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Abstract—Today’s data center jobs typically follow a coflow
model. Each coflow consists of multiple concurrent data flows,
while each job is comprised of multiple coflows. Only completing
all flows in all coflows is meaningful to a job. To guarantee the job
completion time, job deadlines and coflow dependencies must be
jointly considered. However, existing solutions mainly consider
the coflow scheduling, which are insufficient to guarantee the
completion time of jobs with multiple dependent coflows. In
this paper, we study the dependent coflow scheduling problem
with constraints on job deadlines. Specifically, we formulate
a deadline- and dependency-aware optimization problem, and
accordingly propose a two-level scheduling method to solve
this problem. The first level is to schedule at the job level
with a most-bottleneck-first heuristic algorithm. The second
level is an intra-job scheduling, which seamlessly combine a
prioritized scheduling and a weighted fair scheduling, with the
aim of accounting for different coflow dependencies. We conduct
comprehensive simulations to evaluate the performance of our
two-level scheduling method. Extensive results show that our
scheduling method can reduce the job completion time by up
to 18%, and accommodate 21% more jobs with deadlines guar-
anteed, compared to the conventional shortest-job-first method.

I. INTRODUCTION

Data centers have become the major computing platforms

for a growing number of data-intensive jobs, such as MapRe-

duce [1], Dryad [2] and Spark [3]. Many of these jobs typically

have structured communication pattern, in which a group of

data flows need to pass through a sequence of intermediate

computation stages before generating the final results. These

intermediate flow transfers can account for more than 50% of

job completion time, and ultimately make these data-intensive

jobs become network-bound [4]. In such a case, an emerging

problem of scheduling such intermediate flow transfers is

becoming increasingly important for job completion time.

Recent studies by Chowdhury et al. [5, 6] have shown that

scheduling those flow transfers at the level of coflow rather

than the individual flow level can bring potential benefits

for job completion time. The coflow is defined as the set of

concurrent flows transferring between two computation stages

of a job. Such coflow abstraction builds upon the all-of-nothing
property observed in many of the data-parallel computing

jobs—all flows must be finished before the coflow is consid-

ered to be completed. From a job’s perspective, the coflow

abstraction can account for the job-specific communication

requirements, and provides opportunities to decrease the job

completion time by optimizing such coflow’s completion time.

Simply optimizing such coflow transfers for decreasing job

completion time encounters two significant challenges from a

practical application point of view. First, many of these data-

intensive jobs are composed of multiple computation stages

with complex traffic interactions. For example, in pipelining

jobs (e.g., Dryad [2], SCOPE [7], MapReduce Online [8]), or

jobs with explicated barrier and iterative computation require-

ments (e.g., Spark and its variants [9, 10], Pig[11], Hive[12]),

multiple computation stages should be successfully executed.

And the intermediate flow transfer issued by a computation

stage depends on whether it has been generated by this

stage. Nevertheless, such generation actually depends on the

completion of flow transfer issued by the prior computation

stage. This eventually leads to the dependencies between

coflows of a job, and thus scheduling at the coflow level may

not always result in faster job completion time. Second, many

of those jobs have strong deadline requirements, especially in

the cloud computing environments (e.g., Amazon EC2 [13]

and Microsoft Azure[14]) where tenants renting the virtual

machines based on the time they used. For instances, in the

well-known Interactive Analytical Processing jobs or the On-

Line Analytical Processing jobs, complex queries need to be

processed with temporal requirements [15]. These jobs typical-

ly need the results being generated before their pre-specified

temporal deadlines. So, if the job scheduling policies are

unaware of such temporal deadlines, jobs may suffer unpre-

dictable performance, which directly impacts the payment of

the job sponsors (tenants in the cloud). Bearing these points in

mind, we believe that job deadlines and coflow dependencies

must be jointly considered, so that the job completion time can

have a chance to be guaranteed. However, existing solutions

for network flow optimization have significant limitations.

Some of them may provide deadline guarantees on the flow

scheduling, but are coflow-agnostic; existing solutions on

coflow optimization may reduce the coflow completion time,

but they are unaware of the coflow dependencies.

