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Abstract—Data-parallel applications generate a mix of coflows
with and without deadlines. Deadline coflows are mission-critical
and must be completed within deadlines, while the non-deadline
coflows desire to be completed as soon as possible. Scheduling
such mix-coflows is an important problem in modern datacenters.
However, existing solutions only focus on one of the two types
of coflows: they either solely concentrate on meeting the dead-
lines of deadline-aware coflows or reducing the coflow completion
times (CCTs) of non-deadline coflows. In this article, we study the
problem of optimizing deadline and non-deadline coflows simul-
taneously. To this end, we present a new optimization framework,
mixCoflow, to schedule deadline coflows to minimize and balance
their bandwidth footprint, such that non-deadline coflows can be
scheduled as early as possible. Specifically, we develop the mathe-
matical model and formulate the scheduling problem for deadline
coflows as a lexicographical min-max integer linear programming
(ILP) problem. Through rigorous theoretical analysis, this ILP
problem has been proved to be equivalent to a linear program-
ming (LP) problem that can be solved with standard LP solvers.
By solving this LP, mixCoflow is able to balance the bandwidth
footprint of deadline coflows while guaranteeing their deadlines.
As a result, non-deadline coflows can be scheduled as soon as
possible whenever they arrive. To demonstrate the effectiveness
of our work, we have conducted extensive simulations based on
a widely used Facebook data trace. The simulation results verify
that mixCoflow can achieve significant improvement on the aver-
age CCT of non-deadline coflows, at no expense of increasing the
deadline miss rates of deadline coflows, when compared to the
state-of-art solutions.

Index Terms—Datacenter, deadline/non-deadline coflow, CCT,
lexicographical optimization.

I. INTRODUCTION

OVER the last decade, datacenter networks have witnessed
an increasing wave of popularity of the data-parallel
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applications (e.g., Web search queries and MapReduce-like
jobs) in dealing with the exponential growth of data [2], [3],
[4], [5], [6], [7]. A common feature of these applications
is that they generate a set of parallel flows to transfer the
intermediate data between successive computation stages—
known as cowflows [8]. A succeeding computation stage can-
not start until all its required inputs are in place, leading to an
all-of-nothing feature for a coflow: all flows must be completed
before a coflow is considered to be completed [7], [9].

In modern datacenters, coflows can be roughly divided into
two categories: deadline coflows and non-deadline coflows.
Deadline coflows are often generated by online service trig-
gered data-parallel jobs [8], [10], [11] or some mission-critical
analytics jobs [12], [13]. For example, in an analytics job
that monitors the user activity logs, the user of this job may
want to obtain the top-k popular URLs by the number of
clicks once every few seconds. Such stringent latency require-
ments will eventually enforce the underlying coflow to be
completed within a deadline. Such deadline coflows are use-
ful to the users if, and only if, they are completed within
their deadlines. Otherwise, the user experience will be hurt,
and this will, in turn, waste network bandwidth and incur
revenue loss for the datacenter provider. On the other hand,
non-deadline coflows, typically generated by cluster comput-
ing applications and data backups, have different performance
requirements [7], [8], [9], [14]. More specifically, they impose
no specific deadlines but generally desire to be completed as
quickly as possible. When the two types of coflows coexist in
a datacenter, an important problem is: how to schedule such
a mix of coflows, with guaranteeing deadlines for deadline
coflows and reducing CCTs for non-deadline coflows.

While recognizing the importance of such mix-coflow
scheduling problem, no existing solutions [7], [9], [14], [15],
[16], [17], [18], [19], [20], [21] are in place to optimize
the deadline and non-deadline coflows simultaneously. The
crux is that most of them only focus on optimizing one cat-
egory of the coflows, which may hurt the performance of
the other category of coflows. In other words, purely min-
imizing the CCTs of non-deadline coflows will cause high
rates of deadline misses for the deadline coflows. Meanwhile,
purely meeting deadlines of deadline coflows can arbitrar-
ily prolong the CCTs of non-deadline coflows. It is worth
noting that Varys [22] is perhaps the most related recent
work that takes both deadline and non-deadline coflows
into account. It separately designs two sets of strategies,
i.e., SEBF (Smallest-Effective-Bottleneck-First) and MADD
(Minimum-Allocation-for-Desired-Duration), to minimize the
average CCT and the number of late coflow. However, Varys
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essentially considers the two types of coflows independently
rather than jointly, even though Varys strategies are suited to
both deadline/non-deadline coflows.

Bearing the above points in mind, one may wonder at
this point that why not using Varys strategies to sched-
ule the deadline and non-deadline coflows simultaneously.
For example, one can schedule deadline coflows first with
SEBF+MADD, and then similarly use SEBF+MADD to
schedule non-deadline coflows with the residual network band-
width. However, such a trivial combination is problematic and
can hurt the CCTs of non-deadline coflows while incurring
minor or no improvement for the deadline miss rate. The main
reason is that Varys strategies are unaware of the bandwidth
footprint of deadline coflows, resulting in heterogeneous resid-
ual bandwidth in different time and links. More precisely, some
links may be congested and have little residual bandwidth,
while some others may go underutilized. In such a case, Varys
cannot fully utilize the residual bandwidth for scheduling the
non-deadline coflows, thus hurting the CCTs of non-deadline
coflows.

In this article, we study the mix-coflow scheduling problem,
with the objective of meeting the deadlines of deadline coflows
as well as reducing the CCTs of non-deadline coflows. To
this end, we present mixCoflow, a new optimization frame-
work that schedules the deadline coflows with minimal impact
on the non-deadline coflows. More specifically, rather than
directly considering one of the two types of coflows only,
mixCoflow schedules deadline coflows first since they have
higher priorities. But the thing is that when scheduling dead-
line coflows, mixCoflow attempts to minimize the impact on
the non-deadline coflows by minimizing the maximum band-
width usage of deadline coflows across all time slots and
all links. We develop the mathematical model and formulate
the deadline coflow scheduling problem as a lexicographical
min-max integer linear programming (ILP) problem, which
is inherently challenging to be resolved. Fortunately, after
taking an in-depth investigation of the structure of the ILP
problem, we observe that the original ILP problem meets
the following two conditions: 1) a separable convex objec-
tive function and 2) a totally unimodular constraint matrix.
These conditions guarantee that the original ILP problem can
be transformed into a linear programming (LP) problem, by
applying the λ-technique [23] and linear relaxation. It has
been proved that the transformed LP problem can be guar-
anteed to have the same solution to the original ILP problem.
Moreover, the transformed LP can be efficiently and quickly
solved with standard LP solvers. After the deadline coflows
are scheduled, the remaining bandwidth can be allocated to
the non-deadline coflows by using any existing methods such
as FIFO and SEBF+MADD.

The highlights of our original contributions in this article
are summarized as follows:

• We focus on the problem of scheduling a mix of coflows
with and without deadlines in a datacenter, to meet the
deadlines of deadline coflows while reducing the CCTs
of non-deadline coflows at the same time.

• We present mixCoflow, a new optimization framework
that schedules deadline coflows with minimal impact on

the CCTs of non-deadline coflows, by formulating and
solving a lexicographical ILP problem of minimizing the
maximum bandwidth usage over time and links.

