 82–90, 2016.

[9] M. Chowdhury, Z. Liu, A. Ghodsi, and I. Stoica. HUG: multi-resource
fairness for correlated and elastic demands. In Proc. USENIX NSDI
2016 Conference, pp. 407–424, 2016.

[10] J. Guo, F. Liu, T. Wang, and J. C. S. Lui. Pricing intra-datacenter
networks with over-committed bandwidth guarantee. In Proc. USENIX
ATC 2017 Conference, pp. 69–81, 2017.

[11] L. Popa, G. Kumar, M. Chowdhury, A. Krishnamurthy, S. Ratnasamy,
and I. Stoica. Faircloud: sharing the network in cloud computing. In
Proc. ACM SIGCOMM 2012 Conference, pp. 187–198, 2012.

[12] E. Danna, A. Hassidim, H. Kaplan, A. Kumar, Y. Mansour, D. Raz, and
M. Segalov. Upward max min fairness. In Proc. IEEE INFOCOM 2012
Conference, pp. 837–845, 2012.

[13] M. Azarafrooz, R. Chandramouli, and K.P. Subbalakshmi. Reciprocity,
fairness and learning in medium access control games. Elsiver Computer
Communications, vol. 46 pp.22–28, 2014.

[14] W. B. Arthur. Inductive reasoning and bounded rationality. American
Economic Review, vol. 84, no. 2, pp. 406–411, 1994.

[15] D. Whitehead. The el farol bar problem revisited: Reinforcement
learning in a potential game. Ese Discussion Papers, no. 4, pp. 561–562,
2008.

[16] M. Rabin. Incorporating fairness into game theory and economics. The
American economic review, pp. 1281–1302, 1993.

[17] D. Yang, G. Xue, X. Fang, S. Misra, and J. Zhang. A game-theoretic
approach to stable routing in max-min fair networks. IEEE/ACM Trans.
Netw., vol. 21, no. 6, pp. 1947–1959, 2013.

[18] A. Saeed, N. Dukkipati, V. Valancius, V. T. Lam, C. Contavalli, and A.
Vahdat. Carousel: Scalable traffic shaping at end hosts. In Proc. ACM
SIGCOMM 2017 Conference, pp. 404–417, 2017.

[19] L. Chen, K. Chen, W. Bai, and M. Alizadeh. Scheduling mix-flows in
commodity datacenters with karuna. In Proc. ACM SIGCOMM 2016
Conference, pp. 174–187, 2016.

[20] Wenxin Li, X. Zhou, K. Li, H. Qi and D. Guo TrafficShaper: Shaping
Inter-Datacenter Traffic to Reduce the Transmission Cost. IEEE/ACM
Trans. Netw., vol. 26, no. 3, pp. 1193–1206, 2018.

[21] S. Kandula, I. Menache, R. Schwartz, and S. R. Babbula. Calendaring
for wide area networks. In Proc. ACM SIGCOMM 2014 Conference,
pp. 515–526, 2014.

[22] N. Laoutaris, M. Sirivianos, X. Yang, and P. Rodriguez. Inter-datacenter
bulk transfers with netstitcher. In Proc. ACM SIGCOMM 2011 Confer-
ence, pp. 74–85, 2011.

[23] B. Spang, A. Sabnis et al. MON: mission-optimized overlay networks.
In Proc. IEEE INFOCOM 2017 Conference, pp. 1–9, 2017.

[24] M. Noormohammadpour, C. Raghavendra, S. Kandula, and S. Rao.
Quickcast: Fast and efficient inter-datacenter transfers using forwarding
tree cohorts. In Proc. IEEE INFOCOM 2018 Conference, pp. 225–233,
2018.

2025

