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Abstract—Coflow scheduling is crucial to improve the com-
munication performance of data-parallel jobs, especially when
these jobs running in the inter-datacenter networks with limited
and heterogeneous link bandwidth. However, prior solutions on
coflow scheduling assume the endpoints of flows in a coflow to be
fixed, making them insufficient to optimize the coflow completion
time (CCT). In this paper, we focus on the problem of jointly con-
sidering endpoint placement and coflow scheduling to minimize
the average CCT of coflows across geo-distributed datacenters.
We first develop the mathematical model and formulate a mixed
integer linear programming (MILP) problem to characterize the
intertwined relationship between endpoint placement and coflow
scheduling, and reveal their impact on the average CCT. Then, we
present SmartCoflow, a coflow-aware optimization framework, to
solve the MILP problem without any prior knowledge of coflow
arrivals. In SmartCoflow, we first apply an approximate algorithm
to obtain the endpoint placement and scheduling decisions for a
single coflow. Based on the single-coflow solution, we then develop
an efficient online algorithm to handle the dynamically arrived
coflows. To validate the efficiency and practical feasibility of
SmartCoflow, we implement it as a real-world coflow scheduler
based on the Varys open-source framework. Through experi-
mental results from both a small-scale testbed implementation
and large-scale simulations, we demonstrate that SmartCoflow
can achieve significant improvement on the average CCT, when
compared to the state-of-the-art scheduling-only method.

I. INTRODUCTION

It is increasingly common for data-parallel jobs to run across
geographically distributed datacenters to efficiently process
large volumes of data generated all over the world [1–3]. These
jobs typically involve a set of network flows to transfer the
intermediate data between successive computation stages (e.g.,
map and reduce)—known as coflows [4]. The coflow abstrac-
tion captures the all-of-nothing communication requirements
of data-parallel jobs: all flows must be finished before a coflow
is considered complete.

Traditionally, when a job is running within a single datacen-
ter, all flows in a coflow are restricted in the intra-datacenter
network. However, in the geo-distributed setting, the flows
in a coflow necessarily have to traverse the inter-datacenter
links. The available bandwidth on those inter-datacenter links
is limited and can vary significantly across different links
[1, 5, 6]. Meanwhile, the data volume of flows in a coflow
could be enormous for a geo-distributed data-parallel job
[1], yet a coflow’s completion time (CCT) can account for
more than 50% of job completion time [7, 8]. Therefore,
optimizing the CCTs becomes extremely important to improve
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Fig. 1. An illustrating example, where a coflow has one network flow that
transfers 200 units of data from DC-2 to DC-1 when placing the reduce task
on DC-1. On the other hand, if placing the reduce task on DC-2, this coflow
will only need to transfer a 100-unit flow from DC-1 to DC-2.

the performance of data-parallel jobs running across geo-
distributed datacenters.

Many existing works [7–12] have focused on reducing such
CCTs by efficiently scheduling the network flows within each
coflow. Unfortunately, they are insufficient to optimize the
CCT of a coflow as the endpoints of all flows are assumed
to be fixed. In other words, they do not consider the impact of
flow endpoints on the CCT, i.e., where the flow is delivered
to. As a result, coflow scheduling can have little space to take
effect for optimizing the CCTs of coflows.

In fact, coflows do not require the destinations of their flows
to be in specific locations as long as certain constraints are
satisfied. The reason is that the endpoints of flows in a coflow
are closely correlated to the reduce tasks of the corresponding
job, while each reduce task can be placed in the machine
of any datacenter that has available computational resources.
In this case, we can flexibly select the endpoints of flows
in a coflow, by changing the locations of reduce tasks. As
an example, Fig. 1 demonstrates that changing the locations
of reduce tasks will lead to different endpoint placement
strategies. Needless to say, a better distribution of endpoints
can significantly reduce the data sizes of flows in a coflow,
and thus directly speeds up the completion of coflows. Hence,
there is a pressing need to leverage the endpoint flexibility
when scheduling coflows across geo-distributed datacenters.

In this paper, we focus on the problem of jointly considering
endpoint placement and coflow scheduling to minimize the
average CCT of coflows across geo-distributed datacenters. We
first develop the mathematical model and formulate a mixed
integer linear programming (MILP) problem to seamlessly
integrate endpoint placement and coflow scheduling for op-
timizing the average CCT of coflows. In the MILP problem,
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Fig. 2. An example with two coflows (i.e., A and B) and two datacenters
(i.e., DC-1 and DC-2). For coflow A, there are two pieces of intermediate
data (i.e., A1=400Mb and A2=200Mb) and two reduce tasks (i.e., tA1 and
tA2). For coflow B, there is only one reduce task (tB1), and the intermediate
data on these two datacenters are B1=100Mb and B2=200Mb. The bandwidth
capacity of link from DC-1 to DC-2 is 10Mbps, while the link from DC-1 to
DC-2 has 1Mbps bandwidth capacity. Both DC-1 to DC-2 have 2 computing
slots that are available for accommodating the reduce tasks.

we take into account heterogeneous link bandwidth capaci-
ties, different coflow arrival times, and available computation
resources of datacenters. Since the information about future
coflows is usually unknown in advance, it is challenging to
obtain the optimal solution for this problem. To solve this
problem, we present SmartCoflow, an online coflow-aware
optimization framework. In SmartCoflow, we first propose
an approximate algorithm to derive the endpoint placement
and scheduling decisions for one single coflow. Based on the
single-coflow solution, we then propose an efficient online
algorithm to minimize the average CCT when multiple coflows
dynamically arrive at the network. Without requiring the prior
knowledge of coflow arrivals, SmartCoflow has been proved
to guarantee a theoretical upper bound for the average CCT.

