
Shaping Deadline Coflows to Accelerate
Non-Deadline Coflows

Renhai Xu∗, Wenxin Li†, Keqiu Li∗, Xiaobo Zhou∗
∗Tianjin Key Laboratory of Advanced Networking, School of Computer Science and Technology, Tianjin University, China.

†School of Computer Science and Technology, Dalian University of Technology, China.

Xiaobo Zhou is the corresponding author: xiaobo.zhou@tju.edu.cn.

Abstract—Data-parallel applications generate a mix of coflows
with and without deadlines. Deadline coflows are mission-critical
and must be completed within deadlines, while non-deadline
coflows desire to be completed as soon as possible. Scheduling
such mix-coflows is an important problem in modern datacenters.
However, existing solutions only focus on one of the two types
of coflows: they either solely focus on meeting the deadlines
of deadline-aware coflows or reducing the coflow completion
times (CCTs) of non-deadline coflows. In this paper, we study
the problem of optimizing deadline and non-deadline coflows
simultaneously. To this end, we present a new optimization frame-
work, mixCoflow, to schedule deadline coflows with the objective
of minimizing and balancing their bandwidth footprint, such
that non-deadline coflows can be scheduled as early as possible.
Specifically, we develop the mathematical model and formulate
the scheduling problem for deadline coflows as a lexicographical
min-max integer linear programming (ILP) problem. Through
rigorous theoretical analysis, this ILP problem has been proved to
be equivalent to a linear programming (LP) problem that can be
solved with standard LP solvers. By solving this LP, mixCoflow is
able to balance the bandwidth footprint of deadline coflows while
guaranteeing their deadlines. As a result, non-deadline coflows
can be scheduled as soon as possible whenever they arrive. To
demonstrate the effectiveness of our work, we have conducted
extensive simulations based on a widely used Facebook data
trace. The simulation results verify that mixCoflow can achieve
significant improvement on the average CCT of non-deadline
coflows, at no expense of increasing the deadline miss rates of
deadline coflows, when compared to the state-of-art solutions.

I. INTRODUCTION

It is routine for data-parallel applications (e.g., web search

queries and MapReduce-like jobs) to run on datacenters to deal

with the exponential growth of data [1–6]. A common feature

of these applications is that they generate a set of parallel

flows to transfer the intermediate data between successive

computation stages—known as cowflows [7]. A succeeding

computation stage cannot start until all its required inputs are

in place, leading to an all-of-nothing feature for a coflow: all

flows must be completed before a coflow is considered to be

completed [6, 8].
In modern datacenters, coflows can be roughly divided into

two categories: deadline coflows and non-deadline coflows.

Deadline coflows are often generated by user-facing appli-

cations (e.g., web search, social network, advertisement sys-

tems), which have stringent latency requirements [7, 9]. Such

deadline coflows are useful to the users if, and only if,

they are completed within their deadlines. Otherwise, user

experience will be hurt. This will in turn waste network

bandwidth and incur revenue loss for the datacenter provider.

On the other hand, non-deadline coflows, typically generated

by cluster computing applications and data backups, have dif-

ferent performance requirements [6–8, 10]. More specifically,

they impose no specific deadlines but generally desire to be

completed as quickly as possible. When the two types of

coflows coexist in a datacenter, an important problem is: how

to schedule such a mix of coflows, with guaranteeing deadlines

for deadline coflows and reducing completion times (CCTs)

for non-deadline coflows.

While recognizing the importance of such mix-coflow

scheduling problem, no existing solutions [6, 8, 10–14] are

in place to optimize the deadline and non-deadline coflows

simultaneously. The crux is that most of them only focus

on optimizing one category of the coflows, which may hurt

the performance of the other category of coflows. In other

words, purely minimizing the CCTs of non-deadline coflows

will cause high rates of deadline misses for the deadline

coflows. Meanwhile, purely meeting deadlines of deadline

coflows can arbitrarily prolong the CCTs of non-deadline

coflows. It is worth noting that Varys [15] is perhaps the

most related recent work which takes both deadline and non-

deadline coflows into account. It separately designs two set

of strategies, i.e., SEBF (Smallest-Effective-Bottleneck-First)

and MADD (Minimum-Allocation-for-Desired-Duration), to

minimize the average CCT and the number of late coflow.

