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a b s t r a c t 

Applications perform massive and diverse tasks in data centers. Tasks completion condition 

seriously affects application performance. However, most existing flow-level or task-level 

scheduling methods treat flows in isolation, meanwhile, few works discuss the efficiency 

of task-level scheduling from the perspective of the task profit. 

In this paper, we introduce a profit-aware task-level scheduling scheme named PAT, 

whose target is to maximize the profit of completing tasks within their reasonable time. To 

this end, a maximizing profit optimization model is proposed on task-level, and an efficient 

approximate scheduling algorithm is presented. Furthermore, a situation of absent deadline 

information is discussed and an ePAT method is presented to solve this situation. Based 

on the proposed algorithm, we design and implement PAT and ePAT. Some comprehensive 

experiments are conducted to evaluate the performance of our methods. The experimental 

results show that our methods bring higher profit than other scheduling methods. 

© 2016 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Data centers are being used as the crucial computing and storage infrastructures for online services. Many Internet com-

panies such as Google, Microsoft and Amazon, have their own data centers. Application performance is significant for these

online services, on account of their strict limitation on latency requirements, and even a sub-second delay can seriously

impact user experience and application performance [1] . Online applications generate a large number of requests and ag-

gregate the responses computing in the back-end, since the result must wait for all of the responses to be finished or reduce

application profit on user experience. This implies that a task is successfully accomplished if and only if all of its flows in

one task completed before its deadline. Accordingly, task-level scheduling methods are significant for user experience and

application profit in data center networks. 

To the best of our knowledge, existing scheduling methods in data center networks can be classified into two categories:

flow-level scheduling and task-level scheduling. 

• Flow-level scheduling methods focus on minimizing completion time and finishing flows within deadline only based on

flow-level information. Traditionally, fair sharing approaches approximately divide bandwidth equally on bottleneck in a

fair share manner. The scheduling methods [2,3] are based on transport level rate control, whose targets are to reduce

the number of flows missing deadlines inheriting the weakness of first come first serve (FCFS). Centralized flow priority

scheduling methods [4,5] reduce flow completion time. To improve network resource efficiency, Hedera [6] dynamically

schedules elephant flows and short flows. 
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Fig. 1. An example of current works vs task-level schedule. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Task-level scheduling methods organize flows of one task and schedule them together in order to reduce average com-

pletion time. Baraat [7] works on decentralized task-level scheduling and schedules flows in one task together. Coflow

[8] abstracts the network plane and Varys [9] schedules coflows to reduce coflow completion time (CCT). As far as we

know, however, no existing task-level mechanism is in place to guarantee the task completion for deadline. 

Forementioned flow-level and task-level scheduling methods all neglect the integrity of a task. Since each task in data

centers contains tens to hundreds of flows, all of which need to be finished before a task is considered to be completed.

These scheduling methods could leading a situation that most flows in a task have been finished and be waiting for lag

flows completion or return results immediately to users with performance damage. 

Prior works either focus on reducing flow completion time or task completion time. Application performance is crucial

for both users and data center organizations. Nonetheless both flow-level and task-level scheduling methods ignore the

integrated task performance. To guarantee application performance, we firstly define profit as a variable to describe task

performance. At the mean time, profit is a representation of task completion status and network efficiency, thus utilizing

the task profit to ensure that task integrity is feasible. Additionally, flows belonging to diverse applications have different

characteristics on flow sizes and latency. Naturally flows are capable to inheriting application properties. Thus, these have

motivated task-level scheduling. 

In this paper, we propose a task-level scheduling method to improve the task performance with the property of task

profit. To simplify presentation, an example is presented to demonstrate the potential benefits of task-level scheduling meth-

ods comparing to existing flow-level methods. Task-level scheduling takes the task information into account for the integrity

of tasks. As shown in Fig. 1 , we suppose that there are three tasks with six flows. Each flow is represented as a 5-tuple [task

ID, flow ID, size, starttime, deadline]. Meanwhile, we suppose that these flows are transferred in one bottleneck link, and

the network capacity cannot satisfy all the flows deadline demands. In traditional solutions, fair sharing is the main method

which is shown in Fig. 1 (b). The completion time of these six flows are (4 4/3, 12, 4 4/3, 16, 8, 46/3) respectively in fair shar-

ing manner. Comparing the finish time with deadline 1(a), it is clearly to figure out that only flow C and flow D meet their

deadlines, as well as the average flow completion time is 13.4 by applying the fair sharing. In Fig. 1 (c), flows are scheduled

by priorities which are associated with deadlines. As shown in the Fig. 1 (a), both tasks 1 and 3 miss their deadlines. Priority

flow scheduling reduces the average completion time to 7.7. Compared to fair sharing method, it averagely saves 42% on

completion time. Flow-level priority scheduling methods solely schedule flows on the basis of flow-level priority without

task information. In this case, only one flow of tasks 1 and 3 is completed, which means they obtain zero profit from these

tasks. 

