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Abstract—Data centers have emerged as infrastructures for deploying various applications and services. To improve the security and

performance, middleboxes are vastly deployed inside data centers to perform a large range of functionalities. Each of such

middleboxes is equipped with diverse resources. Compared with traditional switches, middleboxes analyze the content of packets. This

leads to the long processing time for flows passing through a middlebox. Additionally, executing different functionalities incurs diverse

consumption on resources. Consequently, data flows undergoing different function components need different processing time on

diverse resources. How to complete the transmission of such flows before their deadlines when passing through a middlebox comes

out to be an essential issue, which lacks effective solutions. In this paper, we propose multi-resource & deadline-driven flow scheduling

(MDFS) to satisfy the deadline requirements of flows in multi-resource environments. Besides guaranteeing the deadline, MDFS treats

flows fairly and provides reliable service for them. To the best of our knowledge, this is the first paper trying to solve the deadline-driven

flow scheduling problem in a multi-resource environment. With respect to the performance evaluation, up to 90 percent flows meet their

deadlines in normal conditions by using MDFS, which greatly outperforms the performance of other scheduling schemes.

Index Terms—Deadline-driven, fairness, scheduling algorithm, middlebox

Ç

1 INTRODUCTION

LARGE-SCALE data centers have served as the infrastruc-
ture for online applications and services, e.g., MapRe-

duce, social network, and web search. Such applications
and services usually have diverse requirements on the qual-
ity of service the data center provides. For example, online
video service needs stable link bandwidth, web search has a
strict restriction on the response delay, and applications for
synchronizing the backup data need high link bandwidth.
Ignoring such specific requirements of different applica-
tions not only influences the user experience, but also
decreases the operator’s revenue.

Meanwhile, middleboxes, which perform a large range of
functionalities [1], [2], e.g., firewall, intrusion detection,
and network address translation, are vastly deployed in
data centers as a basic component. Different from tradi-
tional L2/L3 network devices, which just simply forward
packets, they analyze the content of packets and then make
corresponding processing. This leads to the long processing
time for flows passing through a middlebox. What’s more,
middleboxes consist of multiple resources, e.g., CPU,

memory, and link bandwidth. Executing different function-
alities leads to diverse consumption on these resources.
Consequently, flows undergoing different function compo-
nents inside a middlebox result in different processing time
on diverse resources. Additionally, flows stemming from
different applications usually possess diverse requirements
on quality of service, e.g., link bandwidth, delay, and dead-
line. As for flows deriving from soft-real applications, their
transmission, including the waiting and processing time in
a middlebox, should be completed before their deadlines.
Otherwise, they will become invalid and be dropped. All
these settings extremely complicate the flow scheduling
problem in multi-resource environments. When flows
undergo different function components of a middlebox,
how to guarantee their requirements on some specific met-
rics comes out to be a challenge.

As for the flow scheduling problem in a single-resource
environment, e.g., the link bandwidth, or the buffer
queue, scheduling rules are made based on specified
scheduling goals. The following three goals are usually
considered. (1) Fairness. In different scheduling scenarios,
the fairness can be defined in various modes, e.g., the
equal allocation, the max-min fairness, and the propor-
tional fairness. All flows should be treated fairly and
receive fair service, according to any given fairness. (2)
Average flow completion time. The completion time of a
flow indicates the time interval from the beginning of its
transmission to its receival by the target node. Given a set
of flows, shorter average completion time indicates higher
resource utilization and more flows can be completed
within the same time interval. Some scheduling schemes
also focus on alleviating the long-tailed distribution of the
flow completion time. (3) Deadline. Soft real-time services
have strict restriction on the completion time of their
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tasks. As for web search, user’s requests should be
responded within an acceptable time interval. Otherwise,
flows missing their deadlines will not be responded to the
users. Consequently, this will severely influence the user
experience. Moreover, some flow scheduling schemes also
focus on the utilization of the link bandwidth and the load
balance of the network.

In practice, data center operators always strive to guaran-
tee the quality of service for applications by providing fair
services. This scheme works well in some scenarios, but it
severely restricts applications, which impose strict constraints
on the deadline. Actually, flows with diverse deadlines
should be treated differently, rather than a fair manner. Simi-
larly, the scheduling schemes focusing on the average flow
completion time are also unaware of the flow’s deadline.
Although the flows in the same set can be completed more
quickly, some of them still miss their deadlines. Conse-
quently, such two kinds of scheduling schemes cannot ensure
the deadline requirements of flows in a single-resource envi-
ronment, not tomention themulti-resource environments.

To ease the presentation, we use Fig. 1 as an illustrative
example, where the setting of flows is listed in Table 1. For
simplicity, each flow contains just one packet. Packets will
be inputted into the link after being processed on CPU. In
this setting, we get the following conclusions:

1) Fairness-driven schemes cannot satisfy the deadline
requirements of flows in a multi-resource environ-
ment. Such schemes are unaware of the flow’s dead-
line. They usually allocate equal processing time for
flows, so as to provide fair service for them. As illus-
trated in Fig. 1a, we assume that resources can be
multiplexed by flows simultaneously and hence
implement fair sharing on all the resources. The
three flows are completed at 9, 15 and 17, respec-
tively. It is obvious that f3 misses its deadline. That
is, even under an ideal assumption, fair sharing can-
not ensure the flows’ deadlines in a multi-resource
environment.

2) Those scheduling schemes, focusing on the average
flow completion time, cannot satisfy the deadline
requirements of flows in a multi-resource environ-
ment. Shortest job first (SJF) is agnostic to the flow’s
deadline and schedules flows according to the length
of processing time on resources. In a single-resource
environment, SJF achieves the minimal average flow
completion time. Here we take the sum of the flow’s
processing time on all the resources as the metric
and implement SJF in a multi-resource environment.
As illustrated in Fig. 1b, the three flows are com-
pleted at 3, 8 and 15, respectively. This scheduling
sequence achieves the minimal average flow comple-
tion time, but f3 still misses its deadline. That is, not
all the flows can meet their deadlines even though
they obtain the minimal average flow completion
time in a multi-resource environment.

