
Pota: Maximizing Profit for Task-level Scheduling for Data Center Networks

Xiaoyi Tao, Heng Qi, Wenxin Li, Keqiu Li

School of Computer Science and Technology
Dalian University of Technology

DaLian, China
keqiu@dlut.edu.cn

Yingwei Jin

School of Management
Dalian University of Technology

DaLian, China
jinyw67@dlut.edu.cn

Abstract—Scheduling is one key issue in Data Center Net-
works (DCN). Earlier research work usually focuses on flow-
level scheduling, while more and more people are aware of
the benefits of task-level scheduling in recent years. Most
existing task-level scheduling methods schedule flows of one
task together in order to reduce average completion time.
However, few works discuss the efficient task-level scheduling
in the view of the profit of tasks.

To address this problem, we propose a novel task-level
scheduling method named Pota, whose target is to maximize the
profit of completing tasks within their deadline. To achieve this
goal, we propose a maximizing profit optimization model, and
then present an efficient scheduling 1

2
-approximate algorithm.

Based on the proposed algorithm, we design and implement
Pota. We also conduct comprehensive experiments to evalu-
ate the performance of Pota. The experimental results show
that Pota can save 15% average task completion time while
increasing 20% task profit.

Keywords-Data center networks, Task-level scheduling, Max-
imize Profit

I. INTRODUCTION

Data centers are being used as the critical computing and

storage infrastructures for commercial services, including

web search, social network, retail system and cloud com-

puting. These applications are under a strict limitation on

latency requirements, and even a sub-second can seriously

impact user experience and application profits [1]. Online

applications generate a large number of requests and aggre-

gate the results from responses computing in the back-end,

since the result must wait for all of the response flows to

finish or reduce user experience. This implies that a task

is successfully accomplished if and only if all of flows

belong to one task complete before its deadline. Accordingly,

task-level scheduling methods for data center networks is

significant for user experience and increasing application

profits.

To the best of our knowledge, existing scheduling methods

in data center networks can be classified into two categories:

flow-level scheduling and task-level scheduling. On the one

hand, flow-level scheduling methods focus on minimizing

completion time and finishing flows within deadline only

based on flow information. Fair sharing approaches approx-

imately divide bandwidth equally on bottleneck in a fair

share manner. The scheduling methods [2] [3] are based

on transport level rate control, which reduce the number of

flows missing deadlines with weakness of first come first

serve (FCFS). Centralized flow priority scheduling methods

[4] [5] reduce flow completion time. With the aim of im-

proving network resource efficiency, Hedera [6] dynamically

schedules elephant flows and short flows. The integrity of

task is ignored by flow-level scheduling. Each task in data

centers contains hundreds of flows, all of which need to

be finished before a task is considered to be completed.

Only flow-level scheduling could be in a situation that most

flows in one task completed waiting for lag flows completion

or returning results to users with performance damage. On

the another hand, task-level scheduling methods organize

flows of one task and schedule them together in order

to reduce average completion time. Baraat [7] works on

decentralized task-level schedule and schedules flows in one

task together. Coflow [8] abstracts the network plane and

Varys [9] schedules coflows to reduce coflow completion

time (CCT).

Prior works focus on reducing flow completion time, from

the view of user experiment and application profit, task

overall performance are the important criterions for data

centers. However, both flow-level and task-level scheduling

methods ignore the overall task performance. We define

profit as a variable to describe task performance. Meanwhile,

profit is a representative of task completion condition and

network efficiency, thus take advantage of task profit in

task-level scheduling is feasible. Flows belonging to differ-

ent applications have different characteristic on flow sizes

and latency. These have motivated task-level problems of

scheduling.

In this paper, we propose a task-level scheduling method

to improve the task performance, which is measured with

task profit. To ease presentation, we present an example

to demonstrate potential benefits of task-level scheduling

methods by applying existing flow-level methods. Task-

level scheduling methods are based on both task and flow

priorities. As shown in Figure 1, we consider that there

are three tasks with six flows. Each flow is represented

as a 5-tuple [task ID, flow ID, size, starttime, deadline].