Comparing to flow-level scheduling, the task-level scheduling as shown in Fig. 1 (d), the average flow completion time

is 7.8 which is proximal to priority scheduling methods. However, the average task completion time of flow-level priority

scheduling is 10 while task-level scheduling is 9.6. Moreover, task-level method reduces the number of switches among the
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flows which might bring some lag during switching in this scenario. Task 1 meets its deadline in task-level scheduling, and

obtains more profit than flow-level scheduling. 

According to the above analysis, we design PAT (Profit-Aware Scheduling in Task-level), a method targeting at maximizing

profit of completing tasks within their deadlines. PAT employs a centralized controller which has global task-level informa-

tion including task number, requirement and deadline. The core of PAT is an 

1 
2 -approximation algorithm on maximizing

profit on the basis of task time and task profit, which helps the controller make decisions on schedule policy. In PAT, the

controller identifies the flows information, task information and making admission control on flows. Our algorithm gives

a good attempt on guaranteeing task integrated. Through extensive simulation, we finds that PAT provides benefits over

existing benefits on task completion rate, task profit and task completion time. Finally, we discuss a simpler situation to

loose the maximum profit constraints to reveal the validity of PAT. Forementioned method schedules flows based on prior

knowledge of flows and complex switch functions. We make attempts to schedule tasks with no prior knowledge. To this

end, we present ePAT, an extension of PAT based on simple information during the working period. 

In short, our main contributions of this paper are as follows: 

• We address a task-level scheduling for application performance guarantee issue in data centers. Specially, we target a

profit goal to guarantee the integrated task completion. 
• We propose PAT and ePAT, a profit-aware method for task-level scheduling, which contains two key components: task

identifier and profit calculator. 
• We conduct comprehensive experiment to evaluate the performance of PAT and ePAT, to compare with existing priority

flow scheduling solutions under typical data center traffic. The result shows that PAT and ePAT outperforms the flow-

level priority scheduling in data center networks. PAT can save 15% task completion time on average, while increasing

20% task profit. The ePAT averagely saves 9% task completion time, and increasing 19%task profit. 

The rest of this paper is organized as follows. In Section 2 , we briefly introduce the work model of PAT. In Section 3 ,

we show the detailed design of PAT and ePAT. We present the evaluation in Section 4 . In Section 5 , we discuss the related

works of this paper. Section 6 concludes the paper and our future work. 

2. System model 

In this section, we firstly present an overview of maximizing profit problem. Then, we describe the detail of our model. 

2.1. Problem statement 

Applications in data centers generally generate complex and a large number of tasks with multiple flows. From the

nature of applications, each task has a strict limitation on deadline and all of its flows need to be finished before the task

considered completed. In this way, the completion of integrated tasks is critical for application performance. So as to qualify

the application performance, we define a profit to measure task completion quality. The dominated goal of our work is to

guarantee the completion of integrated tasks in the form of maximizing profit on scheduling tasks. Generally a problem on

task-level scheduling is difficult to solve. To schedule task efficiently, we resort to a centralized controller. 

2.2. Model formulation 

With the aim of guaranteeing application performance, we formulate a task-level model that mainly focuses on integrated

of tasks in the scheduling. We assume that task size, deadline and priority information are known in our model. Meanwhile,

each task in our model has an identifier denoted by the symbol t i . The arriving time of task t i is indicated by a i , and d i is

the deadline of t i . The duration of task t i is the interval between a i and d i . We use f i, j to denote flows in task t i , and n i
is the number of flows in t i . For each f i, j belonging to task t i , it has the same deadline d i . Even so flows in one task have

different arriving time. Each flow in tasks has a value on accomplishment which is presented by profit. Specially, if a flow

accomplished before its deadline, the organizer will obtain the flow profit. In the mean time, we denote αi, j ( t ) as a binary

variable that indicates whether to schedule flow f i, j at current time slot. Here, we suppose that once a flow is scheduled

before its deadline, it will be considered as completed. As the network resource is restricted, network capacity C can be

allocated to the scheduled flows. Let s i, j indicate the size of flow f i, j . 