3) Deadline-driven scheduling schemes in a single-
resource environment are not suitable in multi-
resource environments. Earliest deadline first (EDF)
and least laxity first (LLF) are the optimal scheduling
schemes for maximizing the number of flows, which
meet their deadlines, in a single-resource environ-
ment. They prefer to process those flows with urgent
deadlines and delay those flows with loose dead-
lines. However, such scheduling schemes are not
suitable in multi-resource environments. As illus-
trated in Fig. 1c, the three flows are completed at 17,
15 and 11, respectively. However, f1 misses its dead-
line. Consequently, we cannot adopt EDF or LLF to
solve the deadline-driven flow scheduling problem
in multi-resource environments.

For the optimal scheduling scheme, flows will be sched-
uled in the sequence illustrated in Fig. 1d, where all flows
meet their deadlines. Many factors make the design of dead-
line-driven scheduling schemes very hard, especially in
multi-resource environments. For example, flows need to be
processed on multiple resources and incur diverse process-
ing time on each resource. Some flows may need more time
to be processed on the CPU, while others may consume
more transmission time on the links. Meanwhile, resources
in a middlebox are very limited. Flows usually contend for
these resources drastically. This will be deteriorated when
burst traffic emerges. In the worst case, only a few flows can
meet their deadlines. After middleboxes are deployed in the
network, the flow scheduling in a multi-resource environ-
ment becomes an essential challenge and such middleboxes
will become the bottleneck. Consequently, middleboxes
should be responsible to guarantee the deadline require-
ments of flows as many as possible.

However, scheduling schemes, which focus on the fair-
ness or the average flow completion time, cannot guarantee
the deadline requirements of flows in a multi-resource

Fig. 1. Flow scheduling schemes in a multi-resource environment.

TABLE 1
Flow Information

FlowID Arrive Time CPU Time Link Time Deadline

f1 0 1 2 16
f2 0 3 4 15
f3 0 5 6 14
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environment. Existing deadline-driven flow scheduling
schemes focus on the setting of a single resource environ-
ment and bring enormous modifications on the senders,
switches and receivers, e.g., D3 [3]. Inspired by these obser-
vations, we design MDFS (multi-resource & deadline-
driven flow scheduling) to solve the deadline-driven flow
scheduling problem in multi-resource environments.

The major contributions of this paper are summarized as
follows. We propose and characterize the deadline-driven
flow scheduling problem in a multi-resource environment.
For solving this problem, we propose MDFS, a deadline-
driven flow scheduling scheme in a multi-resource environ-
ment. Besides guaranteeing the deadline requirements of
flows, MDFS treats flows fairly and provides reliable service
for them. It estimates the load of the middlebox to ensure
that no flows miss their deadlines as long as they start to be
processed. Finally, we verify the performance of MDFS
through extensive simulations.

The rest of this paper is organized as follows. We
introduce some traditional flow scheduling schemes
in single-resource and multi-resource environment in
Section 2. Then, we analyze the deadline-driven flow
scheduling problem in multi-resource environment and
the scheduling motivations of MDFS in Section 3. Section 4
explains the scheduling principles of MDFS in detail. Sec-
tion 5 testifies the performance of MDFS on the availabil-
ity, the reliability, and the fairness. Finally, we conclude
our work in Section 6.

2 RELATED WORK

We first introduce some traditional flow scheduling
schemes. Then, we list some recently proposed flow sched-
uling schemes in multi-resource environments.

2.1 Traditional Flow Scheduling Schemes

Traditional flow scheduling schemes focus on the schedul-
ing problem, where only a single type of resource is utilized
to serve flows. According to the scheduling objectives, such
scheduling schemes can be roughly categorized into two
categories: the fairness-driven scheduling schemes and the
time-driven scheduling schemes.

As for the former, the fairness can be defined variously,
according to the corresponding scheduling scenarios and
objectives. For example, the resource can be equally parti-
tioned to all flows. However, max-min fairness prefers to
guarantee the benefits of the flow with the minimal
demand. Based on the specified definition of the fairness,
the scheduler executes a fair partition on the resource or the
processing time for flows.

Generally, the arrival of flows cannot be anticipated in
advance. Thus, first come first serve (FCFS) can be seen as
fair for the data flows in the simplest scheduling scenario.
Fair queueing (FQ) [4] equally allocates the buffer queue in
the switch for the passing flows to provide fair service.
Obviously, this simple scheme cannot ensure the quality of
service for flows when they have different priorities.
Weighted fair queueing (WFQ) [5] partitions the buffer
queue according to the weights of flows. Thus, the flow
with weight wi will get wiPn

j¼1 wj
� c of the buffer queue, where

c is the capacity of the queue and n is the number of

backlogged flows. Subsequently, start-time fair queueing
(SFQ) [6], self-clocked fair queueing (SCFQ) [7] and worst-

case fair weighted fair queueing (WF2Q) [8] are proposed to
improve the performance of the fair queueing algorithm
under some specified scenarios.

Normally, only one packet can be processed on one
resource at a time, e.g., the buffer queue. Thus, there will be
a difference between flows’ received service all the time. By
virtue of a fluid model, generalized processor sharing (GPS)
[9] assumes that all flows can be processed simultaneously
on one resource. In this way, the buffer queue can be
equally shared by all the backlogged flows. But GPS is too
idealized to be implemented in practice and is sub-optimal
to guarantee the end-to-end delay, compared with EDF [10].

As for the latter, it works when flows have strict require-
ments on some specified time factors, e.g., the flow’s dead-
line, or the flow’s completion time. Flows deriving from
diverse applications possess different degrees of emer-
gency. Thus, they should be scheduled differently, accord-
ing to their deadlines. If a flow cannot be completed before
its deadline, it will become invalid and be discarded. What’s
more, the resource captured by it will be wasted, which con-
versely slows down the completion of other flows. Existing
deadline-driven flow scheduling schemes usually bring
enormous modifications on senders, switches and receivers.
These modifications limit the deployment of such schemes
in data centers.

Literatures [11], [12], [13] focus on minimizing the flow’s
completion time by using rate control protocol (RCP). RCP
implements the processor-sharing, i.e., allocating the same
rate for all flows passing through the switch, on all switches
in the network. D3 [3] is a deadline-aware scheduling
scheme and strives to guarantee the flows’ deadlines
through a fine-grained rate control. In its scheduling cycle,
the scheduler continually adjusts the sending rate of the
flow, according to the feedback information from the
receiver. Firstly, each sender requires an expected sending
rate, according to its remaining traffic and the deadline
information, from switches on the path to the destination.
Each switch allocates a feasible sending rate to such a
sender. Based on the feedback information, the sender
adjusts its sending rate, so as to complete the transmission
before the flow’s deadline.