We proceed to implement SmartCoflow as a real-world
coflow-aware scheduler that enforces our endpoint placement
and scheduling strategies in the Varys coflow scheduling
framework [9, 13]. Finally, to evaluate the performance of
SmartCoflow, we use a small-scale testbed implementation
based on Google’s Cloud Compute Engine, and also conduct
large-scale simulations with a real-world data trace collected
from Facebook. The experimental results demonstrate that
SmartCoflow can reduce the average CCT by up to 28.6%,
compared to the state-of-the-art scheduling-only method [9].

The rest of this paper is organized as follows. In Section II,
we describe our problem for this paper. In Section III, we
develop the mathematical model and present our problem
formulation. We show the design details of SmartCoflow in
Section IV. The implementation details and experiment results
are presented in Section V. Section VI discusses the related
work and Section VII concludes this paper.

II. PROBLEM STATEMENT

In this paper, we consider a network with multiple geo-
distributed datacenters denoted as N = {1, · · · , N}. In this
network, there are a set of inter-datacenter links, which are
denoted as E . For each link li,j ∈ E between datacenters i ∈ N
and j ∈ N , we denote Ci,j as its bandwidth capacity. Suppose
that there are a set of coflows in the network, which is denoted
as K = {1, . . . ,K}. Each coflow k ∈ K arrives at the inter-
datacenter network at time tk. The information associated with
each coflow k is assumed to be known as soon as this coflow
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Fig. 3. Scheduling-only scheme, where reduce tasks are equally spread across
datacenters for each coflow (as shown in (a)), leading to the optimal coflow
scheduling results shown in (b). With this scheme, the average CCT is 200s.
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Fig. 4. The optimal scheme, where reduce task placement and scheduling
are jointly considered. The average CCT is reduced to 55s, compared to the
above scheduling-only scheme.

arrives1, which includes the amount of intermediate data on
each datacenter (i.e., Dk

i ,∀i ∈ N ) and the number of reduce
tasks (i.e., Rk)2 to be launched on available computing slots
in datacenters. We use Ui to denote the capacity of available
computing slots in datacenter i ∈ N .

As mentioned in the previous section, the reduce task
placement is closely related to the CCT of a coflow. Hence,
we are motivated to combine the reduce task placement and
coflow scheduling to minimize the average CCT of coflows
across geo-distributed datacenters. More specifically, we study
the problem of where to place the reduce tasks to derive a
better endpoint distribution for the flows in each coflow, when
to start these flows, and at what rate to serve them on the inter-
datacenter links, to minimize the average CCT of coflows.

For a better intuition of our problem, we use a motivating
example with two coflows and two geo-distributed datacenters;
detailed settings for this example are shown in Fig. 2. As a
reference point, the optimal average CCT for this example
is 55s. Fig. 3 first illustrates a scheduling-only scheme. Such
scheme only focuses on coflow scheduling without considering
the optimization of reduce task placement, implying that the
endpoints of each flow might be placed improperly. In this
context, coflow scheduling could have little space to minimize
the average CCT. Fig. 3(a) shows a possible case of reduce task
placement with the naive equal spreading method [16], which
assigns an equal number of reduce tasks to each datacenter.
In such a case, coflow A has two flows: one transfers half of
the data A1, i.e., 200Mb, from DC-1 to DC-2 while another
one transfers half of the data A2, i.e., 100Mb, from DC-2
to DC-1. Coflow B has only one flow that needs to transfer
all the data B2 from DC-2 to DC-1. When these two coflows

1This assumption is reasonable because many recent studies (e.g., [7–
9, 14]) assume that they know all the information about a coflow. Besides,
the information associated with a coflow is readily available in data-parallel
frameworks. For instance, in Spark, the intermediate data can be obtained
through the MapOutputTracker [6], and the number of reduce tasks can
also be known through the TaskSet in Spark DAG scheduler [15].

2Since the reduce task is directly correlated with the endpoints of flows in
a coflow, we will use reduce task and endpoint interchangeably hereafter.



meet at the inter-datacenter links, the optimal solution [9] is to
schedule coflow B after coflow A, as shown in Fig. 3(b). The
CCTs of coflows A and B, achieved by the scheduling-only
scheme, are 100s and 300s, respectively. Hence, the average
CCT is 200s, which has a 145s gap to the optimal value 55s.
The key reason for such large CCT is that these two coflows
are congested on the link from DC-2 to DC-1.

Surprisingly, if placing the reduce task tB1 on DC-2 while
keeping the locations of tA1 and tA2 (Fig. 4(a)), the data
sizes of flows can be significantly reduced, i.e., the data size
of the flow in coflow B is reduced to 100Mb. Moreover, coflow
B can smartly avoid the bottleneck link from DC-2 to DC-1.
In this case, the CCTs of coflows A and B are 100s and 10s
respectively, and the average CCT is minimized (Fig. 4(b)).
The implies that both reduce task placement and scheduling
must be jointly considered to minimize the average CCT.

The above example looks straightforward with the simple
settings. But the general problem of jointly considering reduce
task placement and scheduling to minimize the average CCT
of coflows can be difficult due to the following two challenges.
First, the placement of reduce tasks will determine the flow
size on each inter-datacenter link, which thus directly impacts
the scheduling decisions, implying that reduce task placement
and scheduling are deeply intertwined with each other. In
this case, how to obtain the optimal solution is a challenge.
Second, the arrival pattern of coflow is usually unknown in
advance, yet is difficult to be accurately predicted. In most
practical scenarios, we can only get the information of coflows
that have arrived at the inter-datacenter network. So, how can
we guarantee that the current task placement and scheduling
decisions will not harm the CCTs of future coflows? This
makes another challenge to obtain the optimal solution.