Suppose that these flows are transferred in one bottleneck

2015 IEEE International Conference on Computer and Information Technology; Ubiquitous Computing and Communications;

Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing

978-1-5090-0154-5/15 $31.00 © 2015 IEEE

DOI 10.1109/CIT/IUCC/DASC/PICOM.2015.183

1230

�������� 	
������ ���� ���������� ����
����
�� �� �� �� ��

�� �� ��
�� �� �� �� ���

�� �� ��
�� � �� �� ��

	� �� ��

(a) The concurrent flows conditions for
one bottleneck link

�
�

�

�

�

�

� 	

�

�

�

�

	

�

�

�

�

	

�

�

�

	

	

�

�

(b) Bandwidth fair share

� 	� � �

(c) Flow-level priority scheduling

� 	� � �

(d) Task-level priority scheduling

Figure 1. An example of current works vs task-level schedule

link, and the network resource cannot satisfy all the flows

deadline demands. In traditional solutions, fair sharing is

the main method which is shown in Figure 1(b). Here, the

flow completion time of the six flows are (44/3, 12, 44/3,

16, 8, 46/3) respectively. Comparing the finish time with

deadline 1(a), only flows C and D meet their deadlines,

and the average flow completion time is 13.4 by applying

the fair sharing. In Figure 1(c), flows are scheduled by

priorities that are associated with deadlines. As shown in

the Figure 1(a), both task 1 and 3 miss their deadlines.

Deadline priority reduces the average completion time to

7.7. Comparing to fair sharing method, it saves 42% on flow

completion time. Flow-level priority scheduling methods

schedule flows according to the flow priority without task

information. In this case, both task 1 and 3 complete only

one flow. This means that they obtain zero profit. In task-

level priority scheduling as shown in Figure 1(d), the average

flow completion time is 7.8 which is proximal to priority

scheduling methods. However, the average task completion

time of flow-level priority scheduling is 10 while task-level

scheduling is 9.6. Moreover, task-level method reduces the

number of switches among the flows which might bring

some lag during switching in this scenario. Task 1 meets

its deadline in task-level scheduling, therefore task-level

scheduling obtains more profit than flow-level scheduling.

According to above analysis, we design Pota (maximizing

profit for task-level), a method that targets at maximizing

profit of completing tasks within their deadline, which

focuses on task-level scheduling in data center networks.

Pota utilizes centralized controller, which has knowledge of

task-level information on task number, task requirement and

task deadline. The core of Pota is an
1

2
-approximation algo-

rithm on maximizing profit according to task time and task

profit, which helps controller make decisions on schedule

sequences. In Pota, the controller identifies the flows that

belong to the same tasks and dynamically modifies their

priories with the aim of guaranteeing task integrity. Pota

schedules tasks in a priority manner according to the policy

computed by the controller. Through extensive simulation,

we finds that Pota provides benefits over existing benefits on

task completion rate, task profit and task completion time.

To sum up, our main contributions of this paper are as

follows:

• We introduce a maximizing profit optimization model

to design an efficient task-level scheduling method

based on deadline, priority and task requirements.

Specifically our model is capable of improving flow-

level and application profits.

• We design and implement Pota, a task-level flow

scheduling method. Guided by the profit optimization

model, the key idea of Pota is an approximate method

that computes the scheduling policy based on the pri-

ority, task completion condition and task requirement.

• We conduct comprehensive experiment to evaluate the

performance of Pota, compared with existing priority

flow scheduling solutions under typical data center

traffic [10]. Pota outperforms the flow-level priority

scheduling in data center networks. Pota can save 15%

average task completion time. Meanwhile, it increases

20% task profit.

The rest of this paper is organized as follows. In Section

II, we briefly introduce the work model of Pota. In Section

III, we show the detail design of Pota. We present the

evaluation in Section IV. In Section V, we discuss the related

work of this paper. Section VI concludes the paper and our

future work.

II. SYSTEM MODEL

In this section, we first present an overview of maximizing

profit problem. Then, we describe the detail of our model.

A. Problem Statement

Many data center applications generate complex and a

large number of tasks such as MapReduce tasks. From

the nature of tasks, these tasks consist of many flows.

Meanwhile, each task has a strict limitation on deadline

and all of its flows need to be finished before the deadline.

Tasks belonging to different types of applications have

diverse requirements on deadline. Task performance is an

important factor in quality of service. In order to evaluate

task performance, we define profit as a parameter to measure

the task performance. Considering task performance, we

make efforts to solve a task-level scheduling problem that

subjects to task deadline and task profit. Generally a problem

1231

on task-level scheduling is difficult to solve. To schedule

tasks efficiently, we resort to the centralized controller.

