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Abstract—Fair and efficient coflow scheduling has witnessed
an increasing wave of popularity in improving application-level
network performance in data-parallel clusters. With coflow size
information, previous solutions perform well in simultaneously
achieving fairness and fast completion for coflows. However, as
coflow size is difficult to obtain in practice, scheduling coflows
without prior information attracts much attention recently.
Despite the prevalence, existing information-agnostic solutions
either solely focus on fairness or fast completion. In this paper,
we make an attempt to achieve both fairness and fast completion
when scheduling coflows without prior knowledge of coflow
size. Specifically, we propose an information-agnostic coflow
scheduler—OSTB, which strives to achieve a better isolation
guarantee in the long run toward fair network sharing while
improving the efficiency by reducing the average CCT (Coflow
Completion Time). The key idea of OSTB is to intelligently give
the smaller coflows more opportunities to send data, while still
guaranteeing that the wider or larger coflows have available
bandwidth all the time. Large-scale trace-driven simulations
demonstrate that OSTB incurs 59% fewer delayed coflows than
NC-DRF when both of them use the isolation-optimal solution
(e.g, DRF) as baseline. Meanwhile, OSTB is 1.2× faster than
Aalo in terms of the average CCT.

I. INTRODUCTION

It has been widely accepted that coflow [1–3] has become

an elegant model to abstract the communication patterns in

distributed data-parallel applications (e.g., MapReduce [4],

Spark [5]). A coflow is a set of parallel flows to transfer the

intermediate results between different computation stages of a

data-parallel job, and all the parallel flows must finish before

a coflow is considered to be complete. In a shared datacenter

network, coflows may come from multiple competing users

or applications, making it extremely important to schedule

coflows efficiently and fairly.

Unfortunately, one cannot achieve fairness and efficiency at

the same time because: (1) A common wisdom in achieving

fairness is to provide isolation guarantees on the minimum

coflow progress (e.g., DRF [6] and HUG [7]), which, howev-

er, can hurt the efficiency—average coflow completion time

(CCT). (2) Minimizing the average CCT only [8] turns out to

be unaware of the service isolation.

Instead of enforcing strict guarantee on minimum coflow

progress, Utopia [9] advocates a relaxed fairness term—long-
term isolation guarantee: as long as a coflow completes no

later than an isolation-optimal scheduler (e.g., DRF [6] or

HUG [7]), its isolation is guaranteed in a long run. In such

a case, Utopia can have a chance to resolve the dilemma

between fairness and efficiency; even so, it requires complete

prior knowledge of coflow information, e.g., coflow size. In

fact, as revealed in many previous studies [10–12], the coflow-

level information cannot be easily obtained in many practical

cases, due to the pipelined computation, multi-wave execution

and task failures. Hence, Utopia becomes inapplicable in

practical scenarios, and designing information-agnostic coflow

schedulers is highly desired.

To the best of our knowledge, however, no existing

information-agnostic coflow schedulers can achieve the ob-

jectives of fairness and efficiency simultaneously. The crux is

that they either focus on optimizing fairness by providing long-

term isolation guarantee at the expense of long CCTs (e.g.,NC-

DRF [12]), or improving efficiency by reducing average CCT

without isolation guarantee (i.e., Aalo [10]).

In this paper, we study the problem of scheduling coflows

without any prior knowledge of coflow size, with the primarily

objectives of achieving fairness (i.e., long-term isolation guar-
antee) and efficiency (i.e., low average CCT) simultaneously.
Despite the difficulty in achieving the best of both worlds,

we observe some design space by inheriting the advantages of

Utopia [9] and Aalo [10]. Utopia [9] utilizes the completion

order of coflows under a fair scheme as the scheduling order,

which makes coflows likely to be completed earlier than

they would have had in the fair scheme, thus accounting for

long-term isolation guarantee. But without prior knowledge

of coflow size, the completion order cannot be calculated.

Fortunately, we found that for light-tailed distributions of

coflow sizes, FIFO can also complete more coflows no later

than their CCTs under DRF (see Sec.III-A). This motivates us

to use FIFO for determining the scheduling orders of light-

tailed coflows, and leave the remaining orders determined

by existing information-agnostic coflow scheduler Aalo [10].

In order to remove the assumption of knowing coflow size,

Aalo adopts the thought of D-CLAS (Discretized Coflow-

aware Least-attained Service) to gradually demote coflows

from higher priority queues to lower ones over time for

reducing average CCT.