Considering the nature of tasks, each task has a weight ω i which is associated with task value as well as the priority

ρ i of task. Regarding priority, realtime tasks have higher priority than background tasks. Due to the applications in data

center clouds pay different prices for their resource. Service price and profit determined by the providers are relevant in

this situation. According to our survey, in the cloud [10] , mobile netorks [11] and Cyber-Physical systems [12] , the price is

based on the computation resource, service time and service type. In the meantime, service price is affected by the quality

of experience which is application performance in this paper. Correspondingly, we define profit is a definition on provider

service price based on service type. Hence the task profit belonging to these applications is affected by their prices which

can be denoted by task weight ω and priority ρ . Consequently, the profit P i of task t i as shown in Eq. (1) is determined by

task priority ρ i and task weight ω i . 

P = ω ρ . (1)
i i i 
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Accordingly, flow profit P i, j is determined by two parts: task profit P i and task completion condition for each flow. Task

completion condition is important for the integrity of task performance. Here, the task completion condition is denoted by

γ i, j which is affected by time urgency of task t i . For each unaccomplished flows in task t i , the value of γ i, j is the same at

the current time slot. As well as γ i, j is a dynamical indicate over time slots. Flow profit P i, j can be dynamically modified

according to current time and deadline, which means scheduling some urgent tasks’ flows can bring in more profit. 

P i, j = γi, j P i . (2) 

We define that profit is gained by successfully scheduling flows as 

G i, j = P i, j αi, j (t) . (3) 

In order to introduce the overall task profit maximizing issue with deadline limitation, we formulate a maximizing profit

problem for data center networks. Task profit and scheduling revenue is formulated in Eqs. 2 and 3 . Here we use the

summation of flows profit to denote the overall task profit which is the objective to maximize. 

The program is presented in Eqs. (4) –(7) . Clearly, the objective function in Eq. (4) defines the profit gained by successfully

scheduling tasks. It should be noted that partially scheduling tasks cannot get partial profit but zero profit. Eq. (5) enforces

the task integrity which makes the task to be completed in legitimate time, and Eq. (6) is the network capacity limitation.

In Eq. (5) , all of the finished flows during legal time are subject to the flow number n i of task t i . Network capacity C is an

abstraction of network resource that can be allocated to flows for transferring. All of the scheduled flows in the network

are strictly subject to network capacity C . To ensures the profit of data center to be maximum, we introduce a strategy

that the priorities of flows can be changed with tight deadline. Since we focus on maximizing the overall profit for tasks

to guarantee application performance in this paper, however the last several flows in one task seriously impact task overall

performance. 

Max 

n ∑ 

i =1 

n i ∑ 

j=1 

G i, j , (4) 

s.t . 

d i ∑ 

a i 

n i ∑ 

j=1 

αi, j (t ) = n i , (5) 

n ∑ 

i =1 

n i ∑ 

j=1 

s i, j αi, j (t) ≤ C, (6) 

αi, j (t) ∈ 0 , 1 . ∀ i, j (7) 

Obviously, our model is a NP-hard problem [13] . The optimization program above cannot get the optimal solution in

constant time. Therefore the optimization function is a target that we make effort to obtain more profit within deadline for

tasks. To this end, we propose an approximation algorithm to obtain the approximate result of scheduling policy. Our model

is the first attempt on the view of profit for scheduling issues in data center networks. We introduce an approximation

algorithm to solve the scheduling policy in next section. 

3. Profit-aware task-level flow schedule (PAT) 

In this section, we present the details of PAT. In Section 3.1 , we briefly introduce the main devise of PAT. PAT can be

divided into two parts: controller design and switch design. In Section 3.2 , we introduce main function of controller, in the

meantime, we present and analyse an approximate algorithm to maximize overall task profit in our model. Additionally, we

discuss a loose constraints for maximum profit model. We introduce the design of switches for PAT in Section 3.3 . 

3.1. PAT overview 

In general, PAT implements a centralized controller that is capable to recognize task information, compute profit as well

as generate scheduling policy. The controller schedules flows of diverse tasks on the basis of their profit. Fig. 2 illustrates

the method procedure of PAT, which contains a centralized controller. Controller is the core of PAT and orchestrate the

scheduling policy for multiple tasks. It maintains a global task information, flow information and network capacity. In the

mean time, it performs a calculator to maximize the overall profit. Further, the controller generates a scheduling policy

on the basis of task information and overall profit. The switches in PAT execute the policy generated by the controller.