Inspired by SJF and EDF, PDQ [14] schedules flows in a
preemptive manner, according to their degrees of emer-
gency. It minimize the flow’s completion time on average
and the number of flows missing their deadlines. It is imple-
mented in a distributed manner, so as to reduce the over-
head resulting from the centralized control. DeTail [15]
focuses on the long tail distribution of the flow’s completion
time and alleviates this situation by prioritizing the latency-
sensitive flows. As a variant of the traditional TCP, D2TCP
[16] is aware of the flows’ deadlines. It leverages a novel
congestion avoidance algorithm to modulate the size of the
congestion window. As for the flows with loose deadlines,

it will shrink vastly. Thus, D2TCP also prefers the flows
with more urgent deadlines.

Besides the size of data flows, unbalanced workload also
influences the completion of flows. Transmitting flows
along the congested links extremely delays the completion
of flows. Consequently, all the idle links should be utilized
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in a reasonable manner. Multipath TCP (MPTCP) is a prom-
ising method. By adopting MPTCP [17], [18] can tackle the
negative influence of unbalanced workload and flows can
finish their transmission quickly.

2.2 Flow Scheduling Schemes in Multi-Resource
Environments

The flow scheduling problem has not been explored very
much in multi-resource environments. In this scenario,
many factors, e.g., multiple resources and diverse require-
ments of flows, should be taken into account when making
scheduling decisions. Such a setting extremely complicates
the flow scheduling problem.

Generally, flow scheduling schemes get insights from the
resource allocation problem. When different users have
diverse requirements on resources, how to fairly partition
multiple resources for users attracts lots of researchers’
attention. Partition all the resource for users equally is the
simplest manner. However, it ignores diverse requirements
of users on different resources and leads to enormous waste
of resources. An alternate method is to equally partition the
bottleneck resource, i.e., the resource being mostly required.
Other resources will be partitioned proportionally to the
share of the bottleneck resource. However, this scheme is
still coarse-grained and leads to waste of resources.

Recently, dominant resource fairness (DRF) [19] has been
proposed to partition the multiple resources for users with
diverse requirements on different resources. The dominant
resource of a user indicates the resource with the maximal
share among all the resources. It’s worth noting that DRF
possesses some attractive properties. It incentives users to
share resources with others to get more service than
equally partition of resources among users. In addition,
envy-freeness makes each user never envy the allocated
resources of other users. Otherwise, the received service of
each user will be reduced.

Motivated by the attractive properties of DRF, some
scheduling schemes, e.g., DRFQ [20], DRGPS [21], MR3

[22], and GMR3 [23], have been proposed to schedule
flows in multi-resource environments. Although these
scheduling schemes all take DRF as the definition of the
fairness and focus on providing fair service for flows,
they have distinct scheduling objectives. In detail, DRFQ
and DRGPS generalize the concept of DRF into the flow
scheduling problem in multi-resource environment and
focus only on providing fair service isolation for flows
passing through middleboxes. As typical timestamp
based scheduling schemes, they need complex computa-
tions and comparisons, which lead to enormous schedul-
ing overhead. Taking the implementation complexity into

consideration, MR3 integrates the round robin algorithm
with DRF and makes scheduling decisions in Oð1Þ. How-

ever, MR3 suffers the problem that a flow with higher pri-
ority has longer interval between its two packets. Later

GMR3 emerged to improve the weakness of MR3 through
a grouping algorithm. It decentralizes scheduling oppor-
tunities for flows according to their priorities.

Nonetheless, these schemes are all fairness-driven and
focus only on providing fair service isolation for flows in
essence. As we discussed previously, scheduling schemes

focusing on fairness are agnostic to flows’ deadline. So, they
are not sufficient to ensure the deadline requirements for
flows in multi-resource environments. Similarly extending
the traditional scheduling schemes into multi-resource envi-
ronments does not work when flows have diverse require-
ments on different resources. In this paper, we propose
MDFS to solve the deadline-driven flow scheduling prob-
lem in multi-resource environments. It is aware of the flows’
deadlines and makes fine-grained control over flows when
making scheduling decisions. It’s worth noting that MDFS
provides reliable service for flows by using a precise predic-
tion scheme. That is, only the flows with the possibility of
being completed before their deadlines will be scheduled.
In addition, it works in a non-preemptive manner, so as to
avoid unnecessary waste of resources.

3 THE DEADLINE-DRIVEN FLOW SCHEDULING IN

MULTI-RESOURCE ENVIRONMENTS

We start with modeling the deadline-driven flow schedul-
ing problem in a multi-resource environment. We then ana-
lyze the reasons why flows miss their deadlines. Along
such analyses, we present the design motivations of MDFS.

3.1 Problem Statement

We first need to precisely define the packet processing pro-
cedure in multi-resource environments if we want to effi-
ciently utilize the flow’s deadline information. In this paper,
we adopt the packet processing model illustrated in Fig. 2.
We assume that all packets have to be processed succes-
sively on four kinds of resources, respectively denoted by
R1, R2, R3 and R4. What’s more, the packet processing pro-
cedure obeys the following principles:

1) Resources are not divisible. At any time, any
resource can only process just one packet.

2) The processing of packets on any resource cannot be
interrupted before their completion.

3) The start time of each packet on one resource, except
for the first resource, is equal to its finish time on the
previous resource.

4) All packets are processed along the same sequence
on all the resources.

5) For avoiding unnecessary waste of resources, pack-
ets should be processed as early as possible on the
first resource.

Actually, MDFS is not limited by the number of resources
and the model can be extended. Although some aforemen-
tioned principles are not suitable for the middleboxes
equipped with multi-core CPU, this concern exceeds the
scope of this paper.

We formalize the flow scheduling problem in a multi-
resource environment as follows. Let F ¼ ff1; f2; . . . ; fmg

Fig. 2. The packet processing model.
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denote the set of all backlogged flows, including the flows
arriving within the time interval ½T1; T2Þ and the flows that
have not been completed before T1. Here T1 and T2 are
two time points, and T1 < T2. Logically, each flow can be

denoted by a packet vector, i.e., fi ¼ <p1i ; p
2
i ; . . . ; p

zi
i > .