III. MODELING AND PROBLEM FORMULATION

In this section, we develop a mathematical model to study
the problem of jointly considering reduce task placement and
coflow scheduling to minimize the average CCT of coflows
across geo-distributed datacenters.

A. Mathematical model
Reduce task placement constraints: To indicate the reduce

task placement, we denote Ikp,i as whether the p-th reduce task
associated with coflow k ∈ K is placed on datacenter i ∈ N .
Then, we have:

Ikp,i ∈ {0, 1}, ∀i ∈ N , ∀k ∈ K,∀p ∈ {1, . . . , Rk}. (1)
Since each reduce task can be processed by only one datacen-
ter, i.e., ∀i ∈ N , there is only one Ikp,i = 1, and thus we have
the following constraint:

N∑
i=1

Ikp,i = 1,∀k ∈ K, ∀p ∈ {1, . . . , Rk}. (2)

Coflow scheduling constraints: To indicate the coflow
scheduling, we denote Bki,j(x) as the amount of bandwidth
allocated to coflow k for supporting the data transmission
between datacenters i and j at time x (x ≥ 0). Note that
Bki,j(x) can be zero for some x’s, implying that the network
flow between datacenters i and j is waiting for transmission
or there is no such flow, for coflow k.

We denote T k as the CCT of coflow k. Since all flows in a
coflow k must finish transmitting their data between the arrival
time tk and the completion time T k, we have:

Dk
i

∑Rk
p=1 I

k
p,j

Rk
≤

tk+Tk∑
x=tk

Bk
i,j(x), ∀lij ∈ E , k ∈ K, (3)

where Dk
i

∑Rk
p=1 I

k
p,j

Rk
can calculate the data size of the flow

traversing link lij [1]. Constraint (3) means that T k is deter-
mined by when the last flow of coflow k finishes.

Capacity constraints: When performing reduce task place-
ment and coflow scheduling, both the capacities of com-
putational resource and link bandwidth should be satisfied.
Specifically, we have the following two constraints:

K∑
k=1

Rk∑
p=1

Ikp,i ≤ Ui, i ∈ N , (4)

K∑
k=1

Bk
i,j(x) ≤ Ci,j , ∀lij ∈ E , ∀x ≥ 0. (5)

Constraint (4) means that the total number of reduce tasks
assigned to i should not exceed Ui, which is the total number
of available computing slots in datacenter i ∈ N . Meanwhile,
constraint (5) ensures that the summation of bandwidth allo-
cated to all flows on a link lij should not exceed the link
bandwidth capacity Ci,j .

B. Problem formulation

We now formulate the problem of jointly considering reduce
task placement and coflow scheduling to minimize the average
CCT of coflows across geo-distributed datacenters, as shown
in the following problem P1:

Minimize
{Ikp,i},{B

k
i,j(x)}

1

K

K∑
k=1

T k (6)

Subject to: Eqs. (1), (2), (3), (4), (5),

where the objective function (6) represents the minimum of the
average CCT across all coflows. In problem P1, the reduce task
placement (i.e., Ikp,i) and scheduling (i.e., Bki,j(x)) decisions
of current coflows will impact that of future coflows. To solve
P1, one may design an offline optimal algorithm, which, how-
ever, encounters two challenges. (1) Problem P1 is an MILP
problem which is NP-hard in general [17], making it very
hard to obtain the optimal solution. (2) The offline algorithm
inevitably relies on a prior knowledge of the intermediate
data (i.e., Dk

i ) and the number of reduce tasks (i.e., Rk) for
future coflows. Such knowledge can only be known at the
arrival of a coflow, yet is difficult to be predicted accurately.
Thus, an online algorithm is desired to solve problem P1 more
efficiently and handle the dynamically arrived coflows.

IV. SmartCoflow DESIGN

In this section, we propose an online coflow-aware opti-
mization framework—SmartCoflow, to optimize the average
CCT in the inter-datacenter networks by coordinating reduce
task placement and coflow scheduling. In our design, once a
coflow arrives at the network, we will formulate an integer
linear programming (ILP) problem and apply a randomized



approximate algorithm to solve this ILP for deriving the reduce
task placement and scheduling decisions for this coflow. This
algorithm first relaxes the ILP into a linear programming
(LP) and then uses randomized rounding technique to enforce
the optimal solution of the LP to be a feasible one of the
original ILP. Based on the single-coflow solution, we rescale
the bandwidth allocated to all existing coflows. We identify
the following two goals when designing SmartCoflow:
• Practicality: SmartCoflow is necessarily an online system,

which means that it must quickly decide the reduce task
placement and scheduling decisions for a coflow once the
coflow arrives. Hence, the SmartCoflow algorithms must
run in real-time with low time complexity.

• Performance guarantee: SmartCoflow must be able to
provide a non-trivial competitive ratio when solving the
original problem P1, such that the average CCT of
coflows can be guaranteed with an upper bound.

In the rest of this section, we first present a randomized
approximate algorithm to minimize the CCT by focusing on
one single coflow, and then extend this algorithm to handle
the online multi-coflow scenarios.

A. Minimizing single coflow completion time
If there is only one single coflow in the network, the

problem can be formulated as following (denoted as P2):

Minimize
{Ip,i}

T (7)

Subject to: Ip,i ∈ {0, 1}, ∀i ∈ N , ∀p ∈ {1, . . . , R}, (8)
N∑
i=1

Ip,i = 1, ∀p ∈ {1, . . . , R}, (9)

R∑
p=1

Ip,i ≤ Ui, i ∈ N , (10)

Bi,j ≤ Ci,j , ∀lij ∈ E , (11)

Bi,jT = Di

∑R
p=1 Ip,j

R
, ∀lij ∈ E , (12)

where T is the CCT of this coflow. Parameters R and Di are
the number of reduce tasks and the amount of intermediate
data on datacenter i, respectively. Ip,i and Bi,j are the reduce
task placement and scheduling decisions, respectively. Note
that in our mathematical model (in Section III), the bandwidth
is a function of time, but it is a constant value in problem P2.
This implies that if a flow traverses link lij , the bandwidth
usage should be equal to Bi,j for transmission or zero if this
flow finishes. In such a case, Bi,j can be calculated directly
by fixing Ip,i, as shown in Eq. (12).