PAT works as follows. When a new task request arrives, the controller first collects information of the request, then the

controller computes the corresponding task profit, lastly it generates a new scheduling policy for current task requests. In

the following we mainly describe the PAT’s controller designs and the approximate algorithms to maximize profit. 
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3.2. Controller design 

Many data center networks are designed to have a controller, such that network can be flexibly controlled by the con-

troller. Controller has full view of network situation as well as it recognizes tasks information and status. In addition, as we

know, data center [14] has its own administrate system which realizes the application allocation and varieties in data center.

In PAT, the controller has three main function: information collector, profit calculator and scheduling policy generator. 

3.2.1. Task identifier 

PAT controller is capable to collect the information of tasks and flows such as task identifier, task size and requirements.

For task identifier, we employ a counter on the controller. When task requests arrive at controller, we increase task counter

and mark it as task-id. In order to identify tasks and tasks type, task counter with tasks id and tasks priorities are de-

signed. The module of task identifier accounts for identifying both tasks and flows. In PAT, we schedule tasks according

to their profits, therefore the profit of tasks is significant for scheduling. As shown in Eq. (1) , tasks profit is determined

by tasks value and tasks priorities. In the view of task value, which is associate with applications requirement. Therefore,

task information is crucial for PAT. The classifications of applications are basically interactive latency sensitive, interactive

throughput sensitive, system control and background services. System control tasks have the requirement of lowest latency

and accuracy. In the mean time, the background flows are generally long-lived flows that occupy the network resource from

online service. Consequently, we divided the task priority into four levels. In application level, tasks have priorities and their

corresponding profit. We encapsule the task priority into the task id. In this case, tasks have task id and its corresponding

tasks priorities, which provide information for profit calculator. 

3.2.2. Profit calculator 

PAT schedules tasks according to their profits and task completion condition. As we mentioned before, there are two

level profits which are task profit and flow profit. Task profit is constant while flow profit can be modified over time slot.

As we know tasks have deadline, flow A has a longer deadline than flow B while they belong to the same task. In this

case, only task-level profit identifier cannot distinguish flow A and flow B. A flow-level profit with the urgency of deadline

is necessary in this situation. Specially, flows have a task-level profit information and deadline information, as well as the

flow-level profit is determined by task-level and variable gamma . This is the initialization progress of profits. In detail, flows

belong to the same application carrying different task-id, even so they have the same task profit. Application performance

in data center is based on the overall task profit for this application. Here the overall task profit is the summation of the

flows profits in the tasks. In the mean time, the application performance in the network can be calculated by collaborate

tasks profits. 

More specifically, the controller has information on task id, and the tasks priorities can be decoded from task id. At

the same time, the profit of task P i is determined by task value omega and task priorities rho which is connected to task

deadline. As shown in Eq. (1) , (2) and (3) , overall profit is corresponding to task value, task priority and task completion

condition. Since task-id has the priority and id information, thus we only need to calculate the profit from deadline infor-
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mation. Accordingly, we choose to modify the vlan id field as the profit of tasks for PAT. In the mean time, the priority field

is used to schedule flows. 

3.2.3. Policy generator 

Here we present the main function of controller scheduling policy generator. In this paper, we mainly focus on maxi-

mizing overall profit for tasks. We need to compute the decision variable αi, j for maximum profit model. The approximate

Algorithm 1 realizes maximize profit formulation, as we define that in Section 2 a scheduling policy is generated in con-

Algorithm 1 Maximum overall profit computation 

Input: 

Flow f i, j assemble F; Profit of flow P i, j ; 

Number of flows in task i n i ; Size of schedule task s i 
Output: 

Schedule policy set A ; 

Schedule tasks profit p 

1: Sort P i /n i in a descend sort order 

2: For all flows compute profit P i, j ← γ ∗ P i 
3: Task schedule counter k 

4: Schedule the valuable tasks under the network capacity limitation C > 0 

5: Compute the summation of scheduled task profit p ← p + P i, j 

6: Schedule the partial of one task while the task size s i > C

7: Partial schedule task l i 
8: maximum k, profit P 

9: return A ← max { ∑ k 
i =1 P i , P k +1 } , profit p 

troller. Algorithm 1 lists all the steps in computing profit-effective, overall task profit and schedule policy. The core of our

model is task profit which is corresponding to the flow dynamic priority and task priority. In the mean time, the dynamic

priority of flow is a variable calculated by task priority and deadline urgency condition determined by the controller. More-

over, PAT is a centralized network that we can apply the controller view to figure out the appropriate scheduling policy.