However, Varys essentially considers the two types of coflows

independently rather than jointly, even though Varys strategies

are applicable to both deadline/non-deadline coflows.

Bearing the above points in mind, one may wonder at this

point that why not using Varys strategies to schedule the dead-

line and non-deadline coflows simultaneously. For example,

one can schedule deadline coflows first with SEBF+MADD,

and then similarly use SEBF+MADD to schedule non-deadline

coflows with the residual network bandwidth. However, such

trivially combination is problematic and can hurt the CCTs of

non-deadline coflows while incurring minor or no improve-

ment for the deadline miss rate. The main reason is that Varys

strategies are unaware of the bandwidth footprint of deadline

coflows, resulting in heterogeneous residual bandwidth in

different time and links. In such a case, non-deadline coflows

cannot fully use the residual bandwidth under the Varys

strategies, and thus their CCTs will be increased.

In this paper, we study the mix-coflow scheduling problem,

with the objective of meeting the deadlines of deadline coflows

as well as reducing the CCTs of non-deadline coflows. To this

end, we present mixCoflow, a new optimization framework

that schedules the deadline coflows with minimally impact

to the non-deadline coflows. More specifically, rather than

directly considering one of the two types of coflows only, mix-
Coflow schedules deadline coflows first since they have higher

priorities. But the thing is that when scheduling deadline

coflows, mixCoflow attempts to minimize the impact on the

non-deadline coflows by minimizing the maximum bandwidth
usage of deadline coflows across all time slots and all links.

We develop the mathematical model and formulate the dead-

line coflow scheduling problem as a lexicographical min-max

integer linear programming (ILP) problem. Such a scheduling

problem is inherently challenging to be solved, since it is

NP-hard in general [16]. To tackle this challenge, we take

an in-depth investigation of the structure of the ILP problem

and surprisingly observe that the original ILP problem meets

the following two conditions: 1) a separable convex objective

function and 2) a totally unimodular constraint matrix. These

conditions guarantee that the original ILP problem can be

transformed into a linear programming (LP) problem, by

applying the λ-technique [17] and linear relaxation. It has been

proved that the transformed LP problem can be guaranteed to

have the same solution to the original ILP problem. Moreover,

the transformed LP can be efficiently and quickly solved with

standard LP solvers. After the deadline coflows are scheduled,

the remaining bandwidth can be allocated to the non-deadline

coflows by using any existing methods such as FIFO and

SEBF+MADD.

The reminder of this paper is organized as follows. In

Section II, we present the mathematical model and problem

formulation. In Section III, we show the design details of our

mixCoflow. The extensive simulations are shown in Section IV.

Finally, we discuss the related work in Section V and conclude

this paper in Section VI.

II. MODELING AND PROBLEM FORMULATION

In this section, we develop a mathematical model to study

the problem of minimizing and balancing the bandwidth foot-

print of deadline coflows, so as to minimize the impact on non-

deadline coflows and thus accelerate non-deadline coflows.

A. Mathematical model

In our analysis, we abstract the datacenter network as a

non-blocking switch interconnecting all the machines. In other

words, coflow scheduling and bandwidth competition only

takes place at the ingress/egress ports of this non-blocking

switch, which corresponds to the incoming/outgoing links at

each machine. Such a network abstraction is reasonable and

has been widely used in many recent studies [10, 15].

In our mathematical model, we consider there are a set

of machines in a datacenter network, which is denoted by

N = {1, 2, ..., N}. We consider a discrete time system,

and consider that there are a set of time slots, denoted as

T = {1, 2, ..., T}. At each time slot t ∈ T , each machine is

capable of transmitting C units of data through its outgoing

link, and receiving C units of data through its incoming link.
Since our objective is to minimize the impact to the non-

deadline coflows when scheduling deadline coflows, we wish

to always have free bandwidth after deadline coflows have

been scheduled. So, in our mathematical model, we mainly

consider the deadline coflows, and the non-deadline coflows

can be scheduled later with existing methods. To indicate the

deadline coflows, we denote K = {1, 2, ...,K} as the set of

deadline coflows. Let fk
i,j denote a flow of deadline coflow

k ∈ K that needs to transfer Dk
i,j units data from machine

i to j. For each deadline coflow k, we denote sk and dk as

its start time and deadline, respectively. Similar to existing

studies Varys [15], we assume that all flows in a coflow start

at the same time and the information about all the flows can

be known once the coflow has arrived at the network.
Decision variable: To indicate the coflow scheduling de-

cision variable, we denote xk,t
i,j as the number of bandwidth

units allocated to flow fk
i,j at time slot t. For simplicity, we

assume that each unit of bandwidth is 1, and thus decision

variable xk,t
i,j is integer:

xk,t
i,j ∈ Z

+, ∀i, j ∈ N , ∀k ∈ K, ∀t ∈ T (1)