Problem P2 is a comprehensive ILP, which appears to be in
the form of a Generalized Assignment Problem (GAP) that is
typically NP-hard [17]. To solve this problem, we first relax
Ip,i into a continuous variable and accordingly obtain a LP, as
shown in the following problem P3:

Minimize
{Ip,i}

T

Subject to: 0 ≤ Ip,i ≤ 1, i ∈ N , ∀p ∈ {1, . . . , R}, (13)
Eqs. (9), (10), (11), (12),

Algorithm 1 Minimize Single Coflow CCT
Input: Coflow information: {{Di}, R}
Output: A feasible solution for this coflow

1: Calculate the optimal solution (I,B, T ) of problem P3.
2: for p = 1, 2, . . . , R do
3: Sample an i with probability Ip,i from {1, 2, . . . N}.
4: If Ui = 0, repeat step 3. Otherwise, set Ip,i = 1 and

update Ui = Ui − 1.
5: end for
6: Find a smallest real number λ ≥ 1 to make
{{Ip,i}, {Bi,jλ }} become a feasible solution to problem
P2.

7: return {{Ip,i}, {Bi,jλ }}

which can be solved efficiently with standard linear program-
ming solvers, such as MOSEK [18]. Since Ip,i is relaxed into
continuous variable, the solution of P3 may not give a feasible
solution for the ILP P2. To find a feasible solution, we then
propose to use another technique—rounding.

The whole procedure to minimize the single coflow CCT
is summarized in Algorithm 1. Our Algorithm starts from
the optimal solution of LP P3 (Step 1). Then, in the for
loop (Step 2-5), it chooses a datacenter for each reduce task
independently. Specifically, it samples a datacenter i for each
reduce task p with probability Ip,i. Finally, it rescales the
bandwidth to make sure the solution is feasible (Step 6). To
verify that Algorithm 1 can approach a CCT that is near to
the optimal one of the ILP P2, we first give a lower bound of
the minimum CCT of the coflow. Then, we provide an upper
bound of the CCT achieved by Algorithm 1.

Theorem 1 (Lower bound of the optimal CCT of P2): Define
TP2 and TP3 as the optimal CCTs for problems P2 and P3,
respectively. Then, we have TP3 ≤ TP2.

Proof: We mainly focus on proving that P3 is a relaxation
of P2 because such relaxation directly leads to TP3 ≤ TP2.
The relaxation means that: for any feasible solution S :=
{{Ip,i}, {Bi,j}} of P2, there always exists a feasible solution
of P3 to make the objective value in P3 equal to TS (the CCT
under solution S). To prove it, we define a solution of P3
as follows: (1) set T = TS ; (2) for each p, set Ip,i = 1, and

Ip,i′ = 0 for all i′ 6= i; (3) for each lij , set Bi,j =
Di

∑R
p=1 Ip,j

RT .
Since S is a feasible solution of P2, it is obvious that∑R
p=1 Ip,i ≤ Ui. Therefore, it remains only one constraint (11)

to be verified. With the definition of completion time, we have∑T
0 Bi,j(x) ≥ Di

∑R
p=1 Ip,j/R, which implies that Bi,j =

Di

∑R
p=1 Ip,j/RT ≤

∑T
0 Bi,j(x)/T . Again, by the fact that S

is a feasible solution, we have
∑T

0 Bi,j(x) ≤ TCi,j . Then, we
get Bi,j ≤

∑T
0 Bi,j(x)/T ≤ Ci,j . This implies the relaxation,

and thus the theorem is proved.
Theorem 2 (Upper bound of the CCT achieved by Algorithm

1): Algorithm 1 achieves a CCT that is at most 2 ln 4M
times the optimal CCT with probability at least 3

4 , where
M = |E| is the total number of inter-datacenter links in E .
More specifically, Algorithm 1 guarantees its competitive ratio
ρ for problem P2 to satisfy that Pr(ρ > 2 ln 4M) ≤ 1/4.



Proof: For each lij ∈ E , define

ρij =
Bi,j

Ci,j
=

Di
RT

∑R
p=1 1(Ip,i = 1)

Ci,j
,

where 1(Ip,i = 1) is an indicator variable that is 1 if Ip,i =
1 and 0 otherwise. Combining Theorem 1, the competitive
ratio of Algorithm 1 can be calculated as ρ = maxlij ρij .
Since Pr(ρ > 2 ln 4M) ≤

∑
lij∈E Pr(ρij > 2 ln 4M), we

fix lij and focus on the proof of Pr(ρij > 2 ln 4M) ≤ 1
4M .

Let xp := Di
RT 1(Ip,i = 1) be a random variable, and define

x :=
∑R
p=1 xp. These random variables have the following

properties: 1) all xp’s are independent; 2) xp is either 0 or
Di
RT , and Pr(xp=

Di
RT )=Ip,i; 3) E(x) =

Di
∑R
p=1 Ip,i

RT ≤ Ci,j ,
by Eqs. (11) and (12); 4) If Pr(xp= Di

RT ) > 0 then Di
RT ≤ Ci,j ,

by Eqs. (10) (11) (12).
Let θ ≥ 2e be a real number, and we now focus on the

proof of Pr(x > Ci,jθ) ≤ exp(− θ2 ). To this end, let α > 0
be a fixed parameter. By using Markov’s inequality, we have

Pr(x > Ci,jθ) = Pr(αx > αCi,jθ)

= Pr(exp(αx) > exp(αCi,jθ))

≤ exp(−αCi,jθ) · E(exp(αx))

= exp(−αCi,jθ)

R∏
p=1

E(exp(αxp)).