To solve the maximum profit problem, we resort to an approximate algorithm. Next, we introduce our approximate profit

algorithm. 

Algorithm 1 lists all the steps followed in computing maximum profit and scheduling set A . At the beginning of the algo-

rithm, we sort the profit-effective value of the existing tasks in a descending order in step 1. In a limited network resource

situation, scheduling more profit-effective tasks which can bring in more overall profit is a optimal choice. According to the

current time slot, flow profit is computed in step 2. In step 3, we attempt to get a maximum i denoted by k which is con-

strained by the network resource. We schedule all of flows in the most profit-effective tasks which satisfy the constraints of

task size is smaller than current network capacity C (step 4). Reduce the capacity C while the resource is used by scheduled

tasks, however C is not enough for a entire task that we schedule partial flows for the most profit-effective task(step 6). For

each loop in the algorithm, the partial scheduled tasks are considered at first. The controller executes this algorithm until

the capacity C reduce to zero. 

The Algorithm 1 greedily chooses the most profit-effective tasks, which subjects to network capacity and the nature of

tasks. The approximation algorithm is proposed, and its time complexity and approximation ratio are analyzed in the next.

Our algorithm is least 1 
2 OPT in time bound O(nlog(n )) . Next, we will prove our approximation rate of algorithm is at least

1 
2 . 

Theorem 1. Let A denote the set output by the algorithm. Then, prof it(A ) > 

1 
2 OPT . 

Proof. Let OPT denote the optimal set. If 
∑ n 

i =1 s i ≤ C, then profit( A ) = profit( ( OP T ) ). Therefore, we assume 
∑ n 

i =1 s i > C. We

use k to denote the largest positive integer got by in algorithm line 3. We need to prove the following two inequalities 

k ∑ 

i =1 

P i ≤ OPT < 

k +1 ∑ 

i =1 

P i (8) 

Obviously, the first inequality holds in our model. For the second inequality, in the algorithm line 1 we sort the tasks of

task profit and task size in the descending order. The most efficient method is to schedule the most valuable tasks as much

as possible until exceed the network capacity. The remaining capacity assigns to the most value flows until saturate the

whole network. From the network perspective, 
∑ k +1 

i =1 P i is the upper bound of profit ( OP T ) . If we loose the constraint of

flows completion number in tasks Eq. (5) to smaller than n . Indicator I is denoted as tasks completion and we use 0 < I 
i i i 
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< 1 to replace with I i ∈ 0, 1. 

I i = 

⎧ ⎨ 

⎩ 

1 i = 1 , 2 , . . . , k, 
C−∑ n 

i =1 s i 
s k +1 

, i = k + 1 , 

0 i = k + 2 , k + 3 , · · · , n. 

(9)

Here we get a maximum profit value ˆ p in linear program. Therefore, we conduct a inequality 

OPT ≤ ˆ p = 

k ∑ 

i =1 

P i + 

P k +1 

s k +1 

( 

C −
k ∑ 

i =1 

s i 

) 

< 

k ∑ 

i =1 

P i + 

P k +1 

s k +1 

s k +1 = 

k +1 ∑ 

i =1 

P i . 

(10)

In the end, we conduct following Equation 

A = max { P k +1 , 

k ∑ 

i =1 

P i } ≥ 1 

2 

k +1 ∑ 

i =1 

P i > 

OPT 
2 

(11)

Accordingly, our algorithm approximation rate is at least 1 
2 . �

The Algorithm 1 greedily chooses the most profit-effective tasks, and the result of algorithm is acceptable and efficient. 

3.2.4. Extension of PAT 

Most existing data center network scheduling methods aim at minimizing completion time. To minimize completion

time, most proposals assume that we know priori knowledge of flow size and deadline so does PAT. Naturally, we figure out

sometimes specific flow information is not available [15] . To this end, we introduce an extension PAT without deadline and

flow size information (ePAT) that aims at obtaining more profit for scheduling tasks. 

In ePAT, we assume the same model described above except the flow size and deadline information. As far as we know,

flow size and deadline are priori knowledge which are difficult to obtain. Further, we consider that the specific information

is hard to compute. In the mean time, task information is a natural property which we assume available in ePAT. In specific,

ePAT controller recognizes the task information and compute task-level profit so as to maximize the overall profit. We do not

formulate a profit model for ePAT, since ePAT is similar to PAT as well as less information to formulate a model. However,

in ePAT there is a similar Algorithm 2 , we present the detail of the algorithms next. 