Specifically, xk,t
i,j = 0 means that the flow fk

i,j does not exist

or this flow is waiting for transmission.
Link capacity constraints: When scheduling coflows, both

the outgoing and incoming link capacities should be satisfied.

Thus, we have the following two constraints:

∑

k∈K

∑

j∈N
xk,t
i,j ≤ C, ∀i ∈ N , ∀t ∈ T (2)

∑

k∈K

∑

i∈N
xk,t
i,j ≤ C, ∀j ∈ N , ∀t ∈ T (3)

Constraint (2) means that the total amount bandwidth al-

located to all the flows on each outgoing links should be

no more than the capacity of this link in any time slot.

Similarly, for each incoming link, the summation of bandwidth

allocated to all the flows in any time slot must not exceed the

corresponding link capacity, as shown in constraint (3).
Deadline constraints: To meet the deadlines of deadline

coflows, each flow in a coflow should be completed within

the deadline. In our model, we consider that each flow can

only be transferred within the deadline, because transmitting

a flow after its deadline is unnecessary. Hence, we have the

following two constraints:

dk∑

t=sk

xk,t
i,j = Dk

i,j , ∀i, j ∈ N , ∀k ∈ K (4)

xk,t
i,j = 0, ∀i, j ∈ N , ∀k ∈ K, ∀t ∈ T \ [sk, dk] (5)

Here, the term
∑dk

t=sk
xk,t
i,j calculates the total amount of

data that flow fk
i,i transmitted in the duration of [sk, dk]. Thus,

constraint (4) means that each flow in a coflow should be

fully transmitted within its deadline. Constraint (5) is used for

eliminating the potential cases where a flow is still transmitting

after its deadline.

B. Problem formulation

To formally formulate our problem of minimizing the max-

imum bandwidth usage incurred by deadline coflows across

all time slots and all links, we define Z as the maximum

bandwidth usage across all links and all time slots, which can

be expressed as follows:

Z = max
i,j∈N ,t∈T

∑

k∈K
xk,t
i,j (6)

With the above definition, we are now ready to formulate our

optimal problem P1 as follows:

Minimize
x

Z (7)

Subject to: Eqs. (1),(2),(3),(4),(5).

where the objective function (7) is to minimize the maximum

bandwidth usage among all links in all time slots, which

means that each link has nearly balanced bandwidth usage

in each time slot. When the bandwidth usage can be well

balanced, non-deadline coflows can have more potential to be

accelerated.

We can easily check that this problem is an integer linear

programming (ILP) problem, which has unique challenge that

makes it difficult to solve this problem because that this

problem is NP-hard in general [16]. However, we make a

surprising observation that this ILP can be transformed into

an equivalent linear programming (LP) problem which returns

exactly the same optimal solution to the ILP, as we will show

in the following section.

III. THE DESIGN OF mixCoflow

In this section, we present the design of our mixCoflow. We

start by showing how to transform the ILP P1 into an equiva-

lent LP problem. Generally, an integer programming problem

can be transformed into a linear programming problem if the

integer programming problem has a separable convex objective
and totally unimodular linear constraints. After taking an in-

depth of the structure of P1, we find that P1 exactly has such

property.

A. Separable convex objective

With the definitions of lexicographically smaller � and

lexicographical minimization [18], we show that the optimal

solution of problem P1 can be obtained by solving the

following lexicographically minimization problem P2:

lexmin
x

ξ = (ξ11,1, ..., ξ
1
N,N , ..., ξTN,N) (8)

Subject to: Eqs. (1), (2), (3), (4), (5),

where ξti,j =
∑

k∈K xk,t
i,j , ∀i, j ∈ N , ∀t ∈ T , and ξ is a

vector with the dimension of M = |ξ| = TNN . For this

problem, the objective is to minimize the element in ξ which

is the maximum bandwidth usage across all links and all time

slots. Therefore, the optimal solution x∗ that gives ξ∗ is also

the optimal solution for Problem P1, i.e., denoted as P2 ⇒ P1.