The above design space looks promising, but it has some

limitations. First, the actual coflow sizes in each queue are

not strictly subject to light-tailed distributions all the time. In

many practical cases, the adjacent arrival coflows might have
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a lot of differences in their total actual sizes. Second, despite

the coflow size divergence, one cannot make judgments early

on large coflows and tend to allocate all free bandwidth to

them before they are demoted to a lower priority queue. As a

result, the small coflows arrived behind the large ones will be

affected seriously and have arbitrary long CCTs. And multiple

demotions also prolonged the completion time of the larger

coflows. To solve this problem, we investigate that the high

port occupancy rate can be used as an indication for the larger

or wider coflows (see Sec.III-C).

Based on our investigation, we propose a novel information-

agnostic coflow scheduler called as OSTB1. By utilizing a
variant of MLFQ (Multi-level Feedback Queues), OSTB com-
bines the port occupancy detection mechanism with D-CLAS

heuristic to perceive the larger or wider coflows in advance

and put them into the last queue. To avoid the larger or

wider coflows being blocked for a long time, OSTB adopts

a tunable multiplexing ratio to divide the bandwidth into

two segments: a part of the bandwidth is allocated to the

coflows in the last queue by fairness allocation algorithms, and

another part is used for the coflows in other priority queues

with FIFO manner. Thus, it can offer the smaller coflows

more opportunities to send their data by priorities, while still

guaranteeing that the wider or larger coflows have progress

all the time. To evaluate OSTB, we have conducted large-
scale simulations based on a real-world data trace collected

from Facebook. Our experimental results can be summarized

as follows. First, OSTB is much better than NC-DRF in long-
term isolation guarantee. OSTB incurs 59% fewer delayed

coflows than NC-DRF when both of them use the isolation-

optimal solution (e.g, DRF) as baseline. Second, OSTB also

outperforms Aalo and NC-DRF by 1.2× and 1.3× in terms

of the average CCT, respectively.

II. BACKGROUND AND MOTIVATION

In this section, we describe our models for datacenter fabric

and motivate the need for simultaneously achieving fairness

and efficiency for coflow scheduling without prior knowledge.

A. Model

Datacenter fabric. Thanks to full-bisection bandwidth net-
work is now available in datacenters, we abstract data center

fabric as a giant switch with non-blocking internal data trans-

mission [1, 8, 10]. In such a switch model, as illustrated in

Fig.1, we focus only on its ingress and egress ports, where

each ingress (egress) port corresponds to a machine uplink

(downlink). We assume an n × n DC fabric connecting n
machines. Each machine i has a full-duplex link shown as an
uplink connecting ingress port i and a downlink connecting
egress port i + n. Without loss of generalized, we assume that
all links are of equal capacity normalized to one.

Coflow. A coflow consists of a collection of parallel flows that
share a common performance goal across a group of machines

1Chinese idiom ”kill two birds with one stone”, used to describe an action
that serves two purposes. We abbreviate it as one stone, two birds (OSTB).

Fig. 1. An n × n non-blocking datacenter fabric with ingress/egress ports
connecting to n machines.

[1]. The coflow abstraction can capture the communication

requirement between two computation stages in the BSP (Bulk

Synchronous Parallel) model. It builds upon the all-or-nothing

property that not until all parallel flows have completed will

a coflow complete.

As a common practice [7, 13], we use the vector �Sk =〈
S1
k, S2

k, . . . , S2n
k

〉
to describe the demand of coflow-k, where

Si
k captures the amount of data transferred on link-i. In order
to perceive the demand correlation of coflows on each link,

we identify the most heavily loaded link among all links

of coflow-k as its bottleneck link, and let the demand of
bottleneck link as the bottleneck demand of coflow-k, i.e.,
S̄k = maxiS

i
k. Then we can get the demand correlation vector

�Ck =
〈
C1
k , C2

k , . . . , C2n
k

〉
of coflow-k, where Ci

k = Si
k/S̄k.

The correlation vector means that for every bit of data

transmits on bottleneck link, at least Ci
k bits data should be

transmitted on the link-i. If we denote the bandwidth allocated
to coflow-k on link-i by Ai

k, then Pk = mini
{

Ai
k/Ci

k

}
,

the minimum demand-normalized bandwidth allocation over

all links, captures the progress of coflow-k. Intuitively, the
transmission rate on the slowest link determines the progress

of the entire coflow [9], which critically affects the CCT.

B. Objectives

In this paper, we focus on optimizing two primary objectives

for non-clairvoyant coflow scheduling: average CCT (efficien-

cy) and long-term isolation guarantee (fairness).