In this paper, we focus on scheduling the dependent coflows

with the primary objective of guaranteeing the deadlines of

jobs. Specifically, we formulate a deadline- and dependency-

aware optimization problem. With this optimization, we incor-

porates various coflow dependencies, taking into account prac-

tical constraints of both link capabilities and job deadlines. To

solve this problem, we present a two-level scheduling method.

At the first level, we present a most-bottleneck-first heuristic

algorithm to schedule at job-level. At the second level, we
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seamlessly combine a prioritized scheduling and a weighted

fair scheduling. This level can account for both strong and

weak dependencies between coflows. Finally, we conduct

comprehensive simulations to evaluate the performance of

our proposed method. Simulation results have shown that our

proposed scheduling method can reduce the job completion

time by up to 18% and at the same time, can accommodate

21% more jobs with deadlines guaranteed, compared to the

traditional shortest-job-first method [16].

In summary, our main contributions are as follows:

1) we observe that deadlines and coflow dependencies

must be jointly considered, in order to guarantee the

completion of today’s data center jobs, and accordingly

formulate an optimization problem.

2) We propose a two-level scheduling method to solve the

problem. The first level is to schedule at the job level

with a most-bottleneck-first heuristic algorithm. The

second level is an intra-job scheduling performed upon

a dependency graph. This level seamlessly combines a

prioritized scheduling and a weighted fair scheduling,

and can account for different coflow dependencies.

3) We conduct comprehensive simulation to show the ef-

ficiency of our proposed two-level scheduling method,

with respect to the job completion time and the ratio of

jobs with deadlines guaranteed.

The rest of our paper is organized as follows. We describe

the model of data center network and problem formulation in

Section II. In Section III, we propose a two-level scheduling

method, which are the main contribution of this paper. Then,

we conduct series of formulation experiments to evaluate

the performance of our algorithm in Section IV. Section V

summarizes the related work. Finally, we conclude this paper

in Section VI.

II. SYSTEM MODEL

We first describe the model of data center network in this

section, and then present the problem formulation.

A. Data Center Network Model

In our analysis, we abstract the entire data center fabric

as a non-blocking switch interconnecting all the servers. This

abstraction has been widely used for simple, yet practical

design of flow scheduling in data center networks [6, 16, 17].

The key insight is that existing works such as multi-path

routing (e.g., [18]) and multi-tree topologies (e.g., [19, 20])

have considerably improved bisection bandwidth, and the

recent techniques can actually enforce the edge constraints

into the network [21, 22]. So, we only need to focus on a full

bisection bandwidth network where the physical bandwidth of

servers can be fully utilized without considering the bottleneck

links inside the data center.

In this paper, we consider a data center consisting of M
servers, as shown in Fig. 1. Let M = {s1, s2, · · · , sM}
denote the set of servers in the data center. Each server sm is

connected to a non-blocking switch via dedicated uplink soutm
and downlink sinm . To indicate the link bandwidth capacity,
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Fig. 1. Data center network model, where all servers are connected to a
non-blocking switch.

let U inm and Uoutm denote the bandwidth capacities for sinm
and soutm , respectively. In such a case, the only sources of

contention take place in these uplinks and downlinks when

given a set of jobs in a certain time period. To more precisely

capture this point, let [Γ0,Γ1] be a fixed time interval, during

which a set J = {J1, J2, · · · , JJ} of jobs has to be handled.

As aforementioned, jobs in the cloud have strong deadline

requirements, and important jobs have shorter deadlines in

comparison to less urgent jobs. To capture such deadline

diversity, let Di denote the pre-specified deadline by job Ji.
Specifically, let ti represent the start time of Ji. Accordingly,

each job Ji ∈ J must be completed within the time interval

[ti, Di]. It should be noted that the constraint Γ0 ≤ ti <
Di ≤ Γ1, ∀Ji ∈ J should be satisfied when jobs specify the

corresponding deadlines. Otherwise, jobs will be considered

not must to be handled in the interval [Γ0,Γ1], and will be

either rejected or shifted to the next time interval. Let Ti
denote the time at which Ji is completed.