Algorithm 2 Maximum overall profit computation 

Input: 

Flow f i, j assemble F; Flow number in task i n i ; 

Output: 

Schedule policy set A ; 

Schedule tasks profit p 

1: Sort task profit P i in a descend sort order 

2: Sort number of flows n i in a ascending order 

3: Schedule task in profit-effective order 

4: Task schedule counter k 

5: Schedule the valuable tasks under the network capacity limitation C > 0 

6: Compute the summation of scheduled task profit p ← p + P i 
7: maximum k, profit P 

8: return A ← max { ∑ k 
i =1 P i , P k +1 } , profit p 

In consequence of the absence of flow information, the profit-effective is affected by the task information. Specially, as

we mentioned before, the task priorities can be classified into four levels. Generally, task profit can be distinguished by task

priority. Even so, the same level tasks are difficult to distinguish. At this point, we apply the number flows in the task to

judge the task-effective. For example, task A and task B are on the same priority level for applications, while flow number in

task A n a is smaller than flow number in task B n b . In this case, we predicate that task A is more profit-effective than task B.

Accordingly, in ePAT we firstly order the profit-effective sequence in step 1–2. In steps 3–7, the most k profit-effective tasks

is respectively scheduled on the condition of available network resources. In the mean time, we compute the maximum

profit and scheduling policy. If there is no sufficient bandwidth for a entire task, we firstly schedule partial flows in the

k + 1 profit-effective task. 
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3.3. Switch design 

SDN network [16] separates the network control plane from data forwarding plane which can improve resource utiliza-

tion, network management and reduce cost. Controller has a full view of the whole network and flow information. According

to the protocol of openflow [17] , switches have flow tables when one unkown flow appears it trigger the packet-in and send

the packet-in information to the controller. The controller computes the route and other bits in packet head and responses

to switches. 

Similarly, the pota switches employ a simple mechanism on priority scheduling. Our switches solely focus on the priori-

ties of flows without considering the task information. The limitation of PAT switches is that it employs openflow switches

and schedules flows based on the flow table. In specific, controller has the information of deadline and profit which are not

available in flow table and packtin message. The controller is responsible for computing priorities on both task-level and

flow-level. In order to obtain maximum profit, the controller executes the Algorithm 1 and schedules a set of flows need

to be scheduled at current time slot. In ePAT, the Algorithm 2 is simpler than Algorithm 1 . Thus, the controller is capable

to implement ePAT on the basis of PAT. Then, the controller modifies the priorities of scheduling flows to absolute high

priorities for authorities to scheduling flows in the switches. In the mean time, switches resolve flows to transfer on the

basis priorities decided by the controller. 

4. Performance evaluation 

In this section we evaluate PAT and ePAT performance in mininet. Our evaluation consists of four parts. First, we use

mininet to build a topology to run our experiments. Second, we generate data mining and web search workload with inte-

grated task information including deadline and profit information. Further, we realize the Algorithms 1 and 2 on controller.

In the end, we present the main result on task completion time, task completion rate and overall profit comparing to flow-

level priority scheduling. 

4.1. Experiment setting 

Workload: Our evaluation considers two representative workload: web search and data mining. We generate workloads

using python socket which send and receive flows according to Possion process on the basis of the characteristic of web

search and data mining [18,19] . We generate the flow size range from 1 KB to 50MB and record them into trace file. In the

mean time, these two workloads run on separate hosts in our mininet topology. 

Topology: We use a hose model topology in Fig. 3 which can highlight the shortage of network resource. In addition,

we could not scale up the hosts number due to memory constrains, so we employs the hose model topology as 20 hosts

connected to a single switch. Hose model topology has a severe limitation on switch capacity moreover it easily causes

congestion. We choose it to emphasize the significance of scheduling. Meanwhile, we emulate link bandwidth to 100 Mbps.

Performance: We consider three performance benchmarks. Comparing to flow completion time, we choose task comple-

tion time to illustrate the performance of our method. Since our method employs the overall profit to improve performance,

so we define a parameter of task completion rate to illustrate the task performance. As well as profit is another quantity

to directly measure task performance. To this end, we compare our method to priority schedule with task completion time,

overall profit and task completion rate. 