Average CCT: Recent studies [2, 14] have shown that inter-
mediate data transmission accounts for more than 50% of job

completion time, which means the coflow completion time

significantly affects the performance of cluster applications.

Hence, an efficiency-oriented network scheduler should strive

to minimize the average CCT.

Long-term isolation guarantee: In a shared datacenter,

coflows expect guarantee on the minimum progress to ensure

isolation performance among them. A common wisdom in

achieving fairness is to seek an allocation that maximizes the

minimum progress among all coflows, i.e.,

maximize min
k

Pk. (1)

Above objective just focus on instantaneous allocation for

coflow scheduling, which means the progress of each coflow

1588



Fig. 2. Assuming two coflows C1 and C2 are scheduled on four

ingress/egress 1Gbps ports: C1 with demand vector �Sc1 = 〈10, 5, 15, 0〉Mb
and C2 with demand vector �Sc2 = 〈15, 0, 5, 10〉Mb on each port.

(a) DRF

(b) NC-DRF

Fig. 3. (a) and (b) show the bandwidth allocation under DRF and NC-
DRF, respectively. Illustrating that NC-DRF is still far from DRF in isolation
guarantee, and the inefficiency of NC-DRF on minimizing average CCT.

must be maintained at the attainable maximum level P ∗ in
each instant, however, it can hurt the efficiency. To solve

this problem, many recent studies [9, 12] advocate a relaxed

fairness term—long-term isolation guarantee: as long as a
coflow completes no later than an isolation-optimal scheduler

(e.g., DRF [6] or HUG [7]), its isolation is guaranteed in a long

run. Hence, a fairness-oriented scheduler should guarantee:

(1) The proportion of the coflows that complete no later than

they are under an isolation-optimal scheduler. (2) The worst

isolation performance, which guarantees coflows cannot be

arbitrarily blocked for a long time.

C. Motivation

For information-agnostic coflow scheduling, Aalo and NC-

DRF are two representative schedulers for efficiency and

fairness, respectively.

Aalo. To minimize the average CCT without prior knowledge,
Aalo [10] first proposes D-CLAS policy, which decreases

coflow priority only when the number of bytes it has sent

exceeds some predefined thresholds. Overall, it adopts FIFO

manner for coflows in each queue and smallest-coflow-first

for coflows among queues. Aalo does help to reduce the

average CCT, but it ignores the isolation guarantee among

contending coflows, which brings some coflows with longer

CCTs. Actually, it has been shown in [12] that Aalo can

dramatically speed the coflow completion, however, provides

no isolation guarantee, resulting some coflows delayed more

than 100× compared with their CCTs under DRF.

NC-DRF. Unlike Aalo, recently proposed NC-DRF [12] only
aims to optimize isolation guarantee. Without coflow size

information, it utilized DRF algorithm by attaining estimated

coflow demand correlation vectors according to the flow count

information on each link. NC-DRF holds that the disparity

of flow sizes within a coflow is usually small owing to the

load balancing principle. However, NC-DRF is not good for

efficiency like most isolation guarantee algorithms [6, 7],

which always ignore the actual demand and blindly force a

same progress to all coflows. Besides, NC-DRF also performs

poorly in long-term isolation guarantee even if the disparity

of flow sizes within a same coflow is small, which has been

shown in NC-DRF’s evaluations that coflows are delayed by

68% on average as compared with the DRF.

Next, we use a toy example to illustrate this point. Suppose

there are two coflows in the network contending on four 1Gbps
ports, as shown in Fig.2. Especially, we set the disparity

of flow sizes is small. Under DRF scheme, Coflow C1 has
a correlation vector �Cc1 =

〈
2
3 , 13 , 1, 0

〉
and coflow C2 has

�Cc2 =
〈
1, 0, 13 , 23

〉
. It increases the progress of each coflow to

the maximum level P ∗ = 1/maxi
∑

k Ci
k = 3

5 , where i and
k represent each port and coflow in the fabric. The bandwidth
allocation of the two coflows as shown in Fig.3(a), and the

CCTs of two coflows both are 25ms. If we use the NC-DRF
scheme, the correlation vector will be �Cc1 =

〈
1
2 , 12 , 1, 0

〉
and

�Cc2 =
〈
1, 0, 12 , 12

〉
for C1 and C2, respectively. Theoretically,

the allocated progress is P ∗′ = 2
3 as shown in Fig.3(b). But

the actual progress drops to 1
2 according to coflow actual

demands. Moreover, the CCTs of two coflows both are 30ms
and increased by 20% on average compared with DRF. Hence,

there is still a gap between NC-DRF and DRF in terms of both

instantaneous and long-term isolation guarantee.