Here p
zi
i indicates the zith and also the last packet of fi.

Given any flow fi 2 F and 1 � i � m, ai, di and si are three
related parameters. ai denotes the flow arriving time. Obvi-
ously, the values of ai for all the newly arrived flows subject
to the restriction that T1 � ai < T2. di denotes the flow’s
deadline. si is a status denotation that indicates whether or
not fi will meet its deadline. If fi cannot be completely
processed before di, si will be set as 0. Otherwise, it will
be set as 1.

Consider that data flows consist of packets. The flow
scheduling problem can be converted as the problem of
packet scheduling. As for every available packet scheduling
sequence, denoted by ASx, it contains all or part of the pack-
ets belonging to flows in set F , depending on the specified
scheduling scheme. As for each flow, its packets in ASx

should obey the sequence in its packet vector. Correspond-
ingly, each ASx gets a value of:

gðASxÞ ¼
Xm
i¼1

si: (1)

It indicates the number of flows meeting their deadlines.
The objective of a deadline-driven scheduling scheme is to
maximize gðASxÞ within the time interval ½T1; T2Þ, i.e., get-
ting the AS� as:

AS� ¼ arg max gðASxÞ
s:t: T1 � t < T2:

(2)

Actually, the design of a scheduling scheme should not
only concentrate on maximizing the number of flows, which
satisfy their deadlines. This will lead to other problems.
Data flows usually differ in the size and deadline. In this
setting, the flows with small sizes and urgent deadlines will
preempt almost all the resources and other flows will be
starved. So, the fairness and preemption should also be
taken into consideration for a deadline-driven scheduler.

With respect to the fairness, the scheduler should treat
flows in a fair manner and allocate scheduling opportunities
equally among them. That is, the deadline of each flow can-
not indicate its importance. Flows with urgent deadlines
should not get more scheduling opportunities than flows
with loose deadlines. The latter will be starved if the sched-
uler always prefers the former. When it comes to preemp-
tion, flows with urgent deadlines will preempt the resource
occupied by other flows. This may make the latter miss their
deadlines. In the worst case, all flows will miss their dead-
lines if this action repeats. So in our design, MDFS sched-
ules flows in a fair and non-preemptive manner.

3.2 Causes of Missing Deadline

Taking the complex network environment into account, it is
non-trivial to ensure the deadline requirements for all flow.
Actually, flows may miss their deadlines due to the follow-
ing reasons.

1) Deadline-agnostic. A lot of scheduling schemes have
been proposed to enable fair service isolation for flows in
the network. These scheduling schemes are agnostic to
flow’s requirements on deadline. TCP strives to provide fair
service for all flows and achieves high utilization of the net-
work. Nonetheless, fair service isolation cannot ensure the
deadline requirements of flows. The deadline of a flow indi-
cates its urgency. Thus, flows with different deadlines
should also be treated differently. Similarly, those schedul-
ing schemes focusing on the average flow completion time
are also agnostic to a flow’s deadline. Even if a set of flows
can be processed within the minimal average flow comple-
tion time, some flows still miss their deadlines. Thus, dead-
line-agnostic scheduling schemes extremely hurt the
benefits of flows with strict requirements on deadline.

2) The contention among flows on resources. When flows
with requirements of deadline strive to be completed as
soon as possible, the contention among flows on the limited
resources will be intensified. Here resources can be the link
bandwidth, the buffer queue or even the whole network.
Constrained by the limited processing capability, the proc-
essing of flows preferred by the scheduler inevitably slows
down the completion of other flows. If flows are scheduled
in a reasonable sequence, their deadline requirements can
be satisfied as many as possible. On the contrary, if the
flows with loose deadlines preempt resources from the
flows with urgent deadlines, as illustrated in Fig. 1b, the lat-
ter may miss their deadlines.

3) Burst traffic. Even for the optimal deadline-driven flow
scheduling scheme, it cannot satisfy all flows’ requirements
of deadline under any scenario, e.g., setting the deadlines of
all flows as 10 in Fig. 1. In other words, if the incoming traf-
fic exceeds the processing capability of the middlebox,
some flows will inevitably miss their deadlines. Data cen-
ters host all kinds of applications and services. Thus, the
burst traffic is common in data centers. The contention
among flows on resources will become acute when the burst
traffic emerges. Under this setting, newly arrived flows may
not be scheduled and finally miss their deadlines. Even
worse, the flows, which have already been scheduled, may
miss their deadlines, due to the influence of the newly
arrived flows.

3.3 Design Motivations of MDFS

Based on the aforementioned discussions in Section 3.2,
MDFS obeys the following three rationales:

1) Be aware of flow’s deadline: The scheduler should be
aware of flow’s deadline. The deadline information should
be taken into account when the scheduler makes scheduling
decisions, so as to realize a fine-grained transport control
for flows. In other words, flows with varied deadlines
should be treated differently. As in D3 [3], the sending
scheme is determined based on flow’s deadline and remain-
ing size. The sender requires an expected rate from switches
along the path to the destination endpoint as:

rtþ1 ¼ remaining flow length� st � rtt
deadline� 2 � rtt ; (3)

where st denotes the sending rate of a flow in the prior
period and rtt denotes the round trip time. The sending rate
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in the next period will be justified according to the feedback

information, resulting from the switches on the path. D2TCP
[16] computes a parameter d as:

d ¼ Tc

D
; (4)

where Tc denotes the time to complete its transmission
and D denotes the remaining time before its deadline.
When the network meets traffic congestion, flows with
larger d will be back-off at a small degree in the conges-
tion avoiding period, and vice versa. So flows with urgent

deadlines are preferred by D2TCP. In summary, flows
with diverse deadlines should be treated differently. The
scheduler should be aware of the flow’s deadline and uti-
lize it to make scheduling decisions, so as to ensure that
more flows can complete their transmission successfully
before their deadlines.