• We conduct rigorous theoretical analysis to prove that the
original ILP can be non-trivially transformed into an LP
problem, which can be efficiently and quickly solved with
standard LP solvers and returns exactly the same solution
to the original ILP.

• We conduct large-scale simulations based on a widely
adopted Facebook data trace, to verify the performance of
our proposed mixCoflow. The simulation results demon-
strate that mixCoflow can speed up the average CCT
of non-deadline coflows by up to 9.35×, while incur-
ring no increase on the deadline miss rate for deadline
coflows.

The remainder of this article is organized as follows. In
Section II, we elaborate the problem this article addressed. In
Section III, we present the mathematical model and problem
formulation. In Section IV, we show the design details of our
mixCoflow. The extensive simulations are shown in Section V.
We discuss current limitations of our work and relevant future
research in Section VI. Finally, we discuss the related work
in Section VII and conclude this article in Section VIII.

II. PROBLEM STATEMENT

In this article, the problem we are trying to solve is: how
to schedule a mix of coflows with and without deadlines in
a datacenter network, with the primary objective of meeting
the deadlines of deadline coflows and reducing the CCTs of
non-deadline coflows at the same time.

Scheduling such mix-coflows is inherently challenging
because the performance requirements of the two types of
coflows are conflicting with each other. More specifically,
purely considering deadline coflows by aggressively using all
available bandwidth to transmit deadline coflows, will increase
the CCTs of non-deadline coflows. Even worse, purely con-
sidering non-deadline coflows will incur a high deadline miss
rate for deadline coflows. This implies that we cannot com-
plete one of the two types of coflows too aggressively or
mildly. From this point of view, one may question that we
can use Varys SEBF+MADD strategies to schedule the dead-
line coflows with the minimum possible bandwidth, such that
the non-deadline coflows can get more residual bandwidth.
Unfortunately, the residual bandwidth may turn out to be dif-
ferent across different time slots and different links. As such,
non-deadline coflows cannot make full use of the residual
bandwidth, as they usually have correlated data transmis-
sion across multiple links. Surprisingly, if we can minimize
the maximum bandwidth usage across all time slots and all
links after the deadline coflows are scheduled, the CCTs of
non-deadline coflows can then be minimally impacted.

For a better intuition of our problem, we show a motivating
example in Fig. 1. The example settings are shown in Fig. 1(a).
There are two links (i.e., L1 and L2), with each link having a
capacity of 800MB/s. We inject 4 coflows into this example,
of which two are deadline coflows (i.e., A and B) and the other
two are non-deadline coflows (i.e., C and D). Coflow A has
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Fig. 1. A motivating example to show why balancing the bandwidth usage incurred by the deadline coflows can speed up the transmission of non-deadline
coflows. (a) is the example setting. (b) When using Varys SEBF+MADD strategies to schedule both deadline/non-deadline coflows, the average CCT of the
non-deadline coflows is 203.125ms. (c) In contrast, when scheduling the deadline coflows by minimizing and balancing the bandwidth usage across time and
links, the average CCT of non-deadline coflows can then be reduced to 171.875ms.

two flows (i.e., A1 and A2) transmitted on links L1 and L2
respectively: the sizes and deadlines of both the two flows are
50MB and 125ms, respectively. Coflow B also has two flows
(i.e., B1 and B2) with the sizes and the deadlines of both the
two flows being 50MB and 250ms, respectively. Coflow C
only has one flow transmitted over the link L1, with the size
of 25MB. Coflow D has two flows D1 and D2 with the sizes
of 75MB and 100MB respectively.

Before showing the detailed scheduling results, we first pro-
vide a brief primer on the state-of-the-art Varys solution [22].
Varys first prioritizes coflows with the SEBF heuristic, and
then uses the MADD algorithm to sequentially allocate band-
width for each coflow based on its priority. SEBF greedily
schedules a coflow based on its bottleneck flow’s completion
time, while MADD allocates a coflow the least amount of
bandwidth to match the completion time of the bottleneck
flow that will take longest to finish or to attain the max-
imum possible progress. Formally speaking, defining Ri as
the remaining bandwidth on link i and di as the data vol-
ume that a coflow needs to transfer on link i, the maximum
attainable progress for this coflow can then be calculated as
mini :di>0 Ri/di . To achieve this maximum progress, MADD
will allocate di mini :di>0 Ri/di amount of bandwidth on link
i to this coflow. On the other hand, if a coflow has deadline t,
then MADD will allocate di/t amount of bandwidth on link
i to this coflow.

In this example, we first apply the SEBF+MADD strate-
gies to schedule the deadline coflows A and B, as shown in
Fig. 1(b). Under the SEBF heuristic, A will be prioritized
before B. Since A has deadline 125ms, MADD will allocate
400MB/s amount of bandwidth to each of the flows of it from
the very beginning to the deadline of this coflow. Similarly,
each flow of B can get 200MB/s amount of bandwidth. After
deadline coflows are scheduled, the residual bandwidth will be
allocated to the non-deadline coflows (i.e., C and D) by using
the SEBF+MADD strategies again. Following the policy of
SEBF heuristic, we should schedule the non-deadline coflows
with priority C > D. Because the priority of C is higher than
that of D, C will exclusively use the entire link L1, leaving the

other idle link to D. Unfortunately, without L1, D cannot gain
any progress because it needs to transfer data over L1. As a
result, MADD allocates no bandwidth to D until the coflow C
has been completed, and accordingly, the average of the two
non-deadline coflows is 203.125 ms.

From Fig. 1(b), we can observe that the bandwidth usage
caused by the deadline coflows is not well balanced across
time and links. As a result, the non-deadline coflows may
not have enough or more residual bandwidth, and hence
their CCTs can be negatively impacted. Surprisingly, if we
can minimize and balance the bandwidth usage of deadline
coflows, the impact on the CCTs of non-deadline coflows can
then be reduced. As shown in Fig. 1(c), when we sched-
ule A during [0, 125]ms and schedule B in the range of
[125, 250]ms, the resulting bandwidth usage can be balanced,
and the deadlines of both A and B can be satisfied. After
that, we similarly schedule the non-deadline coflows with the
SEBF+MADD strategies, the CCTs of C and D are 62.5ms
and 281.25ms, respectively. Accordingly, the average CCT of
the non-deadline coflows can be reduced to 171.875ms.

III. MODELING AND PROBLEM FORMULATION

In this section, we develop a mathematical model to study
the problem of minimizing and balancing the bandwidth foot-
print of deadline coflows, so as to minimize the impact
on non-deadline coflows and thus accelerate non-deadline
coflows.