To summarize, neither Aalo nor NC-DRF can perform well

on fairness and fast completion at the same time. Motivated

by this, we think that achieving these two objectives simul-

taneously through non-clairvoyant coflow scheduling is an

important and urgent research topic.

III. CHALLENGES AND SOLUTIONS

In this section, we present our key insight of achieving both

fast completion and long-term isolation guarantee without pri-

or knowledge of coflow size. We also analyze the challenges to

naively implement this insight and give a reasonable solution.

A. Key Insight

Drawing on Utopia [9], the priority scheduling method can

achieve the best of both fairness and efficiency. It utilizes the

completion order of coflows under a fair scheme (i.e., DRF

[6] or HUG [7]) as the scheduling order, which makes coflows

likely to be completed earlier than they would have had in
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the fair scheme, guaranteeing fast completion at the same

time. However, for the non-clairvoyant coflow scheduling, the

completion order cannot be attained.

Fig. 4. The bandwidth allocation under FIFO for two coflows C1 and C2
in Fig.2.

To address this problem, we switch our thinking to other

available priority policies for information-agnostic scheduling,

such as FIFO scheme can provide optimal efficiency for light-

tailed distributions of coflow sizes [15]. Hence, we consider

that FIFO may also perform well on the long-term isolation

guarantee for light-tailed coflows. Let’s look back at the two

coflows C1 and C2 in Fig.2. They are same in total coflow
size. Fig.4 shows that FIFO scheduler would have resulted

in a lower average CCT (20ms) than NC-DRF and DRF if
C1 was scheduled before C2, and it would have been the
same if C2 was scheduled before C1. The reason is that two
coflows with similar size will finish roughly at the same time

by adopting DRF or NC-DRF—both taking twice as much

time as a single coflow. It worth noting that FIFO can speed up

C1 (C2) without delaying the latter C2 (C1) when compared
with DRF. Hence, FIFO can be utilized to achieve our two

objectives simultaneously for light-tailed coflows.

B. Challenges

Someone may think that Aalo happens to be a non-

clairvoyant scheduler that can provide FIFO policy, but why

Aalo is still very poor in long-term isolation guarantee, isn’t it

a contradiction? We analyzed the root causes from two aspects:

(1) In each queue, the actual sizes of coflows are not strictly

subject to light-tailed distributions all the time. (2) Among

queues, a larger coflow may suffer from longer CCT due to

its lower priority and multiple demotions.

As we know that coflow sizes are subject to heavy-tailed

distributions in most datacenters, and the adjacent arrival

coflows might have a lot of differences in their total sizes.

However, Aalo cannot make judgments earlier on the larger

coflows, and tend to allocate all free bandwidth to them before

they are demoted to a lower priority queue according to D-

CLAS policy. Thus, there inevitably exists a situation that a

large coflow will prior to a small coflow be scheduled by

using FIFO in each queue, which makes some small coflows

arrived behind the larger ones will be penalized for the longer

waiting time. And multiple demotions can also severely harm

the efficiency of the larger coflows. Hence, the key to benefit

both small and large coflows is to seek a solution that can

perceive the larger coflows as early as possible. Next, we show

how to achieve it.

C. Solution

Definition 1 (Port occupancy rate): Let Nk be the number

of ports occupied by coflow-k , and N be the number of the

ports in the entire datacenter fabric (i.e., N = 2n in Fig.1). We
define the coflow port occupancy rate Rk equals Nk divided

by N , i.e.,

Rk =
Nk

N
. (2)

Even though the flow size is often unavailable, the flow on

which link (port) of a coflow can be easily obtained through

the machine learning techniques [11]. Accordingly, the port

occupancy rate for each coflow can be computed.

We calculated the correlations between coflow sizes and port

occupancy rates of a real-world data trace with 526 coflows

collected from Facebook [16]. According to the statistics, the

coflow sizes are almost no smaller than 1000MB when the port
occupancy rates are more than 0.5. Conversely, 87% of coflows

are smaller than 1000MB and 75% of coflows are smaller than

100MB when the port occupancy rates are smaller than 0.5.
Hence, it is reasonable to say that in most practical cases the

high port occupancy rate can be used as an indication for the

larger coflows under the information-agnostic situation.

Given this observation, we still utilize the total number of

bytes sent by all flows of a coflow to determine the priorities

of coflows among MLFQ. Moreover, we perceive the coflows

with high port occupancy rates in advance, then put them into

the last queue and allocate bandwidth by adopting fairness

algorithm with limited multiplexing. Finally, we use FIFO for

determining the scheduling orders of light-tailed coflows in

each queue. The effectiveness of this approach as follows.