2) Alleviating the contention among flows: In multi-
resource environments, flows share the multiple resources
with each other. Inevitably, the transmission of one flow
will delay that of another flow. The contention may
become acute especially when all flows strive to be com-
plete their transmission quickly. Actually, the primary
concern of flows is to be completed before their deadlines,
rather than as soon as possible. Taking the web search as
an example. Query results will be added into the final
response as long as flows meet their deadlines. Shorter
completion time of flows on average does not make the
final response more precise. Alleviating the contention
among flows can be realized by stretching the processing
time of flows to their deadlines. If so, flows will contend
for resources in a moderate manner. Under this setting,
flows with loose deadlines will not preempt resources
from flows with urgent deadlines. For stretching the proc-
essing time of flows, we have to know their original proc-
essing time.

Before further discussion, we summarize major nota-
tions and symbols in Table 2. Assume that there are n
kinds of resources and they are numbered in the order of
packet processing, e.g., packets will be pushed to the link
after being processed on the CPU. In the simplest sce-
nario, only one flow fi passes through a middlebox and it
exclusively occupies all resources. Meanwhile, fi is back-

logged. That is, pkþ1i will arrive before pki finishes its

processing on the first resource. Based on such assump-
tions and the properties of the model we define in

Section 3.1, p1i will be processed when it arrives. Its start
time on the first resource is given by

Sðp1i ; 1Þ ¼ ai: (5)

The start time of other packets of fi on the first resource is
given by

Sðpkþ1i ; 1Þ ¼ Sðpki ; 1Þ þ Lðpki ; 1Þ

þmax
r

Xr
j¼2

Lðpki ; jÞ �
Xr�1
j¼1

Lðpkþ1i ; jÞ; 0
 !

;
(6)

where 2 � r � n. On the other resources, the start time of

pkþ1i is given by

Sðpkþ1i ; rÞ ¼ F ðpkþ1i ; r� 1Þ: (7)

The completion time of flow fi on the last resource is
given by

F ðpzii ; nÞ ¼ Sðpzii ; 1Þ þ
Xn
j¼1

Lðpzii ; jÞ: (8)

For stretching the flow processing time to its deadline,
we set:

F ðpzii ; nÞ ¼ di: (9)

Then we get Sðpzii ; 1Þ as

Sðpzii ; 1Þ ¼ di �
Xn
j¼1

Lðpzii ; jÞ: (10)

That is, we delay the start time of pzii on the first resource.
The start time of other packets should be delayed corre-
spondingly, so as to alleviate its aggressiveness on resour-
ces. This will be described in Section 4.1 in detail.

3) Be tolerant to the burst traffic: Due to the limited
resources in middleboxes, the deadline requirements of
flows cannot be always satisfied, especially when burst traf-
fic emerges. The scheduler should be tolerant to the burst
traffic in some degree. Actually, two strategies can be
adopted to alleviate this influence:

(1) Accepting newly arrived flows depending on the load of the
middlebox. If the middlebox can accommodate more traffic,
newly arrived flows should be accepted and scheduled
immediately. Otherwise, they should wait until the mid-
dlebox recovers from an over-load situation. Arbitrarily
accepting newly arrived flows not only slows down the
completion of already running flows, but also interferes
the middlebox to tackle potential new flows. As afore-
mentioned, if a flow misses its deadline after being proc-
essed, it indeed wastes those resources occupied by it.
Such a phenomenon should be avoided because of its
serious influence on other flows. Thus, if a flow has
already been processed, its deadline should be guaran-
teed preferentially, rather than the deadlines of potential
new flows. Bear this in mind, MDFS schedules flows in a

TABLE 2
Notations of Necessary Variables

Notation Explanation

ai the arriving time of flow fi
di the deadline of flow fi
si the situation of flow fi
zi the number of packet from flow fi
pki the kth packet of flow i

sðpki Þ the size of packet pki
sðfiÞ the size of flow fi
Lðpki ; jÞ the processing time of pki on resource j

Sðpki ; jÞ the start time of pki on resource j

F ðpki ; jÞ the finish time of pki on resource j
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non-preemptive manner, which also ensures the fairness
among flows.

(2) Eliminating the flows, which cannot be completed before
their deadlines. It is impossible for the scheduler to satisfy the
deadline requirements of all flows. Although some flows
have already been processed for a long time or some flows
have just arrived, they may miss their deadlines even allo-
cating all resources to them. If flows have already expired
their deadlines before being completely processed, they
should not be scheduled any more. Any flow should be
eliminated immediately for avoiding unnecessary waste of
resources if its deadline has expired.

According to such rationales, we design MDFS and dis-
cuss how to combine such rationales within the implemen-
tation of MDFS in Section 4.

4 MDFS SCHEDULING SCHEME

We introduce the scheduling framework of MDFS in
Section 4.1. Subsequently, we analyze the properties of
MDFS in Section 4.2.

4.1 MDFS Scheduling Framework

According to the design rationales mentioned in Section 3.3,
our MDFS scheduling scheme consists of three algorithms,
including the flow accepting algorithm, the scheduling algo-
rithm, and the flow eliminating algorithm. By using a pre-
cise prediction strategy, the flow accepting algorithm
judges whether a flow should be scheduled, so as to tolerate
the burst traffic. The scheduling algorithm is aware of the
deadline of each flow and schedules packets according to
their allocated timestamps. The flow eliminating algorithm
is designed to alleviate the load of the middlebox. To ease
the presentation, we illustrate the scheduling framework of
MDFS in Fig. 3.

After receiving flows, they will not be scheduled
immediately while be added into the set of ready flows,
denoted as readyFlow. The flow accepting algorithm then
judges whether the flows in readyFlow should be sched-
uled under some specified constraints. If so, such flows
will be migrated into activeFlow, the set of active flows.
Subsequently, the scheduling algorithm decides the proc-
essing sequence of all flows in activeFlow. The flow elimi-
nating algorithm always works on the two sets of flows,
readyFlow and activeFlow, so as to eliminate those
unqualified flows from them. We explain details of such
algorithms as follows.

Algorithm 1. The Flow Accepting Algorithm

Require: readyFlow and activeFlow, the set of ready flows
and the set of active flows, respectively. AT , the real time.
VT , the maximal timestamp of packets being processed.
eTime, the estimated completion time for flows in
activeFlow and the newly accepted flow. dk, the deadline of
fk. sj, the status denotation of flow fj.