B. Model Formulation

We formulate a task-level model in data center and define

variety kinds of tasks such as background flows, search

engine and map reduce. We assume that task size, deadline

and priority information is known. Each task in our model

has an identifier denoted by the symbol ti. We use fi,n to

denote flows in task ti, ni is the number of flows in ti. The

arriving time of task ti is ai, and di indicates the deadline

of ti. The duration of task ti is the interval between ai and

di. Since flow fi,j belongs to task ti, they have the same

deadline of di. Flows in one task have different arriving

time. Each flow in tasks has a value on accomplishment. If

a flow completes before its deadline, then the data center

can obtain the flow profit. In our model, we denote αi,j(t)
as a binary variable that indicates whether to schedule flow

fi,j at current time slot. Here, we suppose that once a flow

is scheduled before its deadline, we consider that it has been

completed. While network resource is limited, we denote C
as the capacity of network that can be allocated to schedule

flows. Let si,j indicate the size of flow fi,j . Each task has a

weight ωi associated with task value. Symbol ρi denotes the

priority of task ti, for example realtime tasks have higher

priority than background tasks. Applications in data centers

pay different prices for their resource. The profit of tasks

belonging to these applications is affected by these prices

which can be denoted by task weight ω, and ρ is an indictor

of the nature of applications. Therefore, the profit of task ti
Pi as shown in Equation (1) is determined by task priority

ρi and task weight ωi.

Pi = ωiρi. (1)

Flow profit Pi,j is determined by two parts: task profit Pi and

task completion condition. Here, we let the task completion

condition be denoted by γi, which satisfies γi > 1 associate

with time urgency of task ti. And γi can change over time

slots. Pi,j can be dynamically modified according to current

time and deadline which means schedule some urgent tasks’

flows can bring in higher profit.

Pi,j = γi ∗ Pi. (2)

The profit is gained by successfully schedule a flow as

Gi,j = Pi,jαi,j(t). (3)

We are aiming to introduce an approximate schedule

policy to maximizing overall task profit with deadline lim-

itation for data center networks. Task profit and scheduling

revenue is formulated in equation 2 and 3. Here we use the

summation of flow profit in one task to denote the overall

task profit.

The program is presented in Equations (4) - (7). The

objective function in Equation (4) defines the profit getting

from schedule tasks, in the meanwhile partially scheduling

tasks cannot get partial profit. Equation (5) is a limitation

on task integrity which ensures the task completion in legal

time, and Equation (6) is the network capacity limitation.

In Equation (5), all of the finished flows during legal time

subject to the flow number ni of task i. Network capacity C
is an abstraction of network resource that can be allocated

to flows for transporting. All of the scheduled flows in the

network strict subject to network capacity C. We consider

the profit of data center to be maximum, in order to picture

this situation we introduce a strategy that the priorities of

flows can change with tight deadline and priorities reversely

effect the profit of the flows. Since in one task the last several

flow seriously impact task overall performance.

Max

n∑

i=1

ni∑

j=1

Gi,j , (4)

s.t.

di∑

ai

ni∑

j=1

αi,j(t) = ni, (5)

n∑

i=1

ni∑

j=1

si,jαi,j(t) ≤ C, (6)

αi,j(t) ∈ 0, 1. ∀i, j (7)

Obviously, our model is a NP-hard problem [11]. The

optimization program above cannot get the optimal solution

in constant time. The optimization function is a target we

make effort to solve the deadline issue and bring in more

profit. We propose an approximation algorithm to obtain

approximate result for scheduling policy. Our model is the

first attempt to define dynamic priority during time slot

in data center networks. We introduce an approximation

algorithm to solve the scheduling policy in next section.

III. PROFIT TASK-LEVEL FLOW SCHEDULE (POTA)

In this section, we present the details for Pota. In Section

III-A, we briefly introduce the main design of Pota. We

divided Pota into two parts: controller design and switch

design. In Section III-B, we introduce main function of con-

troller. In this section, we present and analyse an appropriate

algorithm to maximize overall task profit in our model. We

introduce the design of switches for Pota in Section III-C.