A. Mathematical Model

In our analysis, we abstract the datacenter network as a
non-blocking switch interconnecting all the machines [14],
[22], [24], [25]. In other words, coflow scheduling and band-
width competition only take place at the ingress/egress ports
of this non-blocking switch, which corresponds to the incom-
ing/outgoing links at each machine. Such a network abstraction
is reasonable and has been widely used in many recent stud-
ies [14], [22], yet it is practical due to the recent full bisection
bandwidth topologies [26], [27].
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TABLE I
SYMBOLS AND DEFINITIONS

Important notations used throughout our model are listed in
Table I. In our mathematical model, we consider there are a
set of machines in a datacenter network, which is denoted by
N = {1, 2, . . . ,N }. We consider a discrete-time system and
consider that there are a set of time slots, denoted as T =
{1, 2, . . . ,T}. The rationales for such a discrete-time process
are two folds. First, the discrete-time model is widely adopted
in the network research community, especially in flow/coflow
scheduling [19]. Second, with a discrete-time system, one can
flexibly set the granularity of a time slot to control the amount
of data that can be transmitted in each time slot. At each time
slot t ∈ T , each machine is capable of transmitting C units
of data through its outgoing link and receiving C units of data
through its incoming link. Note that each unit of bandwidth
is considered to be 1. By doing this, the network operator
can have high flexibility to control the minimum size of one
data block that can be sent in the network. For example, the
operator can set such bandwidth unit to 1500B per time slot,
so as to make each data block to be a packet. Moreover, in
order to improve the overall throughput, one can also set the
bandwidth unit to 64KB or even a higher one, saying 100KB,
such that each block can carry more data. On the other hand,
assuming each unit of bandwidth to be 1 is also adopted in
existing literature, e.g., [19].

A coflow is a set of parallel flows, which can only be
considered to be completed after all its flows finish. As men-
tioned in the previous section, coflows can be divided into
deadline coflows and non-deadline coflows. Since the objec-
tive is to minimize the impact on the non-deadline coflows
when scheduling deadline coflows, we wish always to have
free bandwidth after deadline coflows have been scheduled.
So, in our mathematical model, we mainly consider the dead-
line coflows, and the non-deadline coflows can be scheduled
later with existing methods. To indicate the deadline coflows,
we denote K = {1, 2, . . . ,K} as the set of deadline coflows.
Let f k

i ,j denote a flow of deadline coflow k ∈ K that needs to

transfer Dk
i ,j units data from machine i to j. For each deadline

coflow k, we denote sk and dk as its start time and dead-
line, respectively. Similar to existing studies Varys [22], we
assume that all flows in a coflow start at the same time, and
the information about all the flows can be known once the
coflow has arrived at the network.

Decision variable: To indicate the coflow scheduling deci-
sion variable, we denote x k ,t

i ,j as the number of bandwidth

units allocated to flow f k
i ,j at time slot t. For simplicity, we

assume that each unit of bandwidth is 1, and thus the decision
variable x k ,t

i ,j is integer:

x k ,t
i ,j ∈ Z

+, ∀i , j ∈ N ,∀k ∈ K,∀t ∈ T (1)

Specifically, x k ,t
i ,j = 0 means that the flow f k

i ,j does not exist
or this flow is waiting for transmission.

Link capacity constraints: When scheduling coflows, both
the outgoing and incoming link capacities should be satisfied.
Thus, we have the following two constraints:

∑

k∈K

∑

j∈N
x k ,t
i ,j ≤ C , ∀i ∈ N ,∀t ∈ T (2)

∑

k∈K

∑

i∈N
x k ,t
i ,j ≤ C , ∀j ∈ N ,∀t ∈ T (3)

Constraint (2) means that the total amount bandwidth allo-
cated to all the flows on each outgoing link should be no
more than the capacity of this link in any time slot. Similarly,
for each incoming link, the summation of bandwidth allo-
cated to all the flows in any time slot must not exceed the
corresponding link capacity, as shown in constraint (3).

Deadline constraints: To meet the deadlines of deadline
coflows, each flow in a coflow should be completed within
the deadline. In our model, we consider that each flow can
only be transferred within the deadline because transmitting
a flow after its deadline is unnecessary. Hence, we have the
following two constraints:

dk∑

t=sk

x k ,t
i ,j = Dk

i ,j , ∀i , j ∈ N ,∀k ∈ K (4)

x k ,t
i ,j = 0, ∀i , j ∈ N ,∀k ∈ K,∀t ∈ T \ [sk , dk ] (5)

Here, the term
∑dk

t=sk
x k ,t
i ,j calculates the total amount of

data that flow f k
i ,i transmitted in the duration of [sk , dk ]. Thus,

constraint (4) means that each flow in a coflow should be
fully transmitted within its deadline. Constraint (5) is used for
eliminating the potential cases where a flow is still transmitting
after its deadline.

B. Problem Formulation

To formally formulate our problem of minimizing the maxi-
mum bandwidth usage incurred by deadline coflows across all
time slots and all links, we define Z as the maximum band-
width usage across all links and all time slots, which can be
expressed as follows:

Z = max
i ,j∈N ,t∈T

∑

k∈K
x k ,t
i ,j (6)

With the above definition, we are now ready to formulate our
optimal problem P1 as follows:

Minimize
x

Z
Subject to: Eqs. (1), (2), (3), (4), (5). (7)
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Fig. 2. Overview of mixCoflow optimization framework.

where the objective function (7) is to minimize the maxi-
mum bandwidth usage among all links in all time slots, which
means that each link has nearly balanced bandwidth usage in
each time slot. When the bandwidth usage can be well bal-
anced, non-deadline coflows can have more potential to be
accelerated.

The above problem is an integer linear programming (ILP)
problem, which is difficult to be resolved due to its min-max
objective and the discrete nature. One potential way to solve
it is to design some heuristics, which, however, suffers from
the optimality issue. One can relax the integer variable in this
ILP to a linear variable, and thus obtain a linear program-
ming problem that can be easily solved. Nevertheless, such
stiff relaxation also cannot obtain the optimal solution to the
ILP. To obtain the optimal solution of this ILP, we make a
surprising observation that this ILP can be transformed into
an equivalent linear programming (LP) problem, which returns
the same optimal solution to the ILP, as we will show in the
following section.

IV. THE DESIGN OF mixCoflow

In this section, we present the design of our mixCoflow.
As we can see from Fig. 2, mixCoflow transforms the rel-
evant ILP problem into an equivalent LP and solves this
LP to obtain the scheduling decisions for deadline coflows.
After that, mixCoflow simply employs existing scheduler
(e.g., SEBF+MADD [22]) for non-deadline coflows. LP-based
scheduler is the key step in mixCoflow optimization frame-
work; in what follows, we present how the ILP P1 can be
equivalently solved by a LP-scheduler.

Generally, an integer programm can be transformed into a
linear programm if the integer program has a separable convex
objective and totally unimodular linear constraints. The first
condition means that the objective function should be able to
be represented as a summation of multiple independent con-
vex functions with respect to a single variable. The second
condition implies that the coefficient matrix of the integer pro-
gram should be a totally unimodular matrix where all elements
must be chosen from {−1, 0, 1} and every square submatrix
has determinant 0, 1, or −1. Surprisingly, after taking an in-
depth of the structure of P1, we find that P1 exactly has such
properties.

A. Separable Convex Objective

We first present the following two definitions:
Lexicographical comparison: Given any φ ∈ Z

K and
ϕ ∈ Z

K , the elements in φ are sorted in a non-increasing order

and the elements in ϕ are also sorted in a non-increasing order.
If 〈φ〉1 < 〈ϕ〉1 or ∃k ∈ {2, 3, . . . ,K} such that 〈φ〉k < 〈ϕ〉k
and 〈φ〉i = 〈ϕ〉i , ∀i ∈ {1, 2, . . . , k−1}, then φ is lexicograph-
ically smaller than ϕ, i.e., φ ≺ ϕ. Similarly, if 〈φ〉k = 〈ϕ〉k ,
∀k ∈ {1, 2, . . . ,K} or φ ≺ ϕ, then φ is lexicographically no
greater than ϕ, i.e., φ 	 ϕ.