(14)

Now, we analyze E(exp(αxp)). Using the definition of math-
ematical expectation, we have

E(exp(αxp)) = (1− Ip,i) + Ip,i exp(αDi/RT )

= 1 + Ip,i(exp(αDi/RT )− 1)

≤ exp(Ip,i(exp(αDi/RT )− 1)),

where the last inequality is derived from the fact that 1+ a ≤
exp(a) for a > 0. With the above formula, we have

R∏
p=1

E(exp(αxp)) ≤ exp(

R∑
p=1

Ip,i(exp(αDi/RT )− 1)).

For all p, we choose α to satisfy exp(αDi/RT ) ≤ 1 +
1
2αθDi/RT . We will show the existence and give the value
of such an α later. Combining the property of α and the fact
that E(x) ≤ Ci,j , we have

R∏
p=1

E(exp(αxp)) ≤ exp(

R∑
p=1

1

2
Ip,iαθDi/RT ) ≤ exp(

1

2
Ci,jαθ).

Substituting the above inequality to Eq. (14), we obtain

Pr(x>Ci,jθ)≤ exp(
1

2
Ci,jαθ−αCi,jθ)= exp(α(−1

2
Ci,jθ). (15)

We now define α :=
ln θ

2

Ci,j
, to verify that exp(αDi/RT ) ≤

1 + 1
2αθDi/RT . Using the fact that for a ≥ 1, 0 ≤ b ≤ 1,

ab ≤ 1 + ab. Then, we have

exp(αDi/RT ) = exp(
Di
RT

Ci,j
ln
θ

2
) = (

θ

2
)

Di
RT
Ci,j

≤ 1 +
Di
RT

Ci,j
· θ
2
≤ 1 +

1

2
αθ

Di

RT
.

Substituting α to (15), we get

Pr(x > Ci,jθ) ≤ exp(−θ
2
ln
θ

2
) ≤ exp(−θ

2
).

This implies the following inequality

Pr(ρ > θ) ≤
∑

li,j∈E

Pr(ρij > θ) =
∑

li,j∈E

Pr(x > Ci,jθ)

≤
∑

li,j∈E

exp(−θ
2
) =M exp(−θ

2
).

Choosing θ = 2 ln 4M , the theorem can then be proved.

B. Handling multiple coflows

Taking advantage of Algorithm 1, we treat the single-coflow
solution as a black box, and design a competitive algorithm
to minimize the average CCT of multiple coflows. The key
idea is that when a new coflow arrives, we first invoke the
Algorithm 1 to calculate the reduce task placement and the
bandwidth allocation for this new coflow. Then, we rescale
the bandwidths of all existing flows including the flows in this
new coflow, with the purpose of deriving a feasible solution for
each coflow and fully utilizing the link capacity. The algorithm
is shown in Algorithm 2, which is competitive with a non-
trivial ratio for problem P1.

Algorithm 2 works in a laissez-fair manner, i.e., it will be
invoked whenever a new coflow arrives or an existing coflow
finishes (Step 1). To avoid frequent reduce task placement,
it invokes Algorithm 1 only for the newly arrived coflows,
and stores the computed solution {{Ikp,i}, {Bki,j}} for each
coflow k (Step 2). These solutions may be infeasible due
to the bandwidth contention of concurrent coflows. Hence, it
scales down each coflow’s bandwidth with a weight factor λk
(Step 3-6). Such weighted sharing policy inherently guarantees
fairness among concurrent coflows: large coflows will get
more bandwidth, while small coflows will get relatively less
bandwidth. Finally, it scales all flow’s bandwidth by a same
largest possible factor, to utilize the residual bandwidth (Step
7). The following theorem demonstrates that our Algorithm 2
has a good competitive ratio for the original problem P1.

Theorem 3: Algorithm 2 is Kρ-competitive for the original
problem P1, where ρ is the competitive ratio of Algorithm 1.

Proof: Define TP1 as the optimal value of problem P1,
and let T kP2, T kP3 denote the optimal CCTs of coflow k
for problem P2 and P3, respectively. It is clear that each
coflow k contributes to the average CCT with no less than
its minimum completion time T kP2 when it occupies the
network exclusively. Given the result of Theorem 1, we
have TP1 ≥ 1

K

∑K
k=1 T

k
P2 ≥ 1

K

∑K
k=1 T

k
P3. Therefore, we

only need to compare the performance of our algorithm to
1
K

∑K
k=1 T

k
P3. Specifically, let Talg denote the average CCT

achieved by Algorithm 2, and we focus on the proof of
Talg ≤ ρ

∑K
k=1 T

k
P3 ≤ Kρ× TP1 in the rest proof process.

Suppose that there exists an optimization problem for some
subset JΩ of {1, . . . ,K}.

Minimize
∑
k∈JΩ

T k
P3

xk
Subject to:

∑
k∈JΩ

xk ≤ 1,



Algorithm 2 Minimize Average CCT of Multiple Coflows
Input: Coflow information {{Dk

i }, Rk},∀k ∈ K
Output: Feasible solutions for all k ∈ K

1: while receiving a new coflow or a feedback indicating the
completion of an existing coflow do

2: Add this new coflow to JΩ or remove the completed
coflow from JΩ. Here, JΩ stores the set of coflows that
are not completed till current time.