To solve problem P2, Let g(ξ) denote a function of ξ:

g(ξ) =

M∑

m=1

M ξm =
∑

t∈T

∑

i∈N

∑

j∈N
M ξti,j (9)

where ξm is the m-th element of the vector ξ. We can easily

check that g(ξ) is a summation of convex functions M ξm , and

accordingly g(ξ) is also a convex function.

Theorem 1: g(·) preserves the order of lexicographically no

greater �, i.e., ξ∗ � ξ ⇐⇒ g(ξ∗) ≤ g(ξ).
Proof: Here we first prove ξ∗ � ξ =⇒ g(ξ∗) ≤ g(ξ). we

assume r(r ≥ 1) is the index of the first non-zero element in

ξ∗ − ξ, which means that ξ∗i = ξi, ∀i < r, ξ∗r < ξr. Then, we

have:

g(ξ∗)− g(ξ) =

M∑

m=1

M ξ∗m −
M∑

m=1

M ξm

= M ξ∗r +

M∑

m=r+1

M ξ∗m −M ξr −
M∑

m=r+1

M ξm

≤ (M − r + 1)M ξ∗r −M ξr

≤ M ξ∗r+1 −M ξr ≤ 0
(10)

With the above inequalities, we get ξ∗ � ξ =⇒ g(ξ∗) ≤
g(ξ). Now, we focus on the proof of g(ξ∗) ≤ g(ξ) =⇒ ξ∗ � ξ
through its contrapositive: ¬(ξ∗ � ξ) =⇒ g(ξ∗) > g(ξ),
here ¬(ξ∗ � ξ) ⇐⇒ ξ ≺ ξ∗, therefore, we should prove

ξ ≺ ξ∗ =⇒ g(ξ) < g(ξ∗), it can be easily proved by (10).

Hereto, theorem is proved.

Based on the above Theorem 1, we now formulate the

following problem P3 that is equivalent to the problem P2,

in terms of the optimal solution:

Minimize
x

g(ξ) (11)

Subject to: Eqs. (1), (2), (3), (4), (5).

Since ξ∗ is lexicographically minimization, thus ξ∗ � ξ, ∀ξ.

Thanks to ξ∗ � ξ ⇐⇒ g(ξ∗) ≤ g(ξ), we can get the minimum

value of g(ξ) is g(ξ∗). Therefore, problem P3 has the same

optimal solution as problem P2, denoted as P3 = P2.

B. Totally unimodular constraint matrix

In addition to the separable convex objective, the totally

unimodular constraint matrix is an important factor that en-

forces a LP problem to have integral solutions. More precisely,

denoting the feasible region of a LP problem as {x|Ax = b} or

{x|Ax ≤ b}, if the constraint matrix A is totally unimodular

and b is integral, then such feasible region is an integral

polyhedron and it only has integral extreme points. Typically,

an m-by-n matrix is totally unimodular coefficient matrix, if

it satisfies the following two conditions:

1. All elements of this matrix are in the range of {−1, 0, 1};

2. For any subset R ⊂ {1, 2, ...,m}, it can be divided into

two disjoint sets—R1 and R2, such that | ∑
i∈R1

aij −∑
i∈R2

aij |≤ 1, ∀j ∈ {1, 2, ..., n}.

The following theorem verifies that the coefficient matrixes

for all constraints in the original ILP problem exactly form a

totally unimodular matrix.

Theorem 2: The coefficient matrix of linear constraints (2),

(3), (4) and (5) form a totally unimodular matrix.