1: while fi arrives do
2: Add fi into readyFlow;
3: si  0;
4: for each fj 2 readyFlow do

5: minDeadline MAXIMUM ;
6: for each fk 2 activeFlow do
7: if dk < minDeadline then
8: minDeadline dk;
9: Tj  ðdj � VT Þ=zj;
10: if AT < dj then
11: ifMaxðLðpkj ; 1Þ; Lðpkj ; 2Þ; . . . ; Lðpkj ; nÞÞ � Tj then

12: if eTime �MinðminDeadline; djÞ then
13: Add fj into activeFlow;
14: Sðp1j ; 1Þ  VT ;
15: sj  1;
16: Remove fj from readyFlow;

1) The flow accepting algorithm: To tolerate the poten-
tial burst traffic, incoming flows should not be accepted
arbitrarily. Algorithm1 represents the flow accepting algo-
rithm in detail. All of flows will firstly be added into the set
readyFlow when arriving. Meanwhile, their status denota-
tions will be set as 0, denoting that they have not been proc-
essed yet. A flow in readyFlow will not be scheduled
immediately until it is migrated into activeFlow. Such a
migration happens only when the flow satisfies all the fol-
lowing constraints.

1) The flow’s deadline is not expired when migrating it
from the set readyFlow into the set activeFlow.

2) The flow’s transmission can be completed before its
deadline if allocating all the resources to it.

3) The migration of such a flow should not influence
the completion of other flows in activeFlow.

Obviously, the flows that have already missed their
deadlines should not be migrated anymore. What’s more, if
a flow cannot complete its transmission even occupying all
the resources, it will inevitably miss its deadline. Thus, the
processing of such flows makes no sense. For avoiding
unnecessary waste of resources, the processing of newly
arrived flows should not influence the processing of flows,
which have already been scheduled for a long time. The sec-
ond and third constraints are realized through a precise pre-
diction strategy, which can evaluate the load of the
middlebox and the completion time of flows.

Before moving forward, we need to clarify two concepts:
the Actual time (AT) and the virtual time (VT). AT
means the real time, which changes according to the realis-
tic packet processing procedure on multiple resources. It
will be utilized to judge whether a flow has already missed
its deadline. Inspired by the virtual-clock [24], VT denotes
the timestamp allocated to each packet. It indicates the time
point that the packet should be scheduled, assuming that
the flow is processed exclusively by the middlebox. So

Fig. 3. MDFS scheduling framework.
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actually, it is used to determine the packet scheduling
sequence by the scheduling algorithm.

To estimate the influence of flow fi on other flows when
it migrates into activeFlow, we have to predict the process-
ing procedure of flows. Thus, we design a prediction strat-
egy to estimate the load of the middlebox and the
completion time of flows. Assuming that flow fi has already
been migrated into the set activeFlow and its first packet
will be allocated the maximal timestamp of packets, which
are processed at that time, i.e.,

Sðp1i ; 1Þ ¼ VT ¼ maxp2PSðpÞ P 6¼ f

0 P ¼ f;

�
(11)

where P denotes the set of packets being processed. P ¼ f

means no packet is being processed right now. Such a map-
ping ensures that fi will be scheduled as other flows if it is
successfully migrated into activeFlow. Otherwise, it has to
wait in activeFlow even after such a migration.

As aforementioned, we relax the completion time of pzii ,
i.e., the last packet of fi, to di. For alleviating the contention
among flows on resources, the start time of its previous
packets should be delayed correspondingly. That is, the
remaining time before the deadline of a flow should be par-
titioned to all its packets. Thus, the flows with loose dead-
lines will not preempt resources from the flows with urgent
deadlines. In MDFS, we make such subdivision in propor-
tion to the size of packets. That is, a larger packet will be
allocated a larger time slice, and vice versa. We derive the
following equation to enable such a subdivision

Tk
i

F ðpzii ; nÞ � Sðp1i ; 1Þ
¼ sðpki ÞPzi

j¼1 sðpjiÞ
; (12)

where Tk
i denotes the time slice allocated to pki . If we set

F ðpzii ; nÞ as di, we get Tk
i as:

Tk
i ¼

sðpki ÞPzi
j¼1 sðpjiÞ

� ðF ðpzii ; nÞ � Sðp1i ; 1ÞÞ

¼ sðpki Þ
sðfiÞ � ðdi � Sðp1i ; 1ÞÞ:

(13)

Reasonably, we take Tk
i as the interval between the start

time of two successive packets of flow fi. After knowing

Sðp1i ; 1Þ, the start time of its subsequent packets on the first
resource is given as:

Sðpkþ1i ; 1Þ ¼ Sðpki ; 1Þ þ Tk
i ; (14)

where 1 � k � zi � 1. Consequently, the start time of pack-
ets from different flows will be delayed with diverse
degrees. As for packets from those flows with loose dead-
lines and small sizes, their start time will be delayed
extremely, and vice versa. That is, such packets will get less
scheduling opportunities than other packets.

For realizing such a subdivision, the information about
the flow size and the packet size should be known in
advance. Practically, the former can be achieved, but not the
latter. Even though the packet processing time on resources
has a linear relationship with the packet size [20], the vari-
able size of packet makes it impossible to precisely predict

the processing procedure of flows. A feasible solution is to
set the size of packets from the same flow as equal. Under
this setting, Tk

i changes to be a constant parameter as:

Ti ¼ Tk
i ¼

di � Sðp1i ; 1Þ
zi

: (15)

It is worth noticing that such a strategy helps MDFS to
precisely predict the processing procedure of each flow in
activeFlow. As for all the backlogged flows in activeFlow,
the virtual start time of their packets can be got through
Eq. (14) in advance. So far, MDFS can schedule packets
according to their timestamps. Thus, the packet processing
sequence and the completion time of each flow in
activeFlow can be calculated.