As we know, many jobs involve multiple computation

stages. Due to the complex traffic interaction between these

stages, multiple coflows can be generated by a job. So, let Ci
denote the coflow set of job Ji. Specifically, let ci,u represent

the u-th coflow of job Ji. Let di,um,n denote the amount of data

belonged to ci,u, that needs to be transferred from server sm
to server sn. The corresponding bandwidth allocated to such

data transfer di,um,n at time t is denoted by ri,um,n(t), which is the

decision variable throughout this paper. Given the coflow set

of each job, each server actually host a set of jobs that desire

the ingress/egress bandwidth on this server. More precisely,

let Jsoutm
and Jsinm denote the collections of jobs on both

the uplink soutm and downlink sinm , respectively. Recall that a

coflow contains multiple parallel flows [5],everyone of which

needs to be finished before the coflow is considered to be

completed. From the coflow’s point of view, let Ti,u denote

the time at which the coflow ci,u is finished. Moreover, since

the explicit barriers or pipelining requirements are desired for

some jobs, multiple coflows of a same job may have some

dependencies. Here, we consider the following two types of

dependencies:

1) Strong coflow dependency (ci,u > ci,v): In presence of

explicit barriers applied in jobs, a coflow ci,v can not
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start until its dependent coflow ci,u has finished.

2) Weak coflow dependency (ci,u ≥ ci,v): In jobs using

pipelining to avoid explicit barriers, ci,v can coexist with

ci,u, but it cannot finish until ci,u has finished.

It should be noted that coflows in different jobs can be

unrelated to each other. Important notations used throughout

this paper is listed in Table I.

B. Problem Formulation

The goal of this paper is to schedule a set of jobs in a given

time interval for minimizing the average job completion time

and, at the same time, being aware of both job deadlines and

coflow dependencies within each job. By giving the data center

network model above, we can formulate the following deadline

and dependency aware job scheduling problem (D2JSP).

min
1

|J |
∑
Ji∈J

(Ti − ti) (1)

Ti = max
ci,u∈Ci

Ti,u, ∀Ji ∈ J ; (2)

∫ Ti,u
ti

ri,um,n(t)dt = d
i,u
m,n, ∀ci,u ∈ Ci, ∀Ji ∈ J ,

∀sm, sn ∈M, sm �= sn, ∀Ti,u ∈ (ti, Di]; (3)∑
sm∈M

∑
sn∈M

ri,vm,n(t) = 0, ∀Ji ∈ J ,

∀ci,u, ci,v ∈ Ci, ci,u > ci,v, ∀t ∈ [ti, Ti,u]; (4)

Ti,v ≥ Ti,u, ∀Ji ∈ J , ∀ci,u, ci,v ∈ Ci, ci,u ≥ ci,v; (5)∑
Ji∈J

∑
ci,u∈Ci

∑
sn∈M,sn �=sm

ri,um,n(t) ≤ Uoutm ,

∀sm ∈M, ∀t ∈ [Γ0,Γ1]; (6)∑
Ji∈J

∑
ci,u∈Ci

∑
sm∈M,sm �=sn

ri,um,n(t) ≤ U inn ,

∀sn ∈M, ∀t ∈ [Γ0,Γ1]; (7)

0 ≤ ri,um,n(t) ≤ min{Uoutm , U inn }, ∀ci,u ∈ Ci, ∀Ji ∈ J ,
∀sm, sn ∈M, sm �= sn, ∀t ∈ [ti, Di]; (8)

ri,um,n(t) = 0, ∀ci,u ∈ Ci, ∀Ji ∈ J ,
∀sm, sn ∈M, sm �= sn, ∀t ∈ [Γ0, ti) ∪ (Di,Γ1]. (9)

Clearly, the objective in Eq. (1) is to minimize the average

job completion time across all jobs in J . Specifically, each job

Ji ∈ J is considered to be completed only when all coflows

of it have finished, as shown in Eq. (2). A schedule is called

feasible if all flows in each job Ji can be accomplished within

the corresponding valid time interval [ti, Ti,u], as shown in Eq.

(3). Given the coflow dependencies, we get two constraints

for the decision variable ri,vm,n(t). First, the constraint in Eq.