3: for each coflow k in JΩ do
4: Define λk :=

√
TkP3∑

k′∈JΩ

√
Tk

′
P3

, where T kP3 is the opti-

mal objective of the LP P3 for coflow k.
5: Update the solution of k as Sk:={{Ikp,i}, {λkBki,j}},

where {{Ikp,i}, {Bki,j}} is the solution computed by
Algorithm 1 when coflow k arrived.

6: end for
7: Find a largest factor to scale the bandwidths of all flows

in JΩ to pursue work conversing property.
8: end while

where xk is non-negative value. By leveraging the Cauchy-
Schwarz inequality, we have

∑
k∈JΩ

T k
P3

xk
≥ (

∑
k∈JΩ

T k
P3

xk
) · (

∑
k∈JΩ

xk) ≥ (
∑
k∈JΩ

√
T k
P3)

2.

When xk =
√
T kP3/

∑
k∈JΩ

√
T kP3,∀k ∈ JΩ, the above

optimization problem can be optimally solved. This implies
that for each k in each iteration of Algorithm 2, the weighted
factors λk’s (∀k ∈ JΩ) are optimally picked. In other
words, the λk’s have least impact on the average CCT when
rescaling the bandwidth of each coflow. Define λ

(K)
k :=√

T kP3/
∑K
k=1

√
T kP3 and let T kalg denote the CCT of coflow

k achieved by the Algorithm 1. Since JΩ might be a subset
of {1, . . . ,K}, we have the following inequality for any k

λk ≥
√
T k
P3∑K

k=1

√
T k
P3

= λ
(K)
k .

Combining Algorithm 1, the CCT of each coflow is at most

T k
alg

λk
≤
T k
alg

λ
(K)
k

≤ ρ T
k
P3

λ
(K)
k

= ρ
√
T k
P3

K∑
k=1

√
T k
P3.

Again applying the Cauchy-Schwarz inequality, we have

Talg =
1

K

K∑
k=1

T k
alg

λk
≤ 1

K

K∑
k=1

T k
alg

λ
(K)
k

≤ ρ

K
(

K∑
k=1

√
T k
P3)

2 ≤ ρ
K∑

k=1

T k
P3 ≤ KρTP1.

Thus, proved.

V. PERFORMANCE EVALUATION

In this section, we evaluate SmartCoflow using both a small-
scale testbed implementation and large-scale simulations.

Comparing solutions: We compare the following schemes
with SmartCoflow throughout our experiments.
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Fig. 5. The emulated testbed on Google’s Cloud Compute Engine.

• Varys-only: schedules all coflows with the Shortest-
Effective-Bottleneck-First (SEBF) coflow scheduler in
Varys [9], with already-fixed endpoints of flows for each
coflow. This scheme corresponds to a scheduling-only
scheme that ignores the reduce task placement.

• Iridium+Varys: assigns the reduce tasks for each coflow
with the reduce task placement method in Iridium [1],
and then schedules all flows using Varys SEBF scheduler
[9]. This scheme considers the reduce task placement and
coflow scheduling independently, rather than jointly.

Performance metrics: We define CCT2−CCT1

CCT2
as the per-

formance improvement of scheme 1 compared to scheme 2,
where CCT1 and CCT2 are the average CCTs achieved by
scheme 1 and scheme 2, respectively.

A. Small-scale testbed implementation

We implement our SmartCoflow scheduler based on an
open-source framework—Varys [9, 13]. The Varys framework
can not only provide a simple API to data-parallel jobs
for coflow submission, but also provide a global view of
the network and coflow information. Upon receiving a new
coflow or an update indicating the completion of an existing
coflow, SmartCoflow invokes Algorithm 2 to calculate the
reduce task placement and scheduling decisions, based on the
information of new coflow and the updated information of
existing coflows. We use the simplex method implemented in
the Breeze optimization library [19] to solve the relaxed
LP problem P3 involved in SmartCoflow algorithms. To en-
force the calculated reduce task placement decisions, we have
implemented two new Scala classes: CoflowSender and
CoflowReceiver. We launch a CoflowSender thread
at each sender node of a coflow, by specifying the coflow id
and the number of flows. Then, for each source-destination
pair of a coflow, we launch a CoflowReceiver thread
at the destination node to fetch the corresponding interme-
diate data. On the other hand, we enforce the calculated
scheduling decisions (i.e., Bki,j(t)) to the application-layer
bandwidth allocation through updating the rate limit to the
ThrottledInputStream (java I/O objective) provided by
the Varys framework.



TABLE I
INTERMEDIATE DATA ASSOCIATED WITH EACH COFLOW.

Instances Intermediate data associated with each coflow (MB)
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Instance-1 900 1000 100 900 100 700 800 300 300 900
Instance-2 100 1000 400 1000 700 300 200 700 600 1000
Instance-3 100 100 1000 700 0 1000 500 700 200 600
Instance-4 600 1000 800 800 300 0 400 100 800 100
Instance-5 100 1000 1000 800 0 400 700 100 200 100
Instance-6 300 500 700 400 100 400 700 500 500 200

We build a testbed with 6 compute instances in the
us-central1-c zone on the Google’s Cloud Compute
Engine to emulate an inter-datacenter network, where each
instance is an n1-standard-2 with 2 vCPUs and 7.5
GB memory. We use each instance to emulate a datacenter.
To control the link bandwidth that would exist in the inter-
datacenter networks, we leverage Linux Traffic Control to limit
the link bandwidth between any two compute instances. Fig. 5
shows the detailed bandwidth constrained on each link which
is randomly chosen from 100 to 1000 Mbps. Even though each
compute instance we launched is not as large as a commodity
datacenter, we believe that this testbed can faithfully emulate
the bandwidth bottlenecks in the inter-datacenter networks.