• First, the coflow’s port occupancy rate is high means its

size is large with great possibilities, and most of them

will be eventually demoted to the last queue. Even if the

coflow is not a large one in size, it must be wide and oc-

cupy bandwidths on lots of ports. Correspondingly, there

are more coflows arrived behind it have no bandwidth

available and wait to be scheduled on the same queue.

Hence, If we can perceive such coflows with high port

occupancy rates as early as possible, more small coflows

arrived behind the large ones will get chance to transfer

their data timely.

• Second, the remaining smaller coflows that account for

a large proportion in the number of coflows have a

few differences in size, basically satisfying the light-

tailed distribution in each queue. Using FIFO manner to

schedule the remaining coflows is not only good for their

efficiency, but also can provide better long-term isolation

guarantee (see Sec.III-A).

• Finally, with limited multiplexing, the larger coflows can

avoid being blocked for a long time and get available

bandwidth all the time. Moreover, the time losses caused

by multiple demotions will be also reduced greatly.
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IV. OSTB

In this section, we present the detailed design of OSTB, an
algorithm that can provide better long-term isolation guarantee

while achieving efficiency improvement compared with exist-

ing state-of-the-art non-clairvoyant coflow schedulers [10, 12].

A. Architecture

In general, OSTB builds upon MLFQ, and relies on the port
occupancy detection mechanism and D-CLAS heuristics. In

order to avoid full decentralization causes coflow scheduling

pointless and full centralization introduces high overheads for

small coflows, OSTB also adopts loosely-coordinated and im-
plements global and local control. Fig.5 shows the architecture

of OSTB. Next, we will introduce it from following two parts.
Center Coordinator. The center coordinator plays an impor-
tant role in the overall scheduling, which is used for long-term

global coordination. Just like previous work [10], it collects

the information of coflows from each daemon running on each

end host every O(10) milliseconds, then determines the global
coflows ordering according to the D-CLAS. Finally, it will

send out the updated schedule order and globally observed

coflow information to all the local daemons for transmission.

Moreover, OSTB makes some changes to it.

Fig. 5. Architecture of OSTB

The main differences of center coordinator between OSTB
and Aalo lie in that OSTB uses the last queue as a fair queue
where the coflows with high port occupancy rates are sched-

uled by adopting fairness allocation algorithms with limited

multiplexing. Besides, OSTB adds the port occupancy detec-

tion mechanism. When the coordinator collects information

of a new coflow that arrives after previous synchronization,

OSTB first determines the coflow should be put into which

queue according to the port occupancy rate whether exceeds a

predefined threshold β. Note in OSTB, the order of coflows in
the last queue does not change according to D-CLAS, unless

there is a coflow is demoted from QM−1 to the last queue or

a new coflow have high port occupancy rate exceeds β.

Local Daemon. Each end host will run a local daemon

to monitor the runtime status of coflows and report the

information to the center coordinator. As shown in Fig.5, the

local daemon is responsible for short-term local prioritization.

Each local daemon schedule local coflows using the last-

known global ordering. When coflows arrive between two

consecutive synchronization, it will be put into the first queue

in their local priority queues temporarily in the short term,

and rearrange them with global schedule as soon as updated

Algorithm 1 Online coflow scheduling
1: procedure COORDINATORDETECTION(Coflow Ck)

2: if Ck is a new coflow then
3: Count up the number of ports occupied by coflow

Ck, i.e, Nk

4: if Nk/N > β then
5: QM ← QM ∪ {Ck} � The rate is high

6: else
7: Qm ← Qm∪{Ck} � According to D-CLAS
8: � m ∈ [1, M − 1]
9: end if
10: else if Ck is an old coflow then
11: Update the coflow priority according to D-CLAS

among Qm � m ∈ [1, M − 1]
12: end if
13: end procedure
14:

15: procedure COFLOWCOMPLETE(Coflow Ck)

16: Qm ← Qm \ {Ck} � m ∈ [1, M ]
17: end procedure

global information arrives. For the flows with same source-

destination, the latter flow belongs to another coflow will

replace the previous one that has just completed for work

conservation.

B. Online Coflow Scheduling

The OSTB coordinator utilizes the port occupancy detection
mechanism combined with D-CLAS to divide coflows into

different multi-level priority queues. In this paper, we assume

there are a small number of M queues in total, from the

highest priority queue Q1 to the lowest priority queue QM−1,

and the last queue QM is a fair queue as shown in Fig.5.