(4) ensures that if two coflows have strong dependency (i.e.,

ci,u > ci,v), then all flows of ci,v cannot get any bandwidth

when ci,u is running. That is, a certain coflow should wait

until its strong dependent coflow has finished. Second, the

constraint in Eq. (5), enforces the completion time of a certain

coflow ci,v to be larger than that of its weak dependent

coflow ci,u. It is obvious that across the time interval [Γ0,Γ1],

TABLE I
NOTATIONS AND DEFINITIONS

Symbol Definition
M The set of servers in the data center,M = {s1, s2, · · · , sM}
soutm The uplink of server sm
sinm The downlink of server sm
Uoutm The bandwidth capacity of the uplink soutm
U inm The bandwidth capacity of the downlink sinm

J The set of jobs in a given time interval [Γ0,Γ1],
J = {J1, J2, · · · , JJ}

Jsoutm
The set of jobs on soutm

Jsinm The set of jobs on sinm
ti The release time of job Ji ∈ J
Di The deadline pre-specified by job Ji
Ti The time at which job Ji is completed
Ci The coflow set of Ji
ci,u The u-th coflow in Ci
Ti,u The time at which coflow ci,u is completed

di,um,n
The amount of data, belonging to coflow ci,u, that needs to
be transferred from server sm to sn.

ri,um,n(t)
The amount of bandwidth, at time t, that is allocated to

the data transfer of di,um,n

the total amount of consumed bandwidth on the uplink soutm
(downlink sinm ) of each server sm ∈ M should not exceed

the corresponding bandwidth capacity Uoutm (U inm ), as shown

in Eq. (6) (Eq. (7)). Finally, Eq. (8) and Eq. (9) present the

value range for the decision variable ri,um,n(t). Specifically, for

every flow of a certain job, the value of ri,um,n(t) should be

limited from 0 to min{Uoutm , U inn }, within the transmission

time interval [ti, Di] of this job (Eq. (8)). In addition, when

the time is not at the range of [ti, Di] of Ji, all flows in this

job shall not get any bandwidth (Eq. (9)).

III. TWO-LEVEL SCHEDULING METHOD

In this section, we present a two-level scheduling model to

resolve the D2JSP problem. The first level is to scheduling at

the job level, while the second level is to perform an intra-job

scheduling.

A. Inter-Job Scheduling

Instead of scheduling at the coflow level, we start by

scheduling at the job level. The key insight is that optimizing

the coflow completion time may not always lead to shorter

job completion time. Moreover, scheduling at the coflow level

can significantly break the dependencies between coflows

belonged to the same job. To have a comprehensively under-

standing, consider a straightforward example, which is shown

as follows:

Example 1: Suppose that there are two jobs A and B
in a given time period. The job A has one coflow A1,
while B contains two coflows: B1 and B2. The time that
these coflows (A1, B1, B2) takes to finish, under uncontested
environment, are 2t, 3t, t, respectively. A possible schedule at
the coflow level (e.g., shortest first [16]) can get a sequence
of {B2, A1, B1}, as shown in Fig.2(a). In such a case, the
average job completion time is 4.5t, with completion time
for A and B being 3t and 6t, respectively. If scheduling
at the level of job, a possible way is to schedule job B
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(a) Scheduling at coflow level (b) Scheduling at job level

Fig. 2. A motivating example of jointly considering the coflow dependency
and job deadline.

after A (e.g., {A1, B2, B1}), as shown in Fig.2(b), and we
obtain an average job completion time of 4t. This implies
that the job-level scheduling outperforms the coflow level
scheduling, in terms of the job completion time. Moreover,
when considering the deadlines (e.g., DA = 2.5t,DB = 6t)
and the dependencies (e.g., B1 > B2), jobs are likely to miss
their deadlines, and can even be failed to complete due to the
disrupt of coflow dependencies.

Given the motivating example above, we first give a charac-

terization of a job scheduling algorithm for a set of jobs in a

fixed time interval. The characterization is based on the notion

of a bottleneck interval for J , which is an interval extended

from [23], in which a group of jobs must be scheduled at

maximum constant speed.

Definition 1: The intensity of a time interval I = [a, b] on

the uplink soutm is defined by

ψ(I, soutm ) =

∑
[ti,Di]⊆[a,b]∧Ji∈J

∑
ci,u∈Ci

∑
sn∈M d

i,u
m,n

a ∼ b ,

(10)

where a ∼ b denotes the available time in interval [a, b].
Similarly, for the downlink sinn , we have

ψ(I, sinm ) =

∑
[ti,Di]⊆[a,b]∧Ji∈J

∑
ci,u∈Ci

∑
sm∈M d

i,u
m,n

a ∼ b ,

(11)

It is clear that ψ(I, soutm ) (ψ(I, sinm )) is the lower bound on

the average transmission rate on the uplink soutm (downlink

sinm ). In the following, we present the definition for guiding

the design of the job scheduling algorithm.