Lexicographical minimization: Let lexminx f (x ) denote
the lexicographical minimization of the vector f ∈ R

N , which
consists of N objective functions of x . More precisely, the
optimal solution x∗ ∈ R

K that achieves the optimal f ∗ must
have f ∗ = f (x∗) 	 f (x ), ∀x ∈ R

K .
With the above definitions, we now show that the optimal

solution of problem P1 can be obtained by solving the
following lexicographically minimization problem P2:

lexmin
x

ξ =
(
ξ1
1,1, . . . , ξ

1
N ,N , . . . , ξT

N ,N

)

Subject to: Eqs. (1), (2), (3), (4), (5), (8)

where ξt
i ,j =

∑
k∈K x k ,t

i ,j ∀i , j ∈ N ∀t ∈ T , and ξ is a vector
with the dimension of M = |ξ | = TNN . For this problem,
the objective is to minimize the element in ξ which is the
maximum bandwidth usage across all links and all time slots.
Therefore, the optimal solution x∗ that gives ξ∗ is also the
optimal solution for problem P1, i.e., denoted as P2 ⇒ P1.
To solve problem P2, Let g(ξ) denote a function of ξ :

g(ξ) =
M∑

m=1

M ξm =
∑

t∈T

∑

i∈N

∑

j∈N
M ξt

i,j (9)

where ξm is the m-th element of the vector ξ . We can easily
check that g(ξ) is a summation of convex functions M ξm , and
accordingly g(ξ) is also a convex function.

Theorem 1: g(·) preserves the order of lexicographically no
greater 	, i.e., ξ∗ 	 ξ ⇐⇒ g(ξ∗) ≤ g(ξ).

Proof: Here we first prove ξ∗ 	 ξ =⇒ g(ξ∗) ≤ g(ξ). We
assume r (r ≥ 1) is the index of the first non-zero element in
ξ∗ − ξ , which means that ξ∗i = ξi ∀i < r , ξ∗r < ξr . Then, we
have:

g(ξ∗) − g(ξ) =
M∑

m=1

M ξ∗m −
M∑

m=1

M ξm

= M ξ∗r +
M∑

m=r+1

M ξ∗m − M ξr −
M∑

m=r+1

M ξm

≤ (M − r + 1)M ξ∗r − M ξr

≤ M ξ∗r +1 − M ξr ≤ 0 (10)

With the above inequalities, we get ξ∗ 	 ξ =⇒ g(ξ∗) ≤
g(ξ). Now, we focus on the proof of g(ξ∗) ≤ g(ξ) =⇒ ξ∗ 	 ξ

through its contrapositive: ¬(ξ∗ 	 ξ) =⇒ g(ξ∗) > g(ξ),
here ¬(ξ∗ 	 ξ) ⇐⇒ ξ ≺ ξ∗, therefore, we should prove
ξ ≺ ξ∗ =⇒ g(ξ) < g(ξ∗), it can be easily proved by (10).
Hereto, theorem is proved.

Based on the above Theorem 1, we now formulate the fol-
lowing problem P3 that is equivalent to the problem P2, in
terms of the optimal solution:

Minimize
x

g(ξ)
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Subject to: Eqs. (1), (2), (3), (4), (5). (11)

Since ξ∗ is lexicographically minimization, we have ξ∗ 	
ξ ∀ξ . Using ξ∗ 	 ξ ⇐⇒ g(ξ∗) ≤ g(ξ), we can get the
fact that the minimum value of g(ξ) is g(ξ∗). Hence, P3
has the same optimal solution as problem P2, denoted as
P3 = P2.

B. Totally Unimodular Constraint Matrix

In addition to the separable convex objective, the totally
unimodular constraint matrix is an important factor that
enforces a LP problem to have integral solutions. More
precisely, denoting the feasible region of a LP problem as
{x |Ax = b} or {x |Ax ≤ b}, if the constraint matrix A
is totally unimodular and b is integral, then such feasible
region is an integral polyhedron and it only has integral
extreme points. Typically, an m-by-n matrix is a totally uni-
modular coefficient matrix, if it satisfies the following two
conditions:

1) All elements of this matrix are in the range of
{−1, 0, 1};

2) For any subset R ⊂ {1, 2, . . . ,m}, it can be divided into
two disjoint sets: R1 and R2, such that |

∑
i∈R1

aij −∑
i∈R2

aij |≤ 1 ∀j ∈ {1, 2, . . . ,n}.
The following theorem verifies that the coefficient matrixes
for all constraints in the original ILP problem exactly form a
totally unimodular matrix.

Theorem 2: The coefficient matrixes of the linear con-
straints (2), (3), (4) and (5) form a totally unimodular
matrix.

Proof: We observe that both the constraints (2) and (3) have
TN inequalities, while the constraint (4) has KNN equations
and the constraint (5) has NN

∑K
k=1(Sk − 1 + T − Dk )

equations. Denote Am×n as the coefficient of all of the
inequations and equations, where m = 2TN + KNN +
NN

∑K
k=1(Sk − 1 + T − Dk ), and n = KNNT. It should

be noted that n is the dimension of the variable x. We
can easily check that any element of Am×n is either 0 or
1, which means that the condition 1 can be satisfied. For
any subset R ⊂ {1, 2, . . . ,m}, we can select all the ele-
ments that belong to {1, 2, . . . , 2TN } to compose the set
R1, and let the rest of the elements compose the set R2.
It is easy to check that the summation of all rows of R1,
is a 1 × n vector with all elements equal to 2. Similarly,
the summation of all rows of R2, is a 1 × n vector with
elements equal to 1. Hence, we have

∑
i∈R1

ai ,j = 2 and∑
i∈R2

ai ,j = 1, Eventually, |
∑

i∈R1
aij −

∑
i∈R2

aij |≤
1 ∀j ∈ {1, 2, . . . ,n}, implying that the Condition 2 is
satisfied.

In summary, we have proved that both conditions for total
unimodularity are satisfied, thus the theorem is proved.

C. Transform to LP Problem

LP Formulation: Given convex function fi (ui ) ∀ui ∈ U ,
the broader class of problems of the form:

min
u

∑

i∈N
fi (ui )

s.t. Au ≤ b, u ≥ 0, u integer. (12)

where A is a totally unimodular matrix and b is integer. Using
λ-representation technique, we can transform problem (12) to
a linear programming problem [23]:

min
λ, u

∑

i∈N

∑

j∈U ⋂
Z

fi (j )λi ,j

s.t. Au ≤ b, u ≥ 0∑

j∈U ⋂
Z

λi ,j = 1, ∀i ∈ N

∑

j∈U ⋂
Z

jλi ,j = ui , ∀i ∈ N

λi ,j ∈ R
+ ∀i ∈ N , ∀j ∈ U ∩ Z (13)

which has the same optimal solution to problem (12).
Now, we transform problem P3 to a LP problem. Because

P3 is a convex problem and its coefficient matrix of linear
constraints (2), (3), (4) and (5) form a totally unimodular
matrix, with λ-representation technique, coincidentally, we can
transform problem P3 to a LP problem P4 as follows:

min
λ,x

∑

t∈T

∑

i∈N

∑

j∈N

∑

s∈S
M sλ

t ,s
i ,j

s.t.
∑

s∈S
λ
t ,s
i ,j = 1, ∀i , j ∈ N ,∀t ∈ T , S = [0,C ] ∩ Z

∑

s∈S
sλt ,s

i ,j = ξt
i ,j =

∑

k∈K
x k ,t
i ,j , ∀i , j ∈ N ,∀t ∈ T

λ
t ,s
i ,j , x

k ,t
i ,j ∈ R

+, ∀i , j ∈ N ,∀t ∈ T ,∀s ∈ S,∀k ∈ K
Constraints (2), (3), (4), (5).