A. Pota overview

The key insight of Pota is that the controller is aware

of tasks information and generate an appropriate scheduling

policy. The controller scheduling tasks upon profits. Fig.2

shows the overview of Pota. Pota employs a centralized

controller to implement information collection and generate

policy. From the perspective of tasks, tasks have the profits

corresponding to applications. Meanwhile, flows belonging

to one task have flow-level profit which can adjustment

during time slots. The controller is aware of all information

about networks and has the authority of networks control-

ling. Given this consideration, we generate a schedule policy

based on overall profit and take advantage of controller

1232

function to schedule flows. The controller makes use of

network global information and treats flows belonging differ-

ent tasks respectively. The Pota controller has three 3 main

functions: task identifier, profit computation and schedule

generator. The switches in Pota execute the policy generated

by the controller. In the following we mainly describe the

Pota’s controller designs and the approximate algorithms to

maximum profit.

��!"���
��!"���

��!"���

��!"���

#����$�����

��

��%��

����$&

�����������'���

#��'������("�����

#�
�$)�*��������

��

�$��'
�����'���������
����������+"���(�
�$)

Figure 2. The framework of Pota

B. Controller design

Many data center networks are designed to have a con-

troller, such that the network can be centralized controlled by

the controller. Controller has full view of network situation

and aware of flow status. In addition, data center[12] has

its own administrate system which realizes the application

allocation and varieties in data center. In Pota, the main

function of profit compute, scheduling policy generating and

priority modification are realized in the controller.

1) Task identifier: Pota controller has a counter on tasks.

While tasks arrive at controller, we increase task counter and

mark it as task-id. In order to identify tasks and tasks type,

we design the task counter with tasks id and tasks priorities.

The module of task identifier accounts for identifying both

tasks and flows. In Pota, we schedule tasks based on their

profits, therefore the profit of tasks is important. As shown

in Equation (1), tasks profit is determined by tasks value and

tasks priorities. We define task value associate with applica-

tions requirement. Therefore, the task information is crucial

to Pota. The classifications of applications are basically user-

face latency sensitive, user-face throughput sensitive, system

control and background services. System control tasks have

the requirement of low latency and accuracy. While the

other background flows are long-lived flows that occupy

the network resource from online service. Consequently, we

generally divided task priority into four levels. In application

level, tasks have priorities and corresponding profit. We

encodes the task priority into the task id. In this case, tasks

have task id and it is corresponding tasks priorities, which

provides convenience for profit calculator.

2) Profit calculator: Pota schedules tasks according to

their profits and network capacity. In pota, there are two

layer profits which are task profit and flow profit. Task

profit is constant while flow profit can change over time.

Since task have deadline, for example, on the attribute of

deadline flow A has a longer deadline than flow B, and

they belong to the same task-level. Only task-level profit

identifer cannot distinguish flow A and flow B. A flow-level

profit with deadline urgency is necessary in this situation.

At the beginning, flows bring a task-level profit information

and deadline information, and flow-level profit changes with

the variable gamma. This is the initialization progress of

profits. Flows belong to the same application with different

task-id, they have the same task profit. Task performance for

data center is based on overall task profit which is the sum

of all the flows profits in one task. And the performance of

network can be calculated by all tasks profits in the network.

The controller has information on task id, and tasks

priorities are can be decoded from task id. The controller

has knowledge of task information, and the profit of task

Pi is determined by task value omega and task priorities

rho which is related to task deadline. As shown in Equation

(1), (2) and (3), overall profit is related to task value, task

priority and task completion condition. Since task-id have

priority and id information, we only need to task profit and

deadline information. We modify the field of vlan id to be

the profit of tasks. And the priority field is used to schedule

flows.

3) Policy generator: Here we introduce the main function

of controller that scheduling policy generator. Approximate

algorithm 1 realizes maximize profit formulation, as we

define that in section II we compute a schedule policy to

modify flow priorities in controller. Algorithm 1 lists all the

steps in computing profit-effective, overall task profit and

schedule policy. A key of our model is task profit which

is related to the flow dynamic priority and task priority

level. And the dynamic priorities of flows is a variable

calculated by priority and time slot determined by the

controller. Moreover, sdn network is a centralized network

that we can take advantage of controller view to figure

out the appropriate schedule policy. Next, we introduce our

approximate profit algorithm.

Algorithm 1 lists all the steps followed in computing

maximum profit and scheduling set A. At first, we sort the

profit-effective of the existing tasks in a descend order. In

limited network resource, we schedule more profit-effective

tasks which can bring in more overall profit. In step 3, we

attempt to get a maximum i denoted by k. From steps 9-

13, we schedule all of flows in the most profit-effective

tasks which satisfy the size of appropriate tasks is smaller

than current network capacity C. The network capacity C
changes with the size of scheduled tasks, while C is not

enough for a entire task that we schedule partial flows in the

most profit-effective task at present as shown in steps 15-19.