Proof: We observe that both the constraints (2) and (3)

have TN inequations, while the constraint (4) has KNN
equations and the constraint (5) has NN

∑K
k=1(Sk − 1 +

T −Dk) equations. Denote Am×n as the coefficient of all of

the inequations and equations, where m = 2TN +KNN +
NN

∑K
k=1(Sk − 1 + T − Dk), and n = KNNT . It should

be noted that n is the dimension of the variable x. We can

easily check that any element of Am×n is either 0 or 1, which

means that the condition 1 can be satisfied. For any subset

R ⊂ {1, 2, ...,m}, we can select all the elements that belong

to {1, 2, ..., 2TN} to compose the set R1, and let the rest of

the elements compose the set R2. It is easy to check that

the summation of all rows of R1, is a 1 × n vector with

all elements equal to 2. Similarly, the summation of all rows

of R2, is a 1 × n vector with elements equal to 1. Hence,

we have
∑

i∈R1
ai,j = 2 and

∑
i∈R2

ai,j = 1, Eventually,

| ∑i∈R1
aij −

∑
i∈R2

aij |≤ 1, ∀j ∈ {1, 2, ..., n}, implying

that the condition 2 is satisfied.

In summary, we have proved that both conditions for total

unimodularity are satisfied, thus the theorem is proved.

C. Transform to LP problem

Now, we transform problem P3 to a LP problem. Because

P3 is a convex problem and its coefficient matrix of linear

constraints (2), (3), (4) and (5) form a totally unimodular

matrix, with λ-representation technique [17], coincidentally,

we can transform problem P3 to a LP problem P4 as follows:

min
λ,x

∑

t∈T

∑

i∈N

∑

j∈N

∑

s∈S
Msλt,s

i,j (12)

s.t.
∑

s∈S
λt,s
i,j = 1, ∀i, j ∈ N , ∀t ∈ T , S = [0, C] ∩ Z

∑

s∈S
sλt,s

i,j = ξti,j =
∑

k∈K
xk,t
i,j , ∀i, j ∈ N , ∀t ∈ T

λt,s
i,j , x

t,s
i,j ∈ R

+, ∀i, j ∈ N , ∀t ∈ T , ∀s ∈ S
Constraints (2), (3), (4), (5).

where, problem P4 and P3 have the same optimal solution,

denoted as P4 = P3.

Theorem 3: Problem P4 has the same optimal solution with

problem P1.

Proof: we can get P4 = P3 and P3 = P2 from equations

(12) and (11), respectively. We also have P2 ⇒ P1 due to

equation (8). Hence, we have:

P4 = P3 = P2 ⇒ P1, (13)

where P4 ⇒ P1, it means that the optimal assignment

variables x∗ that gives P4 is also the optimal solution for

Problem P1. Therefore, theorem is proved.

Given the above LP problem, mixCoflow can then schedule

the deadline and non-deadline coflows with the following

steps. First, whenever an existing deadline coflow completes

or a new deadline coflow arrives, our mixCoflow will solve the

LP problem. As such, the amount of bandwidth that should

be allocated to all the deadline coflows over all time slots and

all links can be obtained. Second, mixCoflow will allocate the

remaining bandwidth resource to non-deadline coflows with

any existing method, such as FIFO and SEBF+MADD.

IV. PERFORMANCE EVALUATION

In this section, we evaluate mixCoflow by large-scale sim-

ulations based on a real-world data trace collected from

Facebook [19].

Comparing solutions: We compare the following schemes

with mixCoflow in our simulations. It should be noted that each

of the following scheme is only used to schedule the deadline

coflows rather than non-deadline coflows. For completeness,

after the deadline coflows are scheduled by each scheme, we

use SEBF heuristic to schedule the non-deadline coflows.

• FIFO (First-In-First-Out): schedules deadline coflows

based on their arriving times [8]. This scheme aggres-

sively takes all the bandwidth when scheduling each

deadline coflow, which may seriously impact the CCTs

of non-deadline coflows.

• EDF (Earliest-Deadline-First): all the deadline coflows

are scheduled in an ascending order of their deadlines

[20]. This scheme strictly prioritizes deadline coflows and

could complete a coflow far before its deadline, which is

actually unnecessary and may increase the CCTs of non-

deadline coflows.

• Varys: schedules deadline coflows with the Shortest-

Effective-Bottlence-First (SEBF) first, and then leverages

Minimum-Allocation-for-Desired-Duration (MADD) to

allocate bandwidth for each flow in a deadline coflow

[15]. This scheme uses the exactly right bandwidth re-

sources to guarantee the deadlines of deadline coflows.

However, it makes no attempt to balance footprint, and

thus may impact the non-deadline coflows.