We employ exponentially-spaced scheme to set the queue

thresholds. Specifically, we define Ti is the threshold that a
coflow is demoted from Qi to Qi+1, where i ∈ [1, M−1]. Our
scheduler is an efficient online scheduler for dynamic coflow

arrivals. In general, a coflow may experience the following

three types of events during its lifetime.

1) Arrival: When a coflow arrives before a certain global
coordination, it will be enqueued into the local highest

priority queue for short-term scheduling. And once the

next global coordination begins, the new coflow is either

placed in the last queue due to high port occupancy rate

or placed in other priority queues according to D-CLAS

policy (lines 4-8 of Alg.1).

2) Activities: Coflows whose information has been collect-
ed by the global coordinator can be divided into two

types. The first kind of coflow is those that will be

demoted to Qi+1 from Qi as its total number of bytes

have sent exceed queue threshold Ti (line 11 of Alg.1).
And if a coflow exceed the threshold of queue QM−1,

even such a situation is rare, it can be put into the last

queue normally. Conversely, the second type of coflow

refers to those with high port occupancy rates. Once

placed in the last queue, they are no longer affected by
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their total number of bytes have sent. And they will be

scheduled in a fair manner by limited multiplexing until

their completion.

3) Completion: Once a coflow completes, the cluster

application de-registers it from OSTB, and it will be
removed from its current queue in the center coordinator

immediately (line 16 of Alg.1).

C. Bandwidth Allocation

OSTB is designed to optimizing both on fairness and fast

completion. Given scheduling scheme above, our algorithm

allocate bandwidth as shown in Alg.2.

Formally, let Q represent the collection of coflow queues.

Let f ijk represent an individual flow in coflow Ck transferring

data from uplink-i to downlink-j in the fabric, and the rijk
be the bandwidth allocated to f ijk . Besides, We conceptually
divide the bandwidth Bi on each port into two segments: Li is

allocated to the smaller coflows in each Qm, m ∈ [1, M − 1]
by FIFO, while Fi is the reserved bandwidth used for trans-

mission of the minority larger coflows in the last queue QM

by adopting non-clairvoyant fairness algorithms. And they all

maintain the current remaining bandwidth during algorithm

execution process. The ratio α between the two segments is

predefined by the scheduler (i.e., Fi = αBi), and can be

adjusted dynamically based on network status. Next, we will

show the details of our allocation algorithm as follows.

Algorithm 2 Bandwidth allocation algorithm
1: procedure ALLOCBANDWIDTH(Queues Q)
2: Initialize remaining bandwidth Bi ← 1 on all link-i
3: CoordinatorDetection(Ck) for all coflow-k in coordi-

nator in this epoch

4: for all Ck ∈ QM do
5: Allocation bandwidth for Ck using fairness allo-

cation algorithm, e.g., NC-DRF

6: Fi ← Fi − rijk
7: Fj ← Fj − rijk
8: end for
9: for all link-i do
10: Li ← Li+Fi � Ensure work-conservation

11: end for
12: for m = 1 to M − 1 do
13: for all coflows Ck ∈ Qm do
14: for all flows f ijk ∈ Ck do
15: rijk ← Max-min fair share

16: Li ← Li − rijk
17: Lj ← Lj − rijk
18: end for
19: end for
20: end for
21: Distribute unused bandwidth to all coflows C ∈ Qm,

m ∈ [1, M ] � Ensure work-conservation

22: end procedure

Fairness Manner:We start with detecting all coflows by using
CoordinatorDetection(Ck) in Alg.1, then allocate bandwidth

for the coflows in QM by non-clairvoyant fairness algorithm

(lines 4-8 of Alg.2). And we do not restrict OSTB to any

specific fairness algorithms such as NC-DRF [12], PS-P [17]

or per-flow fairness [18] strategies. The key is the larger

coflows in the last queue can always get progress guarantee

and avoid suffering from long completion time.

Priority Manner: To make full use of the idle bandwidth,
we first add the remaining bandwidth Fi to Li on each

port (line 10 of Alg.2). Next, OSTB utilizes strict priority

queueing for allocation across multi-level feedback queues and

adopting FIFO in each queue. For the intra-coflow scheduling,

it allocates bandwidth for every flows by using max-min fair

policy, and updates the available bandwidth on each link

(lines 15-17 of Alg.2). Note that Li here also represents the

remaining bandwidth of Bi.