1233

In next loop, we schedule the left flows at first which shows

in steps 6-8. The controller execute this algorithm until the

capacity C reduce to zero.

Algorithm 1 Maximum Overall Profit Computation

Input:
Flow fi,j assemble F; Profit of flow Pi,j ;
Number of flows in task i ni; Size of schedule task si

Output:
Schedule policy set A;
Schedule tasks profit p

1: Sort Pi/ni in a descend sort order
2: Scheduled tasks profit p
3: for i = 1; i ≤ n; i++ do
4: Pi,j ← γ ∗ Pi

5: if C > 0&t ∈ [ai, di] then
6: if ni−1 > 1 then
7: for each j from 1 to ni−1 do
8: αi−1,j ← 1; C ← C − si,j
9: if si < C then

10: for each j from 1 to ni do
11: αi,j ← 1; p← p+ Pi,j

12: scheduled task k++
13: C ← C − si
14: else if si > C then
15: max partial size li
16: for j = 1; j ≤ li; j ++ do
17: if partial size li < C then
18: αi,j ← 1
19: C ← C − li; ni ← ni − li
20: else
21: break
22: maximum k, profit P
23: return A ← max{∑k

i=1 Pi, Pk+1}, profit p

The algorithm 1 greedily choose the most profit-effective

tasks, which subject to network capacity and the nature of

tasks. The approximation algorithm is proposed, and its time

complexity and approximation ratio are analyzed in the next.

Our algorithm is least
1

2
OPT in time bound O(nlog(n)).

Next, we will prove our approximation rate of algorithm is

at least
1

2
.

Theorem 1 Let A denote the set output by the algorithm.
Then, profit(A) > 1

2OPT .

Proof: : Let OPT denote the optimal set. If
∑n

i=1 si ≤
C, then profit(A)= profit((OPT)). Therefore, we assume∑n

i=1 si > C. We use k to denote the largest positive integer

got by in algorithm line 3. We need to prove the following

two inequalities
k∑

i=1

Pi ≤ OPT <

k+1∑
i=1

Pi (8)

Obviously, the first inequality holds in our model. For the

second inequality, in the algorithm line 1 we sort the tasks

of task profit and task size which in the order of descend.

The most efficient method is to schedule the most valueable

tasks at firs until exceed the network capacity. The remaining

capacity assigns to the most value flows until saturate the

whole network. From the network perspective,
∑k+1

i=1 Pi is

the upper bound of profit (OPT). If we loose the constraint

of flows completion number in tasks Equation (5) to smaller

than ni. We denote it as tasks completion indicator Ii and

we use 0 < Ii < 1 to replace with Ii ∈ 0, 1.

Ii =

⎧⎪⎨
⎪⎩
1 i = 1, 2, · · · , k,
C−∑n

i=1 si
sk+1

, i = k + 1,

0 i = k + 2, k + 3, · · · , n.
(9)

Here we get a maximum profit value p̂ in linear program .

Therefore, we conduct a inequality

OPT ≤ p̂ =

k∑
i=1

Pi +
Pk+1

sk+1

(
C −

k∑
i=1

si

)

<

k∑
i=1

Pi +
Pk+1

sk+1
sk+1 =

k+1∑
i=1

Pi.

(10)

In the end, we conduct following Equation

A = max{Pk+1,

k∑
i=1

Pi} ≥ 1

2

k+1∑
i=1

Pi >
OPT
2

(11)

Accordingly, our algorithm approximation rate is at least 1
2 .

The algorithm 1 greedily choose the most profit-effective

tasks, and the result of algorithm is acceptable and efficient.

C. Switch Design

SDN network [13] separates the network control plane

from data forwarding plane which can improve resource

utilization, network management and reduce cost. Controller

has a full view of the whole network and flow informa-

tion. According to the protocol of openflow [14], switches

have flow tables when one unkown flow appears it trigger

the packet-in and send the packet-in information to the

controller. The controller computes the route and other

bits in packet head and responses to switches. The pota

switches use the simple mechanism on priority scheduling.

Our switches only focus on the priorities of flows without

considering task information. The limitation of Pota switches

is it uses openflow switches and schedules flows based on

the flow table. In specific, control has the information of

deadline and profit which are not available in flow table and

packtin message. The controller is responsible for computing

priorities on both task-level and flow-level. In order to obtain

maximum profit, the controller executes the algorithm 1 and

schedules a set of flows need to be scheduled at current

time slot. Then, the controller modifies the priorities of

scheduling flows to absolute high priorities for authorities

to scheduling in the switches. Switches resolve flows to

transport based on priorities decided by the controller.