TABLE II
THE NUMBER OF REDUCE TASKS ASSOCIATED WITH EACH COFLOW.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
Num. of reduce tasks 11 4 10 3 12 5 3 4 8 6

TABLE III
REDUCE TASK PLACEMENT FOR THREE DIFFERENT SCHEMES.

Coflow
Varys-only Iridium+Varys SmartCoflow

Instance Indexes Instance Indexes Instance Indexes
1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

C1 4 0 4 3 0 0 2 2 0 0 5 2 0 2 0 1 8 0
C2 1 1 0 1 1 0 2 0 0 1 0 1 1 0 0 3 0 0
C3 0 0 3 2 3 2 2 1 2 0 3 2 1 0 5 0 0 4
C4 1 1 0 1 0 0 1 0 0 1 0 1 0 0 1 1 0 1
C5 1 7 0 3 0 1 4 0 3 4 0 1 4 0 3 4 0 1
C6 2 0 2 0 1 0 0 3 0 0 1 1 0 3 0 0 2 0
C7 1 0 0 0 1 1 1 0 0 0 1 1 1 1 0 0 1 0
C8 0 2 2 0 0 0 0 2 0 0 0 2 0 3 1 0 0 0
C9 1 2 0 3 0 2 2 0 1 2 0 3 2 0 0 3 0 3
C10 2 3 1 0 0 0 2 3 0 0 0 1 3 1 0 0 0 2

In our experiment, we inject 10 coflows into the network to
evaluate the performance of SmartCoflow. For each coflow,
the amount of associated intermediate data stored on each
datacenter is randomly chosen from 100 to 1000 MB, as
shown in Table I. The number of reduce tasks associated
with each coflow is listed in Table II. Based on the above-
mentioned experimental setup, we calculate the decisions on
reduce task placements. Note that for the Varys-only scheme,
we use the locality policy to place the reduce tasks of each
coflow, which means that the number of reduce tasks placed
on each datacenter is proportional to the intermediate data
on it. In fact, such locality policy is commonly adopted in
data-parallel frameworks such as Spark [15]. The calculated
reduce task placement strategies under different schemes are
illustrated in Table III.

Fig. 6 first presents the CCTs achieved by Varys-only,
Iridium+Varys and SmartCoflow schemes, respectively. It is
clear that SmartCoflow can save 64.0−52.0

64.0 = 18.75% of the
average CCT compared to the Varys-only scheme, and it
also can reduce the average CCT by 58.3−52.0

58.3 = 10.81%
compared to the Iridium+Varys scheme. We further observe
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Fig. 6. The CCT of each coflow achieved by Varys-only, Iridium+Varys and
SmartCoflow schemes, respectively.
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Fig. 7. The duration in which each coflow is scheduled on each link, under the
(a) Varys-only, (b) Iridium+Varys, and (c) SmartCoflow schemes, respectively.

that SmartCoflow can reduce the tail CCT, compared to both
Varys-only and Iridium+Varys schemes. The reason for these
results is that SmartCoflow can smartly avoid the bottleneck
links when transferring the flows, reducing the overall CCTs
and improving the link bandwidth utilization as well.

To clearly illustrate the underlying reason for such improve-
ment, we next provide a detailed analysis on how the 10
coflows are scheduled under three different schemes, as shown
in Fig. 7. The scheduling order under the Varys-only scheme
is C7 → C8 → C10 → C5 → C3 → C9 → C2 → C4 →
C6 → C1. While for Iridium+Varys scheme, the scheduling
order is C5 → C9 → C8 → C6 → C10 → C1 → C3 → C2
→ C7 → C4. The reason for such different scheduling order
is that different schemes use different reduce task placement
strategies, making the bottleneck flows (i.e., the largest flow in
a coflow [9]) of different coflows to appear at different links.



Though Iridium+Varys performs a little better than Varys-only
scheme in terms of the average CCT (as shown in Fig. 6),
it leaves most of the links idle and extends the tail CCT
(i.e., the time when the last coflow finishes) from 116.32s to
119.61s. In contrast, SmartCoflow can obtain a better reduce
task placement strategy, and schedule the 10 coflows with an
order of C5 → C9 → C8 → C6 → C7 → C1 → C10 → C2
→ C3 → C4. In this case, SmartCoflow reduces the average
CCT to 52.0s. Moreover, the tail CCT is reduced to 89.48s.
An interesting observation is that almost all links (except the
links 2-6 and 5-6) have been utilized for coflow transmission
under SmartCoflow, indicating that SmartCoflow is capable of
improving the link bandwidth utilization.

B. Large-scale trace-driven simulation

We develop a flow-level simulator based on an open-source
framework CoflowSim [20], to further exploit the advantages
of our proposed solution when applying to large-scale network
with a large number of concurrent coflows. To reduce the
simulation complexity, CoflowSim accounts for both the
flow arrival and departure events, rather than packet sending
and receiving events. Also, it updates the rate and remaining
volume of each flow when an event initiates. To solve the LP
problem P3 in SmartCoflow, we embed the API provided by
Breeze into our simulator.

TABLE IV
THE AVERAGE CCT, 95TH PERCENTILE CCT, AND MAXIMUM CCT

ACHIEVED BY THREE DIFFERENT SCHEMES.
Metrics Varys-only Iridium+Varys SmartCoflow

Average CCT (ms) 111684 109936 79742
95th percentile CCT (ms) 47760 46158 29258

Maximum CCT (ms) 8784344 8827218 6733016

Simulation setup and data trace: We simulate a produc-
tion inter-datacenter network with 40 datacenters, which is a
typical size in today’s inter-datacenter networks [21]. Each dat-
acenter has a uniform capacity of 100 computing slots. In our
40-datacenter setup, we vary the bandwidth between 100Mbps
to 1Gbps, hoping to mimic the heterogeneous bandwidths
between different datacenters. Our simulations are conducted
on Hive/MapReduce trace provided by Facebook, which is a
widely adopted trace in coflow issues [9, 10, 22]. The original
trace is from a 3000-machine 150-rack cluster with 10:1 over-
subscription ratio, and contains 526 coflows. We scale down
all coflows to the 40-datacenter inter-datacenter network in our
deployment, with preserving the original coflow’s communica-
tion characteristics. Note that the original trace only provides
the whole data size of a coflow to be transferred to reducers.
Therefore, we distribute the data to each flow in a uniform
manner, and accordingly obtain the intermediate data placed
on each datacenter.