As in Algorithm 1, the processing rate of fj is confined by
the maximal processing time among all resources. If

MaxðLðpkj ; 1Þ; Lðpkj ; 2Þ; . . . ; Lðpkj ; nÞÞ is larger than Tj, fj can-

not be finished even occupies all resources. Meanwhile,
minDeadline denotes the minimal deadline of flows in
activeFlow, and eTime denotes the final completion time of
all flows in activeFlow after assuming that fj has already
been migrated into it. If the minimal deadline of flows in
activeFlow [ ffjg is larger than eTime, all those flows can be
completely processed before their deadlines. That is, the
migration of fi will not influence the processing of other
flows in activeFlow. Only those flows satisfying all these
constraints can be migrated into activeFlow. As for each
flow, which has just been migrated into the set activeFlow,
the timestamp of its first packet will be set as VT, i.e., the
maximal timestamp of packets being processed at that time.
Meanwhile, the status denotation of such flows will be set
as 1, denoting that they are qualified to be scheduled. Other-
wise, they have to wait in readyFlow until they satisfy all the
constraints, or be removed by the eliminating algorithm.

Algorithm 2. The Scheduling Algorithm

Require: activeFlow, the set of active flows. si, the status
denotation of flow fi. p

y
x, the yth packet of flow fx.

1: repeat
2: while pkþ1i arrives do
3: Sðpkþ1i ; 1Þ  Sðpki ; 1Þ þ Tk

i ;;
4: minTimestamp MAXIMUM ;
5: for each fi 2 activeFlow do
6: if Sðpki ; 1Þ < minTimestamp then
7: minTimestamp Sðpki ; 1Þ;
8: pyx  pki ;
9: Process the packet pyx;
10: if pyx is the last packet of fx then
11: sx  �1;
12: until activeFlow ¼ ;

To further improve the performance, we need to consider
more fine-grained transport control or additional restric-
tions. MDFS sets the size of packets from the same flow as
the same, so as to precisely predict the final completion
time of flows in activeFlow after assuming migrating a new
flow into this flow set. Such a prediction strategy is less effi-
cient when the size of packets changes frequently. Nonethe-
less, an alternative prediction strategy can be adopted to
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evaluate the load of the middlebox. Practically, if most flows
can complete their transmission before their deadlines
within a fixed time interval, the middlebox is not saturated
and newly arrived flows should be added into activeFlow.
That is, we can take the percentage of flows meeting their
deadlines as an indicator to approximately predict the load
of the middlebox. Thus, MDFS does not always need to set
the size of packets from the same flow as the same, espe-
cially when the middlebox is low-loaded.

2) The scheduling algorithm: As illustrated in Fig. 3, the
scheduling algorithm will determine the scheduling
sequence of packets deriving from the flows in activeFlow,
the set of active flows. It schedules packets according to
their allocated timestamps. In MDFS, we use the virtual
start time of a packet on the first resource as its timestamp.

As aforementioned, the first packet of each flow will be
allocated a timestamp by the flow accepting algorithm
when migrating the flow into the set activeFlow. Then, the
scheduling algorithm computes the timestamp of its subse-
quent packets through Eq. (14). Thus, the time slice, i.e., Ti,
and the timestamp of the prior packet of each flow should
be recorded.

The scheduling algorithm will generate a packet process-
ing sequence for all flows in activeFlow, as illustrated in
Algorithm 2. As for the flows in activeFlow, the packet with
the minimal timestamp will be processed in every schedul-
ing period. If a flow has finished its transmission success-
fully, its status denotation will be set as �1. Such status
denotation will be utilized by the flow eliminating algo-
rithm to remove the corresponding flow information.

3) The flow eliminating algorithm:As aforementioned, a
lot of potential factors can make flows miss their deadlines,
e.g., the preemption, and the burst traffic. The detection and
control of such burst flows will avoid unnecessary waste of
resources. Actually, such flows can be categorized as:

� The flow which misses its deadline before being
scheduled, i.e., its arrival time or waiting time has
already exceeded its deadline.

� The flow which misses its deadline after being
scheduled for a while.

As illustrated in Fig. 3, Algorithm 3 works on two flow
sets, readyFlow and activeFlow. Expired flows, i.e.,
di < AT , will be removed from such two flow sets. In addi-
tion, as for those flows, which have successfully completed
their transmission before their deadlines, their status deno-
tations will be set as �1 by Algorithm 2. The information of
such flows will also be removed from activeFlow, since it is
unnecessary to record such information any more.

Algorithm 3. The Flow Eliminating Algorithm

Require: readyFlow and activeFlow, the set of ready flows and
the set of active flows, respectively. AT , the real time. di,
the deadline of fi. sj, the status denotation of flow fj.

1: for each fi 2 readyFlow do
2: if di < AT then
3: Remove fi from readyFlow;
4: for each fj 2 activeFlow do
5: if dj < AT or sj ¼ �1 then
6: Remove fj from actualFlow;

It is worth noting that MDFS completely avoids the sec-
ond kind of flows by using the prediction strategy.

4.2 Properties of MDFS

MDFS possesses some attractive properties as follows.
1) Flows are scheduled fairly. As for the flows in activeFlow,

they all get the scheduling opportunity. Actually, we can
replace the flows with long processing time by the flows
with short processing time, so as to alleviate the load of the
middlebox. Meanwhile, the number of flows meeting their
deadlines will increase in the same time interval. Nonethe-
less, the middlebox may fall into an unstable situation if
such preemption repeats continuously. In the worst case,
only small number of flows can complete their transmission
before their deadlines. What’s more, it is not certain that the
deadline information of a flow directly indicates its impor-
tance. Based on such observations, MDFS schedules flows
in a non-preemptive manner, so as to ensure the fairness
among flows.

2) No flows will miss their deadlines if they start to be proc-
essed. As aforementioned, if a flow misses its deadline, it
will become invalid. What’s more, the resources occupied
by it are wasted, which in turn delays the completion of
other flows. For avoiding such scenario, MDFS adopts a pre-
cise prediction strategy to ensure the processing of flows in
activeFlow, as illustrated in Algorithm 1.

When determining whether a flow should be migrated
from readyFlow to activeFlow, such a flow will be added
into activeFlow temporarily. Subsequently, the completion
time of flows in activeFlow will be estimated. If the migra-
tion of the new flow does not influence the completion of
other flows in activeFlow, it will be migrated into
activeFlow. Otherwise, it should wait in readyFlow until it
becomes qualified. Owing to such a precise prediction strat-
egy, all the flows in activeFlow can complete their transmis-
sion before their deadlines.

5 PERFORMANCE EVALUATION

In this section, we evaluate the performance of MDFS.
We start with the setting of the experiment and then
compare the performance of MDFS with other scheduling
schemes.