IV. PERFORMANCE EVALUATION

In this section we evaluate Pota performance in mininet.

Our evaluation consists of four parts. First, we use mininet to

1234

build a topology to run our experiments. Second, we gener-

ate data mining and web search workload with deadline and

profit information. Build on these, we realize the algorithm

1 on controller. In the end, we present the key result on task

completion time, profit and task completion rate comparing

with flow-level priority scheduling.

Figure 3. Topology used in simulations

A. Experiment setting

Workload: Our evaluation considers two representative

workload web search and data mining. We generate work-

loads using python socket which send and receive flows

according to Possion process based on characteristic of web

search and data mining [10] [15]. We generate the flow size

range from 1KB to 50MB and record them as trace file. In

our evaluation, different workloads run on separate hosts in

our mininet topology.

Topology: We use hose model topology in Figure 3

which can highlight the shortage of network resource. In

our experiment, we could not scale up hosts number due

to memory constrains, so we use hose model topology as

20 hosts connected to a single switch. Hose model topology

has a severe limitation on switch capacity and congestion.

We choose it to emphasize the significance of scheduling.

Meanwhile, we emulate link bandwidth to 100Mbps.

Performance: We consider three performance bench-

marks. Comparing to flow completion time, we use task

completion time to illustrate the performance of our method.

Since our method uses overall profit to improve task per-

form, we define a parameter of task completion rate to

illustrate task performance. Profit is another quantity to

directly measure task performance. In the meanwhile, we

use the flow completion time of all the flows. We compare

our method to priority schedule on task completion time,

overall profit and task completion rate.

B. Overall performance

In this section we show Pota performance in star topology

with simulation workloads. We show that Pota has a sim-

ilar result to priority scheme with much higher profit and

completion rate on task-level.

1) Task completion time: We first illustrate the com-

pletion time on task-level and flow-level. At first, we run

one workload in the topology The web search workload

have smooth and better result than data mining workload.

It is because that the data mining workload flow size wider

range from 1KB to 50MB, while the web search flow

size only range from 1KB to 1MB. As shown in Figure

4, the flow completion time is normalize to best possible

completion time (consume no congestion in network). In

Figure 4, we bread down the FCT to four parts, separately

describe the flow size variety. In Figure 4, Pota runs two

kinds of workloads, the average flow completion time which

is comparing with flow-level priority schedule. In Figure

4(c), we let 10 hosts run the web search workload and

another 10 hosts run data mining workload. The routing

process is not considered in our experiment. Pota computes

the scheduling policy through trace and determines the the

flows priorities. In this environment, mix workloads make

Pota compute the profit and dynamic priorities leading a

higher flow completion time. From Figure 4 it can be

seen that our Pota is worse than priority scheduling but

approximately in FCT. Flow completion time is a standard

most scheduling methods applying, in Pota we introduce a

standard of task completion time to illustrate our advantages.

In task completion time(TCT) Pota is significantly better

than priority scheduling showing Figure 5. Pota focuses

on task-level scheduling, it relatively centralized schedules

flows belong to one task, consequently it reduces TCT

comparing to priority scheduling.

2) Task completion rate: Pota is a method aiming at

improving task completion rate for maximum overall profit.

Here we use task completion rate to be a standard to estimate

the scheduling result. We regard the overall performance of

scheduling methods as task completion rate. The deadline

information is used to justify whether the tasks are com-

pleted. We run the mix workloads according to the trace file

calculating the task completion rate shows in Figure 6 which

clearly show the benefits from Pota in task completion rate.

We observe that Pota sacrifice 8.1% flow-level latency for a

incremental of 21% task completion rate which significant

improves user experience and application performance. Pota

unifies scheduling existing flows in tasks, as a result the task

completion rate is better than flow-level priority scheduling

methods.

3) Task profit: Task profit is a definition we proposed in

this paper as shown in Equation (1) and (2). We get the

profit through successfully scheduling flows in tasks. The

profit of web search and data mining task in our evaluation

are normalized to integer for that web search workload

has a profit of 2 and data mining workload has a profit

of 1. In the algorithm 1, we can compute the maximum

overall profit which is shown in Figure 7. In Figure 7,

Pota significantly improves overall profit in the network.