(14)

where, problem P4 and P3 have the same optimal solution,
denoted as P4 = P3.

Theorem 3: Problem P4 has the same optimal solution with
problem P1.

Proof: we can get P4 = P3 and P3 = P2 from equa-
tions (14) and (11), respectively. We also have P2 ⇒ P1 due
to equation (8). Hence, we have:

P4 = P3 = P2 ⇒ P1, (15)

where P4 ⇒ P1, it means that the optimal assignment variables
x∗ that gives P4 is also the optimal solution for Problem P1.
Therefore, theorem is proved.

Given the above LP problem, mixCoflow can then sched-
ule the deadline and non-deadline coflows with the following
steps. First, whenever an existing deadline coflow completes,
or a new deadline coflow arrives, our mixCoflow will solve the
LP problem. As such, the amount of bandwidth that should
be allocated to all the deadline coflows over all time slots and
all links can be obtained. Second, mixCoflow will allocate the
remaining bandwidth resource to non-deadline coflows with
any existing method, such as FIFO and SEBF+MADD.

V. PERFORMANCE EVALUATION

In this section, we first evaluate mixCoflow by large-scale
simulations based on a real-world data trace collected from
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Facebook [28]. Summary of main results are highlighted as
follows:

• Using mixCoflow in comparison to Varys, non-deadline
coflows completes up to 9.35× faster, and at the same
time, ∼1% more coflows meet their deadlines.

• Compared to Varys, mixCoflow can maintain more bal-
anced bandwidth usage of deadline coflows across all
links and all time slots.

• mixCoflow can always achieve a lower average CCT as
well as a lower deadline miss rate than Varys, irrespective
of the total number of coflows, the coflow size, the coflow
width, and the inter-coflow arrival interval.

A. Trace-Driven Simulations

Simulation setup: We simulate a datacenter network with
150 machines. The incoming/outgoing link of each machine
is uniformly set to be 800Mbps, which is a common setting
in production datacenter [22].

Data trace: We use the Hive/MapReduce trace provided
by Facebook as the workload in our simulations, which is a
widely adopted trace in the existing studies [20], [22]. This
trace is from a 3000-machine 150-rack cluster and contains
526 coflows. In the original trace, all coflows are scaled down
to the rack-level. In other words, mappers in the same rack are
consolidated as one rack-level mapper, and so are the reducers.
Each line in the original trace contains: coflow id, arrival time,
number of mappers, location of each mapper, number of reduc-
ers, location of each reducer: shuffle megabytes fetched by this
reducer. We can easily check that each coflow in the original
trace only contains the whole data size that each reducer needs
to fetch. Hence, we uniformly sample the size for each flow
within it and accordingly obtain the information of all the
flows.

We use the entire data-trace in our simulation and divide
all the 526 coflows into two categories of coflows, i.e., dead-
line coflows and non-deadline coflows, by using a ratio. For
example, a ratio of 3:1 means that 75% of the 526 coflows
are deadline coflows, and the rest are non-deadline coflows.
Specifically, the deadline of each deadline coflow is set to be
its minimum completion time in an empty network multiplied
by (1 + U(0, x)), where U(0, x) is a uniformly random number
in the range (0, x). Unless otherwise specified, x = 1. Such
deadline settings are similar to the study of [22].

Comparing solutions: We compare the following schemes
with mixCoflow in our simulations. It should be noted that each
of the following schemes is only used to schedule the deadline
coflows rather than non-deadline coflows. For completeness,
after the deadline coflows are scheduled by each scheme, we
use SEBF heuristic to schedule the non-deadline coflows.

• FIFO (First-In-First-Out): schedules deadline coflows
based on their arriving times [9]. This scheme
aggressively takes all the bandwidth when scheduling
each deadline coflow, which may seriously impact the
CCTs of non-deadline coflows.

• EDF (Earliest-Deadline-First): all the deadline coflows
are scheduled in ascending order of their deadlines [29].
This scheme strictly prioritizes deadline coflows and

could complete a coflow far before its deadline, which
is actually unnecessary and may increase the CCTs of
non-deadline coflows.

• Varys: schedules deadline coflows with the Shortest-
Effective-Bottlence-First (SEBF) first, and then leverages
Minimum-Allocation-for-Desired-Duration (MADD) to
allocate bandwidth for each flow in a deadline
coflow [22]. This scheme uses the exactly right bandwidth
resources to guarantee the deadlines of deadline coflows.
However, it makes no attempt to balance footprint, and
thus may impact the non-deadline coflows.

Performance metrics: For deadline coflows, the primary
metric is the deadline miss rate, which is the percentage of
deadline coflows that miss their deadlines. For non-deadline
coflows, we define the factor of improvement in the average
CCT (coflow completion time) as the primary metric. More
specifically, the factor of improvement of scheme 1 compared
to scheme two can be calculated as

Factor of Improvement =
CCT2

CCT1
(16)

where CCT1 and CCT2 are the average CCTs achieved by
scheme 1 and scheme 2, respectively. If the factor of improve-
ment is greater than 1, then scheme 1 achieves a lower average
CCT than scheme 2: the larger the factor of improvement, the
more performance gain scheme 1 can achieved, compared to
scheme 2. On the other hand, if such factor is less than 1,
then scheme 2 can do better in reducing average CCT than
scheme 1.

For deadline coflows, we mainly show the results on the
deadline miss rate. For non-deadline coflows, we mainly
present the results of the factor of improvement on the average
CCT. Detailed simulation results are shown as follows:

1) Deadline Miss Rate: As aforementioned, deadline
coflows are mission-critical and are only useful to the appli-
cations when they are completed before their deadlines. By
varying the percentage of deadline coflows from 10% to 100%,
we show the deadline miss rates achieved by different meth-
ods in Fig. 3. It is easy to find that our mixCoflow incurs a
lower deadline miss rate than the FIFO method, under all the
settings of the percentages of deadline coflows. The root cause
is that FIFO does not consider the deadlines, yet it may finish
individual flows quickly while it is unaware of the progress
of their corresponding coflows, thus leading a high deadline
miss rate. On the other hand, we can further observe that mix-
Coflow incurs more or less deadline miss rate, compared to
the EDF scheme. This is because that EDF aggressively takes
all the bandwidth to complete deadline coflows. And that’s
why the CCTs of non-deadline coflows will be hurt after the
deadline coflows are scheduled with EDF (we will show this
point later). As for the Varys scheme, our mixCoflow can enjoy
a little benefit on the deadline miss rate. The root reason is
that Varys embraces a complicated admission control mecha-
nism and heuristically allocates bandwidth to deadline coflows
based on current remaining bandwidth resource, making it easy
to overlook the optimal allocation. By contrast, our mixCoflow
determines whether to admit a deadline coflow purely based on
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Fig. 3. The deadline miss rate under different percentages of deadline
coflows. Y-axes are in logarithmic scale.