Performance metrics: For deadline coflows, the primary

metric is deadline miss rate, which is the percentage of

deadline coflows that miss their deadlines. For non-deadline

coflows, we define the factor of improvement in the average

CCT (coflow completion time) as the primary metric. More

specifically, the factor of improvement of scheme 1 compared

to scheme 2 can be calculated as

Factor of Improvement =
CCT2

CCT1
(14)

where CCT1 and CCT2 are the average CCTs achieved by

scheme 1 and scheme 2, respectively.

Simulation setup: We simulate a datacenter network with

150 machines. The incoming/outgoing link of each machine

is uniformly set to be 800Mbps, which is a common setting

in production datacenter [15].

Data trace: We use the Hive/MapReduce trace provided

by Facebook as the workload in our simulations, which is

a widely adopted trace in the existing studie [15]. We can

easily check that each coflow in the original trace only contains

the whole data size that each reducer needs to fetch. Hence,

we uniformly sample the size for each flow within it and

accordingly obtain the information of all the flows.

We divide all the 526 coflows into two categories of coflows,

i.e., deadline coflows and non-deadline coflows, by using a

ratio. For example, a ratio of 3:1 means that 75% of the 526

coflows are deadline coflows and the rest are non-deadline

coflows. Specifically, the deadline of each deadline coflow is

set to be its minimum completion time in an empty network

multiplied by (1 + U(0, x)), where U(0, x) is a uniformly

random number in the range (0, x). Unless otherwise specified,

x = 1. Such deadline settings are similar to the study [15].

Simulation results: For deadline coflows, we mainly show

the results on the deadline miss rate. For non-deadline coflows,

we mainly present the results of the factor of improvement on

the average CCT. Detailed simulation results are shown as

follows:

1) Deadline miss rate: As aforementioned, deadline

coflows are mission-critical and are only useful to the appli-

cations when they are completed before their deadlines. By

varying the percentage of deadline coflows from 10% to 100%,

we show the deadline miss rates achieved by different methods

in Fig. 1. It is easy to find that our mixCoflow incurs a lower

deadline miss rate than the FIFO method, under all the settings

of the percentages of deadline coflows. The root reason is that

FIFO is unaware of the deadlines of coflows. On the other

hand, we can further observe that mixCoflow incurs more or

less deadline miss rate, compared to the EDF scheme. This

is because that EDF aggressively takes all the bandwidth to

complete deadline coflows. And that’s why the CCTs of non-

deadline coflows will be hurt after the deadline coflows are

scheduled with EDF (we will show this point later). As for

the Varys scheme, our mixCoflow can enjoy a little benefit on

the deadline miss rate. The root reason is that Varys embraces

a complicated admission control mechanism and heuristically

allocates bandwidth to deadline coflows based on current

remaining bandwidth resource, which can easily overlook the

optimal allocation strategy.

10 20 30 40 50 60 70 80 90 100
Deadline Coflows (%)

0

10

20

30

40

50

60

70

D
ea

dl
in

e
M

is
s R

at
e

(%
)

FIFO
EDF
Varys
mixCoflow

Fig. 1. The deadline miss rate under different percentages of deadline coflows.

2) Factor of Improvement: After deadline coflows are

scheduled, the remaining bandwidth resource can be used for

the non-deadline coflows. As aforementioned, the scheduling

of deadline coflows will impact the CCTs of non-deadline

coflows. We therefore use the factor of improvement in the

1 1 1 1.
19

1.
19

1.
13

1.
17

1.
17

1.
13

1.
17

1.
17

1.
13 2.

31 3.
55

1.
46 3.

11 4.
78

1.
88 2.
2 2.
79

1.
51 2.

33 2.
79

1.
51

18
.1

8 20
.2

4
9.

35

13
.1

8 14
.9

6
6.

56

0 10 20 30 40 50 60 70 80 90
Deadline Coflows (%)

0

5

10

15

20

25

Fa
ct

or
 o

f I
m

pr
ov

em
en

t mixCoflow vs. FIFO
mixCoflow vs. EDF
mixCoflow vs. Varys

Fig. 2. The factor of improvement in the average CCT of non-deadline
coflows.

average CCT of non-deadline coflows to show that our mix-
Coflow can efficiently reduce such impact. We show the factor

of the improvement in the average CCT in Fig. 2, with varying

percentages of deadline coflows. It is clear that our mixCoflow
can reduce average CCT of non-deadline coflows, compared

to all the other comparsion methods. Especially, when the

percentage of deadline coflows is 80%, our mixCoflow can

improve the average CCT by up to 18.18×, 20.24×, 9.35×,

when compared to FIFO, EDF and Varys schemes, respec-

tively. The reason for large improvement in the average CCT is

that mixCoflow can minimize the maximum bandwidth usage

caused by deadline coflows, over all time slots and all links.