5.1 Experiment Setting

As measured in DCTCP [25], the size of query traffic dis-
tributes between [2, 20 KB], and the size of delay sensitive
messages distributes between [100 KB, 1 MB]. We employ
1;000 flows in our experiment. The packet size of such
flows uniformly distributes across [2, 200 KB]. Mean-
while, we consider four kinds of functionalities of a mid-
dlebox in our experiments. They are the IPSec encryption,
the statistical monitoring, the basic forwarding and the
redundancy elimination, simply called IPSE, SM, BF and
RE, respectively. As discussed in DRFQ [20], the process-
ing time of packets on resources has a linear relationship
with the sizes of packets. Consequently, it can be denoted
as axþ b, where x denotes the size of packet, a and b are
two constant parameters associating with the resource
type. In our experiments, we adopt the data measured in
DRFQ [20]. As for flows undergoing different function
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components, the packet processing time on the CPU is
listed in Table 3.

As for the flows undergoing the four kinds of functionali-
ties, their deadlines distribute exponentially around 20, 8, 8
and 8 ms, respectively. In addition, we set an upper bound
and a lower bound on the deadlines of flows, as illustrated
in Table 3. Then, we set the size of each packet proportion-
ally to the size of the flow. That is, the size of packet will be
set as 200, 400, 600, 800, 1,000 and 1,200 B, respectively, for
the flows with size of [2, 20 KB), [20, 40 KB), [40, 60 KB), [60,
80 KB), [80, 100 KB) and [100, 200 KB].

As aforementioned, MDFS is appropriate for the schedul-
ing environment with any number of resources. Without
loss of generality, we assume there are two kinds of resour-
ces in our experiment, including the CPU and the link band-
width. Each packet will be sent out through the link after
being processed on the CPU, obeying to the model we
defined in Section 3. As for each backlogged flow, the next
packet arrives before the completion of its prior packet on
the first resource.

We compare MDFS with two representative flow level
scheduling schemes, i.e., FCFS and EDF, and another D3

alike scheduling scheme. FCFS schedules flows in the flow
arrival sequence. EDF prefers the flows with urgent dead-

lines. D3 is a deadline-driven scheduling scheme. It adjusts
the sending rate of flows according to the feedback informa-
tion. However, we cannot make explicit rate allocation in a
middlebox, taking the multiple resources equipped in it
into account. For comparing MDFS with other deadline-

driven scheduling schemes, we design a D3 alike scheduling

scheme, simply called D3-like. That is, each packet of a flow
will be allocated a tag as:

tag ¼ remaining flow length

deadline� currentTime
; (16)

where currentTime denotes the current time. Such a D3

alike scheduling scheme always schedules the packet with

the largest tag. Although D3-like scheduling scheme is sim-
ple and utilizes the deadline information in a coarse-grained
manner, its performance outperforms FCFS and EDF in
some scenarios.

We change the sizes and deadlines of flows to generate
10 experiment configurations. All the configuration infor-
mation is generated randomly, but still obeys to the bounds
we mentioned previously. We conduct 10 rounds of experi-
ments under different configurations and calculate the aver-
age value of each metric.

5.2 Availability

For evaluating the influence of the size of link bandwidth
on the scheduling performance, we conduct experiments
under two settings of link bandwidth, 200 and 400 Mbps.
Thus, flows will be backlogged on different resources.
That is, some flows need more processing time on the
CPU, and other flows consume more time on the link. To
evaluate the availability of the scheduling schemes,
we gradually set the flow arriving time interval from 1 to
10 ms.

Fig. 4 reports the performance of all scheduling schemes
under different flow arriving time intervals. In Fig. 4a, we
set the link bandwidth as 200 Mbps. When flows arrive fre-
quently and the middlebox cannot process all of them
simultaneously, MDFS still satisfy the deadline require-
ments of most flows. When flows arrive every 5 ms, MDFS
successfully process up to 80 percent of flows, but even EDF
can only satisfy about 50 percent deadline requirements of

flows, not to mention FCFS. D3-like scheduling scheme per-
forms commonly all the time. When setting the link band-
width as 400 Mbps, as illustrated in Fig. 4b, the
performance of all scheduling schemes grows up by a small
degree. However, MDFS still outperforms other scheduling
schemes when the arrival rate of flows increases, as is the
case in practice.

EDF outperforms MDFS slightly under low flow traffic.
The reason is that besides guaranteeing flows’ deadlines,
MDFS also focuses on the fairness. That is, flows deriving
from different applications are treated equally, as illustrated
in Figs. 6 and 7. On the contrary, only the flows with urgent
deadlines are preferred by EDF. As in our experiment set-
ting, listed in Table 3, these flows also need short processing
time on resources.

TABLE 3
The CPU Processing Time under
Different Function Components

Application CPU Time (ms) Deadline (ms)

IPSec Encryption 0.015x + 84.5 [10, 30]
Statistical monitoring 0.0008x + 12.1 [5, 15]
Basic forwarding 0.00286x + 6.2 [5, 15]
Redundancy Elimination 0.006987x + 10.97 [5, 15]

Fig. 4. The performance of scheduling schemes under different time interval of arriving flows.
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5.3 Reliability

As aforementioned, flows may miss their deadlines before
or after being scheduled. The first kind of flows should be
eliminated before being scheduled since it does not make
any sense to process such flows. As for the second kind of
flows, the resources grabbed by them are wasted and they
considerably imposes impacts on the completion of other
flows. We measure the number of such two kinds of flows
when the time interval of arriving flows varies. Meanwhile,
the link bandwidth is set as 200 Mbps.

As illustrated in Fig. 5a, when the time interval of arriv-
ing flows ranges from 1 to 4 ms, almost all flows miss their
deadlines under FCFS and EDF. Consequently, simply
introducing FCFS or EDF into a multi-resource environment
extremely hurts the benefits of those flows with strict dead-
line requirements.

As for the second kind of flows in Fig. 5b, no flows miss
their deadlines as long as they start to be processed by using
MDFS, resorting to the precise prediction strategy. That is,
MDFS provides completely reliable service for flows in

activeFlow. The D3-like scheduling scheme accepts flows
arbitrarily, but cannot ensure the deadline requirements of
all flows.

5.4 Fairness and Throughput

As for the flows undergoing