Definition 2: If an interval I∗ = [a, b] maximizes ψ(I, soutm )
for the uplink of any sm ∈M, we call I∗ a bottleneck interval
and soutm is the corresponding bottleneck uplink. The bottleneck
downlink sinm can be defined in a similar way.

Now we present the job scheduling algorithm that greedily

computes bottleneck intervals iteratively. Algorithm 1 shows

the Most-Bottleneck-First schedule on the uplinks. It begins

by greedily identifying a bottleneck interval I∗ and bottle-

neck uplink soutm∗ through computing the maximum value of

ψ(I, soutm ) (Step 2), and schedule the jobs of J∗ by using the

earliest deadline first policy (Step 3). It then schedules each

Ji ∈ J at transmission rate ψ(I∗, soutm∗ ) on the bottleneck

uplink soutm∗ (Step 5). To maintain the coflow dependencies

in advance and, at the same time, schedule at the job level,

each Ji is scheduled on the involved uplinks except soutm∗ ,

with guaranteeing that Ji can be completed within [t∗i , D
∗
i ]

(Step 6). Finally, it updates the set of jobs that have not yet

Algorithm 1 Most-Bottleneck-First on uplinks

Input: J ; Jsoutm
,Jsinm , ∀sm ∈ M; di,um,n, ∀ci,u ∈ Ci, ∀Ji ∈

J , ∀sm, sn ∈M
Output: transmission rate ri,soutm

and transmission time inter-

val [t∗i , D
∗
i ] for each Ji ∈ J on each sm ∈M

1: while J �= ∅ do
2: Find the bottleneck interval I∗ and the bottleneck uplink

soutm∗ . The jobs in this interval can be represented by

J ∗ = {Ji|[ti, Di] ⊆ I∗ ∧ Ji ∈ Jsout
m∗ } and without loss

of generality,

I∗ = [a, b] = [ min
Ji∈J ∗

ti, max
Ji∈J ∗

Di].

3: Schedule jobs in J ∗ with the Earliest Deadline First

policy, and sort all jobs in J ∗ increasingly according

to their deadlines.

4: for Ji ∈ J ∗ do
5: Calculate the transmission rate for Ji on soutm∗

ri,sout
m∗ =

∑
Ji∈J ∗

∑
ci,u∈Ci

∑
sn∈M d

i,u
m∗,n

a ∼ b ,

the transmission interval [t∗i , D
∗
i ] is also determined.

6: For each sm′ �= sm∗ ∈ M, if Ji ∈ Jsout
m′ , then

schedule Ji on the uplink soutm′ at the interval [t∗i , D
∗
i ]

and use the transmission rate

ri,sout
m′ =

∑
ci,u∈Ci

∑
sn∈M d

i,u
m′,n

D∗i − t∗i
,

7: end for
8: for Ji ∈ J ∗ do
9: J ← J\Ji;

10: For each sm ∈ M, if Ji ∈ Jsoutm
, then mark the

time interval [t∗i , D
∗
i ] as unavailable on soutm and let

Jsoutm
← Jsoutm

\Ji.
11: end for
12: end while

been scheduled, and the available time interval on each uplinks

(Step 8-11). It should be noted that the schedule process on

the downlinks of all servers is similar to Algorithm 1.

The Most-Bottleneck-First scheduling policy ensures that

each job of J∗ can be executed completely on all the involved

links, and can be transmitted at the maximum rate on the

bottleneck links without missing D . Therefore, by iteratively

computing a sequence of bottleneck intervals as well as the

corresponding bottleneck links, such Most-Bottleneck-First
schedule immediately leads to an optimal schedule. The proof

process is similar to that in [24], and will not be presented

here due to the page limit.