Work Conserving: After processes above, there may be

remaining bandwidths in the fabric that can be utilized by

some coflows in the last queue. To better utilize resource

and improve efficiency, we traverse all links with available

bandwidth and check whether there are any flows that can be

sent (line 21 of Alg.2). Subject to the capacity constraints in

the coupled links, the bandwidth added to a flow should be the

smaller available bandwidth between its uplink and downlink.

V. EVALUATION

In this section, we compare OSTB against three represen-

tative allocation algorithms—Aalo [10], NC-DRF [12] and

Utopia [9]—using trace-driven simulations. As explained Aa-

lo and NC-DRF are the state-of-the-art information-agnostic

schedulers for efficiency and fairness respectively, and Utopia

is the optimal scheduler for simultaneously achieving the two

objectives with prior knowledge.

A. Workload and Setup

Workload. To emulate realistic scenarios, we use the one-
hour workload trace with 526 coflows in Coflow-Benchmark
[16], which is based on a Hive/MapReduce trace collected by

Chowdhury et al. from a 3000-machine, 150-rack Facebook
cluster. The benchmark is scaled down to a 150-port fabric,
where all mappers (reducers) in the same rack are combined

into one rack-level mapper (reducer), as production clusters are

oversubscribed in core-rack links and simulating rack-level is

sufficient for them [18].

To better understand the impact on different coflows, we

categorize coflows into four bins based on their lengths and

widths. In general, we consider a coflow is short (long) if the

size of its longest flow is less (greater) than 5MB, and narrow
(wide) if the number of its flows is less (greater) than 50. the
detailed distribution results are shown in Table I.

TABLE I
COFLOWS BINNED BY THEIR LENGTHS (SHORT AND LONG) AND WIDTHS

(NARROW AND WIDE) IN THE COFLOW-BENCHMARK[16].

Coflow Bin SN LN SW LW
% of Coflows 60% 16% 12% 12%
% of Bytes 0.01% 0.11% 0.88% 99.00%
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Setup. In our simulation, we modeled the fabric as a 150×150
non-blocking switch with 150 ingress (egress) ports corre-
sponding to the uplinks (downlinks) of 150 racks connected
to it. And we set the bandwidth of each port to 1Gbps.
For the Multi-level feedback queue, we employed the same

size thresholds as those in Aalo. That is, the threshold to

demoted coflows is Qi = Q1 × 10i where i ∈ [1, M − 1]
and Q1 = 10MB. The number of queues is set to 10.

For the last queue, we schedule the larger or wider coflows

with NC-DRF fairness algorithm. Besides, we set the port

occupancy rate threshold β to 0.7, which means if the number
of ports occupied by a coflow exceeds 300 × 0.7 = 220,
the coflow will be put into the fair queue. In general, the

greater occupancy rate threshold β, the smaller multiplexing
ratio α. Because if β is greater, there will have fewer coflows
be put into the last queue. Correspondingly, the multiplexing

bandwidths allocated to coflows in the last queue should be

reduced. In this paper, we set the multiplexing factor α to 0.3,
which balances β and α, making them complementary.

B. Evaluation Metrics

Long-term isolation guarantee: For evaluate the long-term
isolation guarantee of different schedulers, we utilized Nor-
malized CCT [12] as its metric, which is defined, for each

coflow, as the CCT under the compared scheduler normalized

by that under clairvoyant isolation-optimal scheduler DRF, i.e.,

Normalized CCT =
Compared CCT

CCT under DRF

In general, the normalized CCT of a coflow less than one

means the coflow’s isolation is guaranteed in a long run. As

mentioned earlier (see Sec.II-B), to achieve long-term isolation

guarantee better, we should satisfy two optimization objectives

as follows:

• First, making the normalized CCT of more coflows less

than one. It ensures more coflows get long-term isolation

guarantees.

• Second, the value of normalized CCT should have an

upper limit as small as possible. It guarantees the worst

isolation performance for coflows that cannot attain long-

term isolation guarantees.

Efficiency: We use the Improvement multiple to evaluate the
efficiency improvement of OSTB compared to other scheduler-
s. and define it as the average CCT of a scheduler normalized

by OSTB’s average CCT, i.e.,

Improvement multiple =
Compared average CCT

OSTB’s average CCT

If the improvement multiple of a scheduler is greater (smaller)
than one, OSTB is faster (slower). Hence, this metric can

measure how much faster OSTB than other schedulers in

efficiency.