Fig. 4. The factor of improvement in the average CCT of non-deadline
coflows. Y-axes are in logarithmic scale.

the entire network capacity and hence more deadline coflows
can be accommodated.

2) Factor of Improvement: After deadline coflows are
scheduled, the remaining bandwidth resource can be used for
the non-deadline coflows. As aforementioned, the scheduling
of deadline coflows will impact the CCTs of non-deadline
coflows. We, therefore, use the factor of improvement in the
average CCT of non-deadline coflows to show that our mix-
Coflow can efficiently reduce such impact. We show the factor
of the improvement in the average CCT in Fig. 4, with varying
percentages of deadline coflows. It is clear that our mixCoflow
can reduce the average CCT of non-deadline coflows, com-
pared to all the other comparison methods. Especially, when
the percentage of deadline coflows is 80%, our mixCoflow can
improve the average CCT by up to 18.18×, 20.24×, 9.35×,
when compared to FIFO, EDF and Varys schemes, respec-
tively. To note that, mixCoflow brings such high improvements
in the average CCT of non-deadline coflows because it makes
efforts to minimize and balance the bandwidth usage of dead-
line coflows over all time slots and all links. As a result, the
non-deadline coflows can be minimally impacted, and thus the
average CCT can be significantly reduced (we will show this
point in Section V-A6). One may wonder at this point that why
the factor of improvement equals to 1 when there are no dead-
line coflows. This is because that all schemes (including the
comparison schemes and mixCoflow) use the same heuristic
(i.e., SEBF) to schedule the non-deadline coflows, but using
different methods to schedule deadline coflows.

3) Remaining Bandwidth: It is important to keep in mind
that the key idea of this article is to schedule deadline coflows

Fig. 5. The remaining available bandwidth on all links and all time slots.

Fig. 6. The CDF of the rest bandwidth on all links and all time slots.

with minimal impact on non-deadline coflows by balancing
and minimizing the bandwidth footprint of deadline coflows
over all time slots and all links. To completely understand this
point, we record the remaining bandwidth on each link at each
time slot when the deadline coflows have been scheduled. To
ease the presentation, we mainly present the average remaining
bandwidth across all links in a scenario where the percentage
of deadline coflows is 75%, as shown in Fig. 5. From this
figure, we can observe that mixCoflow has more remaining
bandwidth than FIFO, EDF, and Varys schemes most of the
time. Moreover, the remaining bandwidth incurred by mix-
Coflow is more balanced than the other compared methods.
This is why mixCoflow can achieve a low average CCT of
coflows.

To understand on a microscopic level, we also plot the CDF
of the remaining bandwidth across all time slots and all links
in Fig. 6. We can clearly find that the curve of mixCoflow is
lower than each of the curves of the other comparison schemes.
This implies that mixCoflow can leave more bandwidth to
non-deadline coflows after the deadline coflows have been
scheduled. We can further observe that the curve of mixCoflow
maintains at a very low value and grows slowly at the begin-
ning, and then quickly converges to 1. More precisely, under
mixCoflow, most of the values of the remaining bandwidths
can be maintained around a value (i.e., 100MB/s) except only
a little portion of such values. Such property essentially means
that our mixCoflow can achieve a more balanced bandwidth
usage.

4) Comparison With Scheme Scheduling a Mix of Flows:
Our mixCoflow schedules a mix of coflows with and without
deadlines. One may wonder if mixCoflow can outperform a
scheme that schedules a mix of individual flows with and
without deadlines. To answer this query, we construct a
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Fig. 7. The comparison of the deadline miss rate of deadline coflows and
average CCT of non-deadline coflows achieved by mixCoflow and Mix-Flow.

scheme called mixFlow. This scheme leverages the Shortest-
Remaining-Time-First (SRTF) to schedule deadline flows
and then uses the Shortest-Flow-First (SFF) to schedule
non-deadline flows, which is conceptually equivalent to
Karuna [30]. We conduct an experiment to compare our
mixCoflow with mixFlow. The workload is still Facebook
data-trace. The deadline for each flow is set to the deadline of
its parent coflow. Fig. 7(a) first shows the deadline miss rates
achieved by both mixCoflow and mixFlow under different
percentages of deadline coflows. It is clear that mixCoflow
can always achieve a lower deadline miss rate than mixFlow.
We can further observe that the deadline miss rate incurred
by mixFlow increases as deadline coflows increase while
our mixCoflow remains relatively a stable deadline miss
rate. The root cause for such high deadline miss rate of
mixFlow is that mixFlow does not take into account the
flow dependency semantics in a coflow, and thus some flows
in a coflow can meet deadlines while some others cannot,
leading to this coflow miss deadline either. Fig. 7(b) further
presents the factor of improvements of mixCoflow over
mixFlow, in the average CCT of non-deadline coflows, with
varying ratios of deadline coflows to non-deadline coflows.
We can easily check that mixCoflow outperforms mixFlow
as the factor of improvement is always larger than 1. With
further observations, the factor of improvement can be up to
133.1, while the average of all the factors of improvement is
76.95. The reason is still that mixFlow favors only the small
flows irrespective of the progress of their parent coflows. In
summary, compared to mixFlow, mixCoflow can make more
deadline coflows meet deadlines while reducing the average
CCT of non-deadline coflows.

5) LP Solver Efficiency: The dominant overhead of our
mixCoflow is caused by solving the relevant LP problem P4.

Fig. 8. Computation time of Problem P4.

Fig. 9. The Avg. CCT of non-deadline coflows on the different Jain’s fairness
index.

One may question if solving the LP will incur high schedul-
ing latency and hurt the performance of deadline coflows.
To answer this question, we conduct an experiment to show
the running time of computing the LP decision. We use the
MOSEK solver [31] on a standard computer with 2.70GHz
Intel Core i7-7100U CPU (64-bit) and 16G of main memory.
The algorithm used in this solver is the interior point method,
which has a time complexity of O(n3.5L2). Here, n is the
dimension of the decision variable, and L is the number of
variables; the two numbers are 4 and KNNT, respectively, cor-
responding to our LP problem P4. We evaluate the time to
solve the LP problem P4 under different number of coflows
and servers. Note that after an in-depth analysis of the data-
trace provided by Facebook, we observe that the number of
concurrent coflows is at most 10 at any given time. Hence,
we only focus on scenarios with concurrent coflows being no
more than 10. The results are shown in Fig. 8. It is clear
that the running time increases with the number of coflows
increase as well as with the increase in the number of servers.
More specifically, it takes about 2.444 seconds to solve the
LP problem when there are 10 concurrent coflows and 150
servers. This is a relatively small time as compared to the
coflow deadlines, which can range from 10 to 3629 time slots,
while the length of each time slot is 1 second. It should be
noted that such efficiency is because we transform the original
ILP into the equivalent LP. For problems with more coflows
and larger network size, one can use some commercial solvers
CPLEX [32], which can return the LP results in 1-2 seconds.