B. Intra-Job Scheduling

Based on the above Most-Bottleneck-First scheduling pol-

icy, each job can obtain an amount of bandwidth on each of

the involved uplinks and downlinks. Now, it’s time to schedule

the coflows and the corresponding individual flows of each job

2114211421122112
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(a) Strong coflow dependency graph
for jobs with explicit barriers
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(b) Weak coflow dependency graph
for jobs with pipelining

Fig. 3. An illustrative example of coflow dependency graph.

by allocating each job’s bandwidth. We call such schedule as

intra-job scheduling. More preciously, each coflow of a job Ji
should be allocated an amount of bandwidth for transferring its

flows completely, within the corresponding transmission time

interval [t∗i , D
∗
i ].

To perform efficient intra-coflow scheduling, we construct

a graph for describing the dependencies between multiple

coflows belonged to a mutual job. It should be noted that each

job has only one type of coflow dependency. For example,

a job having iterative computing requirements only contains

the strong dependency between its coflows, while a job with

pipelining only has weak coflow dependency. Accordingly, we

consider two types of such dependency graph, as shown in

Fig. 3. In the strong dependency graph, a coflow must not

be completed before its dependent coflow has finished (e.g.,

ci,3 > ci,4 in Fig. 3(a)). While in the weak dependency graph,

a coflow can coexist with its dependent coflows, but cannot

be completed until its dependent coflow has finished (e.g.,

ci,3 ≥ ci,4 in Fig. 3(b)). Note that coflows in different branches

of the dependent graph is unrelated to each other. Given such

coflow dependency graph, we design prioritized scheduling
and weighted fair scheduling methods, for jobs with strong and

weak dependencies, respectively. The prioritized scheduling
is to sort the coflows according to their in-degree value in

the corresponding graph and, at each time, schedule a set of

unrelated coflows. It should be noted that the unrelated coflows

have the same priority, and can further be prioritized during

contention. The weighted fair scheduling is to schedule all

coflows in a job that contains weak dependencies simultane-

ously, the transmission rate for each coflow is based on coflow

size. The rationale for such weighted fair scheduling is that all

coflows can be completed at the same time. The detail process

of intra-job scheduling is shown in Algorithm 2.

IV. PERFORMANCE EVALUATION

In this section, we conduct comprehensive simulations to

evaluate the performance of our two-level scheduling method.

A. Experiment Setting

We conduct a series of simulations to show the efficiency

of our two-level scheduling method. We consider that the start

time, deadline of each job, and the information of flow data

are all known in advance. It should be noted that we take

Algorithm 2 Intra-job scheduling

Input: Ci, [t∗i , D∗i ], ri,soutm
, ri,sinm , ∀Ji ∈ J , sm ∈M;

Output: transmission rate ri,um,n, ∀sm, sn ∈ M, ∀ci,u ∈
Ci, ∀Ji ∈ J

1: for Ji ∈ J ∗ do
2: if Ji only has strong coflow dependencies then
3: Construct a strong coflow dependency graph, and sort

coflows of Ci according to their in-degree values.

4: Calculate the transmission rate for each coflow ci,u ∈
Ci, e.g., ri,usoutm

= ri,soutm
, ri,usinm

= ri,sinm .

5: else
6: Schedule all coflows of Ci at the same time and for

each ci,u, use the following transmission rate

ri,usoutm
= ri,soutm

×
∑
sn∈M d

i,u
m,n∑

ci,u∈Ci
∑
sn∈M d

i,u
m,n

,

ri,usinm
= ri,sinm ×

∑
sn∈M d

i,u
n,m∑

ci,u∈Ci
∑
sn∈M d

i,u
m,n

.

7: end if
8: end for
9: Enforcing all flows of a coflow are completed simultane-

ously by performing an intra-coflow schedule policy [4].

coflow as the smallest scheduling unit. The flow information

is mainly used for calculating coflow’s or job’s data size,

and finding the most bottleneck sever. We simulate a data

center with 128 servers, and generate 1000 jobs between

these servers. Each job consists of multiple coflows, whose

dependency relationships are randomly generated. The start

times and deadlines of job are randomly selected in the interval

of [0,100]. Without loss of generality, the capacity of uplinks

and downlinks of severs are all set to 1 Gbps. We compare our

two-level scheduling method with the shortest-job-first method

(shorted as SF), which always schedules jobs with shortest

job size (e.g., data flow size) [16]. In this method, once a job

is scheduled, it will occupy the bandwidth until it has been

finished, raising the risk of missing deadlines of other jobs. In

the following, we show the simulation results with respect to

the performance on both the completion time and deadline.