In such a case, the non-deadline coflows can be minimally

impacted, and thus the average CCT can be significantly

reduced.

800 1000 1200 1400 1600
Time (s)

0

20

40

60

80

100

A
va

ila
bl

e
B

an
dw

id
th

 (M
B

/s
)

FIFO
EDF
Varys
mixCoflow

Fig. 3. The rest available bandwidth on all links and all time slots.

3) Remaining bandwidth: It is important to keep in mind

that the key idea of this paper is to schedule deadline coflows

with minimally impact on non-deadline coflows by balancing

and minimizing the bandwidth footprint of deadline coflows

over all time slots and all links. To completely understand

this point, we record the remaining bandwidth on each link at

each time slot when the deadline coflows have been scheduled.

To ease the presentation, we mainly present the average

remaining bandwidth across all links in a scenario where the

percentage of deadline coflows is 75%, as shown in Fig. 3.

From this figure, we can observe that mixCoflow has more

remaining bandwidth than FIFO, EDF and Varys schemes at

most of the time. Moreover, the remaining bandwidth incurred

by mixCoflow is more balanced than the other comparison

methods. This is why mixCoflow can achieve low average CCT

of coflows.

V. RELATED WORK

mixCoflow focuses on jointly scheduling deadline and non-

deadline coflows in a datacenter, with the objective of meeting

deadlines of deadline coflows while reducing the CCTs of non-

deadline coflows. There is a large body of recent work that

focuses on either guaranteeing deadlines for deadline coflows

or reducing CCTs for non-deadline coflows. In this section,

we only discuss some closely related ones.

Guaranteeing deadlines for deadline coflows: Existing

work mainly focuses on decreasing coflow deadline miss rate

[14, 15]. For example, Varys [15] first leverages an admission

control mechanism to reject coflows whose minimum possible

CCT exceeds their deadlines. Then, Varys separately design

two set of strategies (i.e., SEBF and MADD) to schedule

the admitted coflows. Taking one step further, Chronos [14]

combines priority-based scheduling and limited multiplexing

techniques to allocate bandwidth for coflows to just finish on

time. However, these works are unaware of the bandwidth

footprint of deadline coflows over time, and thus they will

hurt the performance of non-deadline coflows.

Reducing CCTs for non-deadline coflows: There are

also many works focusing on reducing CCTs of non-

deadline coflows. The typical research works (e.g., [10, 13,

15]) mainly apply simple heuristics, such as FIFO, EDF,

MRTF (Minimum-Remaining-Time-First), x-Approximation
and SEBF, to schedule non-deadline coflows. While these

works are efficient in reducing the CCTs of non-deadline

coflows, they do not consider deadline coflow scheduling. The

main difference between our mixCoflow and the above existing

works lies in that mixCoflow jointly consider the deadline and

non-deadline coflows, yet is able to reduce the impact on the

non-deadline coflows when scheduling deadline coflows.

VI. CONCLUSIONS

In this paper, we present mixCoflow, a new coflow-aware

optimization framework that jointly schedules a mix of

coflows with and without deadlines. When scheduling deadline

coflows, mixCoflow attempts to minimize and balance the

bandwidth footprint across time slots and all links, so as to

leave more bandwidth for non-deadline coflows and reduce

the impact on the CCTs of non-deadline coflows. Specifically,

in mixCoflow, we formulate a lexicographical min-max ILP

problem for scheduling deadline coflows. This ILP is NP-

hard in general. Fortunately, with several steps of non-trivial

transformations, we prove that the optimal solution to this

ILP can be obtained by solving an equivalent LP problem.

In such a case, mixCoflow can schedule the deadline coflows

by solving the relevant LP problem and leave the remaining

bandwidth for non-deadline coflows which can be scheduled

with any existing methods. Extensive trace-driven simulations

demonstrate that our mixCoflow can significantly reduce the

CCTs of non-deadline coflows without incurring increasing

on the deadline miss rate for the deadline coflows, when

compared to the prevailing solutions.