4.2. Overall performance 

In this section we show PAT and ePAT performance in hose topology with simulation workloads. We show that PAT has

a similar result to priority scheme on flow completion time. Nevertheless with much higher profit and completion rate on

task-level. About ePAT, it is clear that ePAT has better performance than flow scheduling, while not much worse than PAT

method. 

4.2.1. Flow completion time 

We illustrate the flow completion time under two workloads: websearch and datamining. First, we run one workload a

round and then mix these two workloads. The websearch workload have smooth and better result than datamining work-

load. The reason is that the flow sizes in datamining workload widely range from 1 KB to 50MB, while the webseach flow
Fig. 3. Topology used in simulations. 
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(a) Web search workload
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(b) Data mining workload
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(c) Mix workload

Fig. 4. The average flow completion time of two workloads on web search and data mining and the mix workload. 
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(a) Task completion time
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(b) Task completion rate
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Fig. 5. The overall performance on task completion time, task completion rate and profit for PAT. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sizes only range from 1 KB to 1MB. As shown in Fig. 4 , the flow completion time is normalize to the best possible comple-

tion time (assume there is no congestion in the network). PAT runs two kinds of workloads, the average flow completion

time compares to flow-level priority scheduling method. First, we let 10 hosts run the websearch workload as well as other

10 hosts run data mining workloads, Fig. 4 (c) shows the results. The routing process is not considered in our evaluation.

Comparing to Fig. 4 (a) and Fig. 4 (b), mixed workloads get a worse flow completion time. As shown in Fig. 4 , flow comple-

tion time of PAT is not better than priority scheduling method, since PAT is a task-level scheduling method. In addition, our

the results of PAT is similar to priority method in Fig. 4 . 

4.2.2. Task completion time 

Flow completion time is a standard most scheduling methods applying, in PAT we introduce a benchmark of task com-

pletion time to illustrate our advantages. Task completion time is a significant quantity to describe task performance which

is crucial for applications. In task completion time(TCT) PAT is distinctly better than priority scheduling method showing

Fig. 5 (a). PAT solely focuses on task-level scheduling, it centralized schedules a collaborate of flows in one task, consequently

it reduces the task completion time comparing to priority scheduling method. 

4.2.3. Task completion rate 

PAT is a method aiming at maximizing overall profit to improving task performance for applications. Here we apply

the task completion rate to be a standard to estimate the scheduling result. We define the overall performance of task

completion condition as task completion rate. The deadline information is used to justify whether the tasks are completed.

We run the mix workloads, and calculate the task completion rate according to the trace file shows in Fig. 5 (b) which clearly

shows the benefits from PAT in task completion rate. Comparing to Fig. 4 , we observe that PAT sacrifices 8.1% flow-level

latency for a incremental of 21% task completion rate, which directly improves user experience and application performance.

PAT schedules integrated flows in one task, consequently task completion rate is better than flow-level priority scheduling

methods. 

4.2.4. Task profit 

Task profit is a definition we proposed in this paper as shown in Eq. (1) and (2) . Profit is obtained through successfully

scheduling flows in tasks. The profit of web search and data mining tasks in our evaluation are normalized to integer.

Additionally web search workload has a profit of 2 as well as data mining workload has a profit of 1. In the Algorithm 1 , we

can calculate the maximum overall profit which is shown in Fig. 5 (c). In Fig. 5 (c), PAT significantly improves overall profit in
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Fig. 6. The overall performance on task completion time, task completion rate and profit for ePAT. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the limited network condition. However, flow-level priority scheduling method ignores the integrity of tasks. The differences

between flow-level scheduling and PAT are that PAT guarantees the integrity of tasks and obtains the total task profit under

the limited network, while flow-level scheduling method focuses on individual of flows without global view of tasks. 

4.2.5. ePAT performance 

We have shown that PAT has a good performance on three benchmarks: task completion time, task completion rate

and overall profit. For the reason of difficulty of priori information on deadline and flow size, we present an extension

of PAT (ePAT) that schedules flows in diverse tasks regardless of deadline and flow size information. Specially, ePAT solely

schedules flows according to their task information, while PAT is able to schedule flows with specific flow information on

deadline and size. In our method, ePAT is a loosen constrains from PAT, so the ePAT is easily implements from PAT. As

shown in Fig. 6 , the result of ePAT is better than the flow priority scheduling, while PAT’s result is better than ePAT under

the three benchmarks. The ePAT improves 9% task completion time comparing to the flow-level scheduling, while gets a 19%

improvement on overall profit. Less information makes ePAT performance is not as good as PAT. Obviously, PAT is aware of

global and specific information on flow level which makes a good performance on scheduling. The ePAT sacrifices a little

performance for less computation and more practical method. 