C. Improvements

Fairness improvement: We plotted the distributions of nor-
malized CCT for each coflow under different schedulers, as

shown in Fig.6(a). And Table.II presents the detailed statistical

information. We can observe that OSTB incurs 59% fewer

delayed coflows than NC-DRF when both of them use the

isolation-optimal solution (i.e., DRF) as baseline. Specifically,

OSTB can make the proportion of delayed coflows whose

normalized CCTs larger than one dramatically reduced to
11.2% from 70% under NC-DRF. Interestingly, Aalo can also

ensure long-term isolation guarantees for as many coflows as

OSTB. But the maximum normalized CCT in Aalo is much

larger than 100, while OSTB has little difference with NC-

DRF, none of them are larger than 10. That means there
will be some coflows blocked arbitrarily for a long time in

Aalo, which seriously affects the fairness among contending

coflows. Besides, OSTB consistently outperforms NC-DRF

under the metrics of minimum, average and 95th percentile
normalized CCT. Even compared with Utopia, OSTB still have
a smaller average normalized CCT. This fully demonstrates the
superiority of OSTB in long-term isolation guarantee.

In Fig.6(b), we measured the average normalized CCTs in
four different bins. It worth noting that, in SN and LN bins,

OSTB has a smaller average normalized CCT compared with

all other schedulers. This is because the benefit we receive

from giving the smaller coflows more opportunities to send

their data by FIFO manner. However, for the coflows in SW

bin, OSTB is slightly worse than Aalo and Utopia. We attribute
this to that some coflows in SW bin will be put into the last

queue due to high port occupancy rates. Even they are short in

length, we cannot perceive them timely due to the limitation

of port occupancy detection mechanism. Hence, the coflows

with both characteristics of short and wide may be affected

slightly. As for the average normalized CCT in LW bins, OSTB
is close to the optimal solution Utopia. This illustrates that

OSTB also can offer the larger coflows with long-term isolation
guarantees on average by using limited multiplexing.

TABLE II
STATISTICAL SUMMARY OF NORMALIZED CCTS FOR DIFFERENT

SCHEDULERS.

Min Mean 95th Max Perc(Nor.CCT>1)
OSTB 0.18 0.68 1.31 9.54 11.2%
NC-DRF 0.37 1.68 2.15 4.71 70.0%
Aalo 0.14 1.51 1.92 256 10.5%
Utopia 0.03 0.75 1.00 2.00 2.0%

Efficiency improvement: For better illustrating the efficiency
improvement, we contrast OSTB with Aalo and NC-DRF.

Fig.6(c) shows that OSTB reduces average CCT by up to 1.2×
and 1.3× in comparison to Aalo and NC-DRF, respectively.

Similar to the effect in fairness, OSTB performs worst for

the coflows in SW bin. Across all bins, we observe more

improvements in SN and LN bins over SW and LW bins,

meaning that narrow coflows will gain more speed up than

wide ones in OSTB. As expected, OSTB’s average CCT have
little difference with Aalo except in SN bin—a strong evidence

that OSTB can avoid long waiting time for the smaller coflows
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(a) Distribution of normalized CCT (b) Average normalized CCT (c) Improvement multiple

Fig. 6. Illustrates that OSTB can perform better than existing non-clairvoyant schedulers both on fairness and fast completion. (a) Distributions of normalized
CCTs under different schedulers. (b) Average normalized CCTs in different coflow bins. (c) OSTB’s improvement compared against three different schedulers.

without affecting efficiency of the larger ones. The proportion

of coflows in SN bin is larger, therefore speeding up their

completion time will also increase the overall efficiency. To

understand how far we are from the optimal solutions, we

have compared OSTB against Utopia. Fig.6(c) presents that the
Improvement multiple in all bins are smaller than one, which
illustrates that OSTB still worse than the optimal efficiency

due to lacking of prior knowledge of coflow size.

VI. CONCLUSIONS

In this paper, we focused on the non-clairvoyant coflow

scheduling problem with the objectives of optimizing fairness

and efficiency simultaneously. Existing non-clairvoyant works

either focus only on improving efficiency by reducing average

CCT (e.g., Aalo), or optimizing fairness by providing long- ter-

m isolation guarantee at the expense of long CCTs (e.g., NC-

DRF). Fortunately, we found that for the light-tailed coflows,

FIFO not only can perform well in minimizing average CCT,

but also can provide more coflows with long-term isolation

guarantee under the information-agnostic situation. Hence,

combined with port occupancy detection mechanism, we craft

a heuristic algorithm OSTB to handle this problem effectively.
Extensive simulations based on realistic workloads indicate

that OSTB outperforms existing non-clairvoyant approaches

on both objectives. The theoretical analysis of the optimal

multiplexing ratio and port occupancy rate threshold for OSTB
is considered as our future work.
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