Flow-level priority scheduling method ignores the integrity

1235

(a) Web search workload (b) Data mining workload (c) Mix workload

Figure 4. The average flow completion time of two workloads on web search and data mining and the mix workload

Figure 5. The task completion time Figure 6. The task completion rate Figure 7. Profit comparison

of tasks. The differences between flow-level scheduling and

Pota are that Pota guarantees the integrity of tasks and gets

the total task profit, while flow-level scheduling method

focuses on individual of flows without overall task profit.

V. RELATED WORK

Latency is critical for interactive data center applications.

Many work in data center networks mainly focus on re-

ducing latency or flow completion time. Specially, reduce

latency and flow completion time are basically similar, and

deadline is a special issue in latency. Recently some work

recognizes importance of task and did some work on task-

level scheduling. In this section, we briefly discuss some

work relevant to Pota.

Hedera [6] shows elephant flows taking up bandwidth

resource which cause short flows starving. HULL [16] makes

effort to keep the queue small by using congestion control

algorithm. HULL reserve some bandwidth for short flows

and control packets in order to avoid elephant flow occupy

all the bandwidth resources. Consequently, HULL obtain

small latencies. Low network occupation can reduce latency,

meanwhile, redundancy can also receive good result. In the

endurable network condition, short flows redundancy [17]

[18] can reduce completion times. In data center topology

[19], fattree provides multipath between any two hosts that

make replicate flows to minimize flow completion times

possible. Reduce long tail flow completion time means

the applications get better worst performance, DeTail [20]

design to lower the long-tailed flow completion times on

different data center workflows. L2DCT [21] is a transport

protocol to minimizing flow completion time by modulate

the congestion window size based on estimate flow sizes.

DCTCP [1] keep the queue occupation under the threshold

by introducing adaptive congestion control based on ECN.

Low buffer utilization can partly reduce latency and miss

deadline rate. D3 [2]first proposed rate control scheme using

deadline information, and assigns the rate by computing

desire rate which use the information of flow size and

flows deadline or estimated completion time. D2TCP [3]

is a deadline-aware TCP protocol extended by DCTCP. It

implements to adjust the window size based on both dead-

line information and the congestion status. These methods

mostly improved latency, however, they have limitations that

they cannot precisely estimate the right flow rate to meet

deadline when the early deadline flows arrive late. Moreover,

bandwidth reservation and rate adjustment are hard to handle

traffic bursty which is common in data center networks.

Having recognized above rate control strategy limitations,

subsequent work pays attention to bandwidth preemption

and the quality of responses. PDQ [4] and pFabric [5] are

the state-of-the-art approaches in priority schedule. PDQ

provides a distributed flow schedule mechanism based on

assigning rates to flows using explicit feedback with flow

priority. PFabric proposed a priority queue to schedule flows.

Switches in pfabric just decide which flow to enqueue and

choose the highest priority to dequeue. Task consist of multi-

ple flows that for data center applications the integrity of one

task is also important. Maximizing profit and guaranteeing

the integrity of tasks are the main goals in our work.

Data centers have a large number of flows. All the flows

in one task need to finish before deadline or task completion.

1236

Considering this, some effort has been made in data center

networks. Coflows [8] [9] proposed an application-level

network abstraction and schedule problems. Coflow abstract

the application into network semantic and use the semantic

to optimize some application-level quality of service. On

the basic of coflow, Varys [9] proposed a schedule problem

to minimize flow completion time on rate allocation. On

task-level scheduling, baraat [7] works on decentralized task-

level schedule and flows in one task loosely synchronized by

different pace. While we focus on centralize control making

use of controller and increase application profits.

VI. CONCLUSION AND FUTURE WORK

Pota is a centralized method which is designed to com-

plete tasks and meet their deadlines. It uses the deadline and

task information to achieve maximum profit of scheduling

tasks in data center networks. Tasks have a value of ac-

complishment, and flows in the tasks can dynamically effect

the overall profit of the tasks on scheduling. Some urgent

flows are more important comparing to normal flows. Pota

has a character that it dynamically modifies priorities on

flows according to time. And Pota has good adaptability

for the nature of data center flows mixture. Our evaluation

shows that the profit of task is a reasonable representation

of the quality of service. Pota fits for both different and

uniform flows, it significantly benefits the task completion

rate, task completion time and overall profit comparing to

existing priority scheduling methods.