6) Effectiveness of Balancing Bandwidth Usage: As afore-
mentioned, our mixCoflow schedules the deadline coflows
with the object of minimizing and balance their bandwidth
usage over time and links. To demonstrate that such bal-
anced bandwidth usage of deadline coflows can benefit non-
deadline coflows, we conduct an experiment by scheduling
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Fig. 10. The impact of Coflow Number.

non-deadline coflows under varying imbalanced bandwidth
usage. To indicate the balancing level of the bandwidth usage,
we introduce the Jain’s fairness index [33]. Assume that
wi ,j (t) is the bandwidth usage of link (i, j) at t. Then, the
Jain’s fairness index of bandwidth usage of all links at t is

defined as F (t)=
(
∑

i,j wi,j (t))
2

|w |·∑i,j wi,j (t)2
where |w | is the number of

all links. Clearly, F(t) is a value less than 1, and a value closer
to 1 means the bandwidth usages are more balanced. Fig. 9
shows the average CCT of non-deadline coflows under dif-
ferent Jain’s fairness index of bandwidth usage of deadline
coflows. From this figure, we observe that the average CCT
of non-deadline coflows decreases as the Jain’s fairness index
increases. This directly demonstrates that balancing the band-
width usage of deadline coflows can promote the completion
of non-deadline coflows. We can further observe that the aver-
age CCT under a high Jain’s fairness index (e.g., 1) can be
reduced by up to 80.4%, compared to that under a low Jain’s
fairness index (e.g., 0.6).

B. Impact of Coflow Parameters

Coflow parameters may affect the performance of our mix-
Coflow. For example, a dumpy coflow may occupy more
ports/links than a lanky coflow; a large coflow requires more
bandwidth than a short coflow. Considering these factors, we
mainly evaluate 4 types of coflow parameters: the total number
of coflows, the coflow size (i.e., the total amount of data in
a coflow), the coflow width (the total number of flows in a
coflow), and the inter-coflow arrival interval. Note that in this
part, we randomly generate traffic for coflows. Moreover, even
though the same set of coflow parameters may be taken in
each group of experiments, the coflows may have different flow
size distribution. Unless otherwise specified, the percentage of
deadline coflows is set to be 75% for the following simulations.

Fig. 11. The impact of Coflow Size.

1) The Total Number of Coflows: We first evaluate the
impact of the total number of coflows on the performance
of our mixCoflow. When doing this part of the evaluation,
we fix the other parameters, i.e., setting the coflow size, the
coflow width, and the mean inter-coflow arrival interval as
5GB, 100, 100ms, respectively. We then compare different
coflow scheduling schemes under different numbers of coflows
and plot the results in Fig. 10.

Fig. 10(a) first shows the deadline miss rates for different
schemes. As we can see from this figure, the deadline miss
rates for all schemes increase with the growth of the num-
ber of coflows. In general, mixCoflow can achieve a lower
deadline miss rate than FIFO and Varys, while incurring a lit-
tle more deadline miss rate than EDF when the number of
coflows increases to 80. The underlying reason is that EDF
uses the entire network bandwidth whenever it schedules a
deadline coflow, while our mixCoflow only allocates the least
amount of bandwidth to complete a coflow within the deadline
and can leave more bandwidth to non-deadline coflows than
EDF. That’s why EDF will slow down the completion of the
non-deadline coflows (as we will show later in Fig. 10(b)).
In Fig. 10(b), we can observe that the factor of improvement
has a declining trend with the growth of the coflow num-
bers. This is because an increase in the deadline miss rates
can lead to more remaining bandwidth for the non-deadline
coflows. We also find that the factor of improvement achieved
by mixCoflow can be up to 2.07×, 2.07×, and 1.24×, com-
pared to FIFO, EDF, and Varys schemes, respectively. The
above results verify that our mixCoflow can reduce the CCTs
of non-deadline coflows while guaranteeing the deadlines of
deadline coflows, irrespective of the total number of coflows.

2) The Coflow Size: Now, we fix the coflow number, the
coflow width, and the mean inter-coflow arrival interval to be
100, 100, and 100ms, respectively, and evaluate the impact
of the coflow size on the performance of mixCoflow. The
simulation results are presented in Fig. 11.
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Fig. 11(a) first shows that the deadline miss rate increases
with the increase of the coflow size. This is reasonable because
the total network capacity remains unchanged in different
coflow sizes. The larger the coflow size, the more load in the
network, and eventually, the larger the deadline miss rate will
be incurred. However, mixCoflow maintains a lower deadline
miss rate than all the other comparison schemes, such as FIFO,
EDF, and Varys. One may wonder at this point why Fig. 10(a)
and Fig. 11(a) show different deadline miss rate for the same
set of coflow parameters: number of coflows=100, size=5GB,
width=100 and arrival interval=100ms. The root reason lies
in the fact of random traffic generation. The coflows may
have relatively balanced flow size distributions in Fig. 10(a)
while exhibiting skewed distributions in Fig. 11(a). In addi-
tion, for different coflow sizes, Fig. 11(b) shows mixCoflow
can improve the factor of improvement in the average CCT
by up to 8.38×, 8.38× and 1.2×, compared to FIFO, EDF
and Varys. These results have demonstrated that mixCoflow
can always outperform the other schemes, irrespective of the
coflow size.

3) The Coflow Width: In this part of the simulation, we fix
the coflow number, the coflow size, and the mean inter-coflow
arrival interval to be 100, 5GB, and 100ms, respectively. We
conduct simulations to evaluate the impact of the coflow
width, which is the number of the individual flows in each
coflow. As shown in Fig. 12(a), the deadline miss rate has
an increasing trend with the increase of the coflow width.
Moreover, mixCoflow can achieve the lowest deadline miss
rate among all of the scheduling schemes, across all the set-
tings of coflow widths. In Fig. 12(b), we can further find that
mixcoflow improves the factor of improvement in the aver-
age CCT by 1.35×, 1.39× and 1.25×, when compared with
FIFO, EDF and Varys schemes, respectively. These results
effectively verify that mixCoflow can reduce the average CCT
of non-deadline coflows, regardless of the coflow width.

4) The Inter-Coflow Arrival Interval: Similarly, we fix the
coflow number, the coflow size, and the coflow width to be
100, 5GB, and 100, respectively. Note that the mean inter-
coflow arrival interval is set to be a fixed, and we investigate
the intervals from 0 to 2000ms. The impact of the intervals
on the performance of our mixCoflow is plotted in Fig. 13.
First, in Fig. 13(a), we can see that under each scheduling
scheme, the deadline miss rate decreases with the increasing
of the inter-coflow arrival intervals. Moreover, we can further
observe that mixCoflow can achieve a relatively low deadline
miss rate for most settings of the intervals. When considering
the CCTs of non-deadline coflows, we can find that mixCoflow
can improve the factor of improvement in the average CCT
by up to 7.72×, 7.72× and 1.45×, compared to FIFO, EDF
and Varys schemes, respectively, as shown in Fig. 13(b). The
reason is that mixCoflow is able to efficiently balance the band-
width usage across all links and all the time slots. In this
way, mixCoflow can reduce the average CCT of non-deadline
coflows.

VI. DISCUSSION

Unknown Coflow Size: Coflow size may not be avail-
able [14], but only limited to non-deadline coflows. This is

Fig. 12. The impact of Coflow Width.

Fig. 13. The impact of Inter-Coflow Arrival Interval.

because that for most applications, if the flows have dead-
lines, then these flows’ sizes can also be known [30]. So,
we can still minimize and balance the bandwidth footprint
for deadline coflows. As such, it remains only to see how to
schedule the non-deadline coflows with unknown sizes. One
straightforward approach is to leverage the Least-Attained-
Service-First (LASF) scheduling [14] policy, which, however,
may lead to inferior performance. One better way for schedul-
ing non-deadline coflows without size information would be to
leverage some ensemble learning or even advance deep learn-
ing models to predict the coflow size first [34], [35] and then
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apply SEBF+MADD strategy for scheduling. We leave this
point as one direction of our future work.

Heterogeneous Link Capacity: So far, we only focus on
homogeneous clusters where the incoming/outgoing links have
the same bandwidth capacity. However, datacenter-scale clus-
ters may contain a mix of high-performance and low-power
servers of disparate hardware architectures [36], leading to
heterogeneous capacities in the incoming/outgoing links of
servers. In this case, our solution can work, as well. First,
we can reformulate the problem by replacing the homoge-
neous link capacities in constraints (2) (3) with heterogeneous
capacities. Then, it can easily be checked that the new for-
mulation can still satisfy the separable convex objective and
totally unimodular linear constraints, meaning that it can still
be transformed into an LP.

Practicality issues: Our mixCoflow may not suffer from
serious practicality issues. On the one hand, the dominant
overhead of mixCoflow lies in solving the LP, which actu-
ally takes negligible time compared to the CCT of a coflow.
On the other hand, to enable deadline coflows can go ahead
of non-deadline coflows, we can leverage the priority queues
existed in most commodity switches. For example, we can tag
the header of the packets of the deadline coflows with a high
priority and configure a low priority for non-deadline coflows.
In this way, the packets of deadline coflows will always be pri-
oritized over that of non-deadline coflows in the network. In
addition, to enforce each flow to be sent with computed rate,
one can also leverage the Linux Traffic Control to perform
per-flow rate-limiting.

Coflow Deadline Miss Rate Reduction: Although we spent
a lot of effort to meet the coflow deadline, the coflow dead-
line miss rate can not be as low as 0. To further reduce the
deadline miss rate, one can introduce a slack for the deadline
coflows, as similar to [12]. For example, if the real deadline
of a coflow is 50 seconds and the slack is 10 seconds, then
we use 40 seconds as the deadline in our LP formulation.
On the other hand, one may still want to use the coflows
that slightly miss its deadline. In this case, we can relax the
deadline of a coflow to a relatively larger value based on its
coflow size and let the larger coflow to get a larger extension
in its deadline. For example, if the deadline of a coflow is
50 seconds and its size is 100 MB, then we can introduce a
relax factor (e.g., 0.01 second/MB) and extend its deadline to
50 + 0.01 ∗ 100 = 51 seconds.

VII. RELATED WORK

mixCoflow focuses on jointly scheduling deadline and non-
deadline coflows in a datacenter, with the objective of meeting
deadlines of deadline coflows while reducing the CCTs of
non-deadline coflows. There is a large body of recent work
that optimizes the performance of deadline or non-deadline
traffic. In this section, we only discuss some closely related
ones.

Flow-level scheduling: Researchers have made continuous
efforts on flow-level scheduling. For flows without deadline
requirements, existing methods largely focus on minimiz-
ing the flow completion times. For instance, DCTCP [10]

and HULL [37] reduce switch queue occupancy to shorten
flow completion time by dynamically adjusting sending win-
dows based on the level of congestions. pFabric [24] tags
each packet a priority based on the remaining flow size
and then schedules packets in the order of least remain-
ing size at the switches. For the flows to be completed
within deadlines, D3 [11] and D2TCP [38] incorporate
deadline-awareness into rate-control techniques. Taking a step
further, PDQ [39] emulates an earliest deadline first strat-
egy by enabling preemptive scheduling. These approaches
are effective in guaranteeing deadlines for individual flows.
However, they are insufficient in providing deadline guar-
antees for coflows. The crux is that these approaches are
likely to result in a case where the slowest flow in a coflow
misses the deadline while most of the others meet the dead-
line. This case prevents the whole coflow from finishing
on time. Hence, lacking coflow-level information, the above
approaches cannot guarantee coflow deadlines. There are also
some solutions on scheduling a mix of flows with and with-
out deadlines [30], [40] as well as the solutions on providing
performance guarantee for individual flows or even the upper-
layer jobs [41], [42], [43], [44], [45]. However, all of them
are coflow-agnostic.

Coflow-level scheduling: Existing work on coflow schedul-
ing can be categorized into two categories: guaranteeing
deadlines for deadline coflows and reducing CCTs for non-
deadline coflows. For guaranteeing coflow deadlines, existing
work mainly focuses on decreasing coflow deadline miss
rate [21], [22]. For example, Varys [22] first leverages an
admission control mechanism to reject coflows whose min-
imum possible CCT exceeds their deadlines. Then, Varys sep-
arately design two sets of strategies (i.e., SEBF and MADD)
to schedule the admitted coflows. Taking one step further,
Chronos [21] combines priority-based scheduling and limited
multiplexing techniques to allocate bandwidth for coflows to
just finish on time. However, these works are unaware of the
bandwidth footprint of deadline coflows over time, and thus
they will hurt the performance of non-deadline coflows. On
the other hand, for reducing CCTs for non-deadline coflows,
the typical research works (e.g., [14], [15], [16], [19], [20],
[22], [46], [47], [48], [49]) mainly apply simple heuristics,
such as FIFO, EDF, MRTF (Minimum-Remaining-Time-First),
x-Approximation and SEBF, to schedule non-deadline coflows.
While these works are efficient in reducing the CCTs of
non-deadline coflows, they do not consider deadline coflow
scheduling. The main difference between our mixCoflow and
the above existing works lie in that mixCoflow jointly consider
the deadline and non-deadline coflows, yet is able to reduce
the impact on the non-deadline coflows when scheduling
deadline coflows.

VIII. CONCLUSION

In this article, we present mixCoflow, a new coflow-
aware optimization framework that jointly schedules a mix of
coflows with and without deadlines. When scheduling dead-
line coflows, mixCoflow attempts to minimize and balance the
bandwidth footprint across time slots and all links, so as to
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leave more bandwidth for non-deadline coflows and reduce
the impact on the CCTs of non-deadline coflows. Specifically,
in mixCoflow, we formulate a lexicographical min-max ILP
problem for scheduling deadline coflows. With several steps
of non-trivial transformations, we prove that the optimal solu-
tion to this ILP can be obtained by solving an equivalent LP
problem. In such a case, mixCoflow can schedule the dead-
line coflows by solving the relevant LP problem and leave the
remaining bandwidth for non-deadline coflows, which can be
scheduled with any existing methods. Extensive trace-driven
simulations demonstrate that our mixCoflow can significantly
reduce the CCTs of non-deadline coflows without incurring
increasing on the deadline miss rate for the deadline coflows
when compared to the prevailing solutions.
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