5. Related work 

Latency is crucial for interactive data center applications. Many works in data center networks mainly focus on reducing

flow completion time or task completion time. Specially, reducing flow completion time or task completion time is basically

similar, as well as deadline is a special issue in latency. In this section, we briefly discuss some works relevant to PAT. 

Hedera [6] presents the elephant flows occupying the bandwidth resource which may cause short flows starving for

network resource. HULL [20] makes effort to keep the queue low occupation by using congestion control algorithm. HULL

reserves some bandwidth for short flows and controls packets in order to avoid elephant flow take up all the bandwidth

resources. Consequently, HULL obtains small latencies. Low network occupation can reduce latency, meanwhile, redundancy

can also receive good result. In the endurable network condition, short flows redundancy [21,22] can reduce completion

times. In data center topology [23] , fattree provides multipath between any two hosts which provides opportunity for repli-

cate flows to minimize flow completion times. Reduce long tail flow completion time means the applications get better

worst performance, DeTail [24] designs to lower the long-tailed flow completion times for different data center workflows.

L 2 DCT [25] is a transport protocol to minimize flow completion time by modulate the congestion window size based on the

estimate flow sizes. 

DCTCP [1] keeps the queue occupation under the threshold by introducing adaptive congestion control based on ECN.

Low buffer utilization can partly reduce latency and miss deadline rate. D 

3 [2] first proposes rate control scheme using

deadline information, and assigns the rate by computing desire rate which uses the information of flow size and flows

deadline or estimated completion time. D 

2 TCP [3] is a deadline-aware TCP protocol extended by DCTCP. It implements to

adjust the window size based on both deadline information and the congestion status. These methods mostly improved

latency, however, they have limitations that they cannot precisely estimate the right flow rate to meet deadline when the

earlier deadline flows arrive late. Moreover, bandwidth reservation and rate adjustment methods are hard to handle traffic

bursty which is common in data center networks. 

Having recognized the rate control strategy limitations, some subsequent works pay attention to bandwidth preemption

and the quality of service. PDQ [4] and pFabric [ 5 ] are the state-of-the-art approaches in priority schedule. PDQ provides

a distributed flow schedule mechanism based on assigning rates to flows with flow priority. While pFabric introduces a

priority queue to schedule flows. As a result of task consists of multiple flows, the integrity of one task is also important for

data center applications. Maximizing overall profit and guarantee the integrity of tasks are the main goals in our work. 
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Data centers have a huge amount of flows. All of these flows in one task need to finish before deadline or task com-

pletion. Considering this, some effort has been made in data center networks. Coflows [8,9] proposed an application-level

network abstraction and schedule problem. Coflow makes a sketch for the application into network abstraction and uses

the abstraction to optimize some application-level quality of service. On the basic of coflow, Varys [9] proposes a schedule

problem to minimize flow completion time with rate allocation method. On task-level scheduling, baraat [7] works on de-

centralized task-level scheduling, as well as flows in one task loosely synchronize by different pace. While we focus on a

centralized control method to make use of controller and increase task-level profits. 

6. Conclusion and future work 

PAT is a centralized method which is designed to accomplish tasks within their deadlines. It employs the deadline and

task information to achieve maximum profit while scheduling tasks in data center networks. Tasks have a value of accom-

plishment, and flows in the tasks can dynamically affect the overall profit of the tasks with scheduling. Hence PAT can

recognize the completion urgency for better profit. Besides PAT has good adaptability for the nature of multiple types of

flows in data centers. In addition, we introduce a situation without deadline information to guarantee task performance. We

present ePAT a missing deadline information maximizing profit method. Our evaluation shows that the profit of task is a

reasonable representation of the quality of service. PAT and ePAT fit for both different and uniform flows. They significantly

benefits the task completion rate, task completion time and overall profit comparing to existing priority scheduling methods.

Our future work concludes two aspects. First, the definition of profit in this paper is an abstract concept which is related

to the task priority and task value. Flow profit is determined by task classification and completion condition. Actually, the

number of accomplished flows in one task and deadline emergency can affect the profit of scheduling flows. We take at-

tempts to improve our profit model to fit for the practical settings. Second, we will further polish PAT and its approximation

rate on algorithm, and then implement it on testbed in a real data center network environment. 
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