We anticipate two directions of future work. First, the

definition of profit in our paper is an abstract concept which

is related to task priority and task value. Flows profit is

determined by time and the task profit. Actually, both of

completed flows number in one task and deadline emergency

can effect the scheduling flows profit. We attempt to improve

the model on profit to fit for practical setting. Second, we

will further polish Pota and its approximation rate, and then

implement and experiment it in a real data center network

testbed environment.

ACKNOWLEDGMENT

This work is supported by the National Science Foun-

dation for Distinguished Young Scholars of China (Grant

No. 61225010); the State Key Program of National Natural

Science of China(Grant No. 61432002); NSFC Grant Nos.

61272417, 61300189,61370199 and 61173161; Specialized

Research Fund for the Doctoral Program of Higher Edu-

cation (Grant No. 20130041110019), and the Fundamen-

tal Research Funds for the Central Universities (Grant.

DUT15QY20).

REFERENCES

[1] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel,
B. Prabhakar, S. Sengupta, and M. Sridharan, “Data center tcp
(dctcp),” ACM SIGCOMM computer communication review,
2011.

[2] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron, “Bet-
ter never than late: Meeting deadlines in datacenter networks,”
in ACM SIGCOMM Computer Communication Review, 2011.

[3] B. Vamanan, J. Hasan, and T. Vijaykumar, “Deadline-aware
datacenter tcp (d2tcp),” ACM SIGCOMM Computer Commu-
nication Review, 2012.

[4] C.-Y. Hong, M. Caesar, and P. Godfrey, “Finishing flows
quickly with preemptive scheduling,” ACM SIGCOMM Com-
puter Communication Review, 2012.

[5] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown,
B. Prabhakar, and S. Shenker, “pfabric: Minimal near-optimal
datacenter transport,” in SIGCOMM, 2013.

[6] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and
A. Vahdat, “Hedera: Dynamic flow scheduling for data center
networks,” in NSDI, 2010.

[7] F. R. Dogar, T. Karagiannis, H. Ballani, and A. Rowstron,
“Decentralized task-aware scheduling for data center net-
works,” in SIGCOMM, 2014.

[8] M. Chowdhury and I. Stoica, “Coflow: A networking abstrac-
tion for cluster applications,” in Proceedings of the 11th ACM
Workshop on Hot Topics in Networks, 2012.

[9] M. Chowdhury, Y. Zhong, and I. Stoica, “Efficient coflow
scheduling with varys,” in SIGCOMM, 2014.

[10] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and
R. Chaiken, “The nature of data center traffic: measurements
& analysis,” in SIGCOMM, 2009.

[11] H. El-Rewini, T. G. Lewis, and H. H. Ali, Task scheduling in
parallel and distributed systems. Prentice-Hall, Inc., 1994.

[12] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu et al., “B4:
Experience with a globally-deployed software defined wan,”
in SIGCOMM, 2013.

[13] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner, “Openflow:
enabling innovation in campus networks,” ACM SIGCOMM
Computer Communication Review, 2008.

[14] O. S. Consortium et al., “Openflow switch specification
version 1.1. 0,” 2011.

[15] T. Benson, A. Anand, A. Akella, and M. Zhang, “Under-
standing data center traffic characteristics,” ACM SIGCOMM
Computer Communication Review, 2010.

[16] M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar, A. Vahdat,
and M. Yasuda, “Less is more: trading a little bandwidth for
ultra-low latency in the data center,” in NSDI, 2012.

[17] A. Vulimiri, P. B. Godfrey, R. Mittal, J. Sherry, S. Ratnasamy,
and S. Shenker, “Low latency via redundancy,” in Proceedings
of the ACM conference on Emerging networking experiments
and technologies, 2013.

[18] H. Xu and B. Li, “Repflow: Minimizing flow completion
times with replicated flows in data centers,” in INFOCOM,
2014.

[19] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, com-
modity data center network architecture,” ACM SIGCOMM
Computer Communication Review, 2008.

[20] D. Zats, T. Das, P. Mohan, D. Borthakur, and R. Katz, “Detail:
reducing the flow completion time tail in datacenter net-
works,” ACM SIGCOMM Computer Communication Review,
2012.

[21] A. Munir, I. A. Qazi, Z. A. Uzmi, A. Mushtaq, S. N. Ismail,
M. S. Iqbal, and B. Khan, “Minimizing flow completion times
in data centers,” in INFOCOM, 2013.

1237