VII. ACKNOWLEDGMENT

This work is supported in part by the National Key Research

and Development Program of China No. 2016YFB1000205, in

part by the State Key Program of National Natural Science

of China under Grant No. 61432002, in part by the Joint

Funds of the National Natural Science Foundation of China

under Grant No. U1701263, in part by the National Natural

Science Foundation of China under Grant No. 61702365,

61672379 and 61772112, in part by the Natural Science

Foundation of Tianjin under Grant No. 17JCQNJC00700 and

17JCYBJC15500, and also in part by the Special Program

of Artificial Intelligence of Tianjin Municipal Science and

Technology Commission under Grant No. 17ZXRGGX00150.

REFERENCES

[1] Q. Pu, G. Ananthanarayanan, P. Bodik, S. Kandula, A. Akella, P. Bahl,
and I. Stoica, “Low latency geo-distributed data analytics,” in Proc. of
ACM SIGCOMM, 2015.

[2] R. Viswanathan, G. Ananthanarayanan, and A. Akella, “Clarinet: Wan-
aware optimization for analytics queries,” in Proc. of USENIX OSDI,
2016.

[3] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113,
2008.

[4] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad:
distributed data-parallel programs from sequential building blocks,” in
ACM SIGOPS operating systems review, vol. 41, no. 3. ACM, 2007,
pp. 59–72.

[5] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets,” in Proc. of Usenix
HotCloud, 2010.

[6] M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan, and I. Stoica, “Manag-
ing data transfers in computer clusters with orchestra,” in Proc. of ACM
SIGCOMM, Toronto, Canada, 2011.

[7] M. Chowdhury and I. Stoica, “Coflow: A networking abstraction for
cluster applications,” in Proc. of ACM Workshop on Hot Topics in
Networks, 2012.

[8] F. R. Dogar, T. Karagiannis, H. Ballani, and A. Rowstron, “Decentralized
task-aware scheduling for data center networks,” in Proc. of ACM
SIGCOMM, 2014.

[9] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron, “Better never
than late: Meeting deadlines in datacenter networks,” in Proc. of ACM
SIGCOMM, 2011.

[10] M. Chowdhury and I. Stoica, “Efficient coflow scheduling without prior
knowledge,” in Proc. of ACM SIGCOMM, 2015.

[11] H. Zhang, L. Chen, B. Yi, K. Chen, M. Chowdhury, and Y. Geng, “Coda:
Toward automatically identifying and scheduling coflows in the dark,”
in Proc. of ACM SIGCOMM, 2016.

[12] W. Wang, S. Ma, B. Li, and B. Li, “Coflex: Navigating the fairness-
efficiency tradeoff for coflow scheduling,” in Proc. of IEEE INFOCOM,
2017.

[13] L. Chen, W. Cui, B. Li, and B. Li, “Optimizing coflow completion times
with utility max-min fairness,” in Proc. of IEEE INFOCOM, 2016.

[14] S. Ma, J. Jiang, B. Li, and B. Li, “Chronos: Meeting coflow deadlines
in data center networks,” in Communications (ICC), 2016 IEEE Inter-
national Conference on. IEEE, 2016, pp. 1–6.

[15] M. Chowdhury, Y. Zhong, and I. Stoica, “Efficient coflow scheduling
with varys,” in Proc. of ACM SIGCOMM, Chicago, IL, USA, 2014.

[16] J. K. Karlof, Integer programming: theory and practice. CRC Press,
2005.

[17] R. Meyer, “A class of nonlinear integer programs solvable by a single
linear program,” SIAM Journal on Control and Optimization, vol. 15,
no. 6, pp. 935–946, 1977.

[18] L. Chen, S. Liu, B. Li, and B. Li, “Scheduling jobs across geo-distributed
datacenters with max-min fairness,” in Proc. of IEEE INFOCOM, 2017.

[19] “Facebook hive/mapreduce trace.” [Online]. Available: https://github.
com/coflow/coflow-benchmark

[20] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard-real-time environment,” Journal of the ACM (JACM),
vol. 20, no. 1, pp. 46–61, 1973.