B. Performance on completion time

In order to evaluate the performance of our algorithm, we

record the completion time of every job and even every coflow.

Fig.4 shows the CDF of job completion time (Fig.4(a)) and

coflow completion time (Fig.4(b)). As shown in Fig.4(a), SF

has a higher CDF of completion time than our two-level

method at the beginning. This is because that SF prefers jobs

that take shorter time to complete. We can further observe

that with our two-level method, more than 90% of jobs can

be completed within 80 ms, while that value for SF is around

80%. For coflows (shown in Fig.4(b)), our two-level method

always maintain a higher CDF figure than SF. The reason

is that the data size of coflows is much less than that of
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(b) CDF of coflow completion time

Fig. 4. The CDF of job and coflow completion time.

jobs. In addition, it reflects that our prioritized scheduling and

weighted fair scheduling methods for coflow work well on

guaranteeing job completion time. In conclusion, our two-level

method can reduce the job and coflow completion time by up

to 18%, compared with SF.

C. Performance on deadline

As aforementioned, jobs may miss their deadlines before

or after being scheduled. So, we measure the number of jobs

and coflows that meet their deadlines along the time axis. As

illustrated in Fig.5(a), our most bottleneck first scheduling

method can accommodates 90% percentages of jobs with

deadlines guaranteed, while the percentage for SF is only 70%.

We also observe that SF has a little more jobs meeting their

deadlines before 30 ms. It confirms that our two-level method

guarantees job deadlines by firstly allocating bandwidth for the

most bottleneck sever instead of simply scheduling jobs based

on completion time or data size, which has the limitations on

large jobs or flows with early deadlines. From another point

of view, it also means that our two-level method focuses on a

long-term optimization.

With SF method, the ratio of meeting deadlines for coflow

is about 10 percent smaller than that for the job; but with

our two-level method, it is almost the same ratio for both job

and coflow. Considering that one job consists of a random

number of coflows, this result reflects that the 30% jobs

missing their deadlines consists of 40% coflows by SF and

the result will even fluctuate with the change of the job set.
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(a) Scheduling results at job level
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(b) Scheduling results at coflow level

Fig. 5. The performance of scheduling at different level.

Consequently, the performance of our two-level method is

more stable, irrespective of the job set, and accommodates

21% more jobs with deadlines guaranteed, compared to the

conventional shortest-job-first method.

V. RELATED WORK

There are plenty of related works on network flow optimiza-

tion. However, none of them are in place to provide guaranteed

job completion time, with both job deadlines and coflow

dependencies considered. Regarding the network flow opti-

mization, existing solutions can be categorized into two folds:

the flow-level scheduling and the coflow-level scheduling. The

flow-level scheduling cannot account for the collective behav-

iors of flows due to the lack of application-level semantics

[25]. The coflow scheduling can capture such application-level

semantics to some extent, but it cannot account for the coflow

dependencies, thus being efficient to provide guaranteed job

completion time [4, 6]. Regarding the scheduling on guarantee

deadlines, there exist many related works such as [16, 26].

They use priority methods to schedule flows. For example,

PDQ provides a distributed priority method based on flow

size and deadline. pFabric proposes a light-weight priority

queue to schedule flows. These methods may provide deadline

guarantees, but they only focus on flow optimization ignoring

the significance that performance of a job is determined by all

flows.
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VI. CONCLUSION

We study the problem of scheduling dependent coflows

with the aim of providing guaranteed job completion time.

We present a two-level scheduling method, with the first level

applying a Most-Bottleneck-First scheduling algorithm and the

second level conducting an intra-job scheduling. Specifically,

the Most-Bottleneck-First employs a new definition of intensi-

ty to search a most-bottleneck sever heuristically, and then al-

locate bandwidth and time slots to the set of jobs on this server.

The intra-job scheduling performs upon a coflow dependency

graph, and seamlessly combines a prioritized scheduling and

a weighted fair scheduling to account for different coflow

dependencies. Extensive simulation results show that our two-

level method can outperform the conventional shortest-job-

first method with respect to the performance on both the

job completion time and the number of jobs with deadlines

guaranteed.
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