Simulation results: Table IV first presents the average, 95th
percentile and maximum CCTs achieved by three different
schemes. We observe that SmartCoflow reduces the average,
95th percentile and maximum CCTs by 111684−79742

111684 =28.6%,
47760−29258

47760 =38.7%, and 8784344−6733016
8784344 =23.4%, respec-

tively, compared to the Varys-only scheme. Moreover,
compared to the Iridium+Varys scheme, the average,
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95th percentile and maximum CCTs can also be re-
duced by 109936−79742

109936 =27.5%, 46158−29258
46158 =36.7%, and

8827128−6733016
8827128 =23.7%, respectively, under our SmartCoflow

scheme. One may wonder at this point that the 95th percentile
CCT is even smaller than the average CCT for each scheme.
This is because that some coflows experience extremely high
CCT, while the CCTs of other coflows are relatively low.
The above results directly confirm that combining reduce task
placement and scheduling can significantly reduce the average
CCT of coflows.

To understand on a microscopic level, we also plot the
CDF of CCT for all coflows in Fig. 8. We can clearly find
that 33.65% of coflows experience a CCT smaller than 8 ms
under SmartCoflow scheduler, while the fractions for Varys-
only and Iridium+Varys are only 18.82% and 20.34%. We
further observe that Varys-only and Iridium+Varys schemes
perform a little better than SmartCoflow — only for coflows
whose CCT are in the range [56, 1008] ms. As coflows become
larger (> 1008 ms), SmartCoflow always performs better, as
the curve of SmartCoflow is higher than that of Varys-only and
Iridium+Varys. Note that the curve of SmartCoflow maintains
a stable value within [8, 1008]ms. This is because that no
coflows experience a CCT within [8, 1008]ms.

After we see the improvements of CCTs, we also evaluate
the performance of diferent schemes in terms of the amount
of shuffle data across geo-distributed datacenters for each
coflow. Even though reducing the coflow shuffle data is not
the main goal of our optimization, we find out that it is in
the line with the goal of reducing CCT. Fig. 9 shows the
CDF of coflow shuffle data under three schemes. We can
easily check that SmartCoflow always achieve a smaller size
of coflow shuffle data, compared to both the Varys-only and
Iridium+Varys schemes. Specifically, under our SmartCoflow
scheme, 40.68% of coflows become short (< 5 MB). On the
other hand, the fractions of short coflows under the Varys-only
and Iridium+Varys schemes are both 28.71%.

VI. RELATED WORK

SmartCoflow contains two parts: reduce task placement and
coflow scheduling. There is a large spectrum of related work
in datacenter networks, along either reduce task placement or
scheduling. We only review some closely related ones here.

Reduce task placement in datacenter networks: Existing
work mainly focuses on placing reduce tasks or endpoints of
network flows closer to their data for optimizing the comple-
tion times of jobs inside a datacenter (e.g., [23–25]) or across



geo-distributed datacenters (e.g., [1, 6, 26]). However, the
benefits of them are inherently limited because that they do not
take into account the network flow scheduling after the reduce
tasks or endpoints have been fixed. CLARINET [3] is the most
related recent work that considers network flow scheduling
after task placement. Nevertheless, it focuses on optimizing
network flows at the flow-level instead of the coflow-level, and
it considers task placement and flow scheduling independently
rather than jointly.

Coflow scheduling in datacenter networks: Existing ef-
forts on coflow scheduling mainly fall into two categories.
One of them focuses on achieving fairness among concurrent
coflows (e.g., [14, 27]). Another category of work focuses on
reducing the CCTs of coflows (e.g., Varys [9], Aalo [10],
CODA [11], RAPIER [8], OMCoflow [12]). However, both
categories of work consider the endpoints of network flow
transfers to be fixed, making them insufficient to optimize the
average CCT of coflows. SmartCoflow, on the other hand,
leveraging the endpoint flexibility of network flows when
scheduling coflows, can significantly improve the performance
on the average CCT of coflows.

VII. CONCLUSIONS

In this paper, we jointly consider the endpoint placement
and coflow scheduling to minimize the average CCT of
coflows across geo-distributed datacenters. To characterize
the combination of endpoint placement and coflow schedul-
ing in the inter-datacenter networks, we develop a rigor-
ous mathematical model and formulate an MILP problem.
Then, we propose a coflow-aware optimization framework—
SmartCoflow, to solve the MILP in an online manner. Starting
from an approximate algorithm for minimizing the CCT of
single coflow, SmartCoflow develops a fast and efficient online
algorithm to minimize the average CCT of multiple coflows.
Rigorous theoretical analysis has shown that without any
prior knowledge of future coflows, SmartCoflow can achieve
a good competitive ratio in minimizing the average CCT of
the coflows. Finally, we have implemented SmartCoflow as a
real-world coflow-aware scheduler and evaluated SmartCoflow
through both small-scale testbed implementation and large-
scale trace-driven simulations. From the experimental results,
we conclude that SmartCoflow can offer significant perfor-
mance improvement on average CCT when compared to the
prevailing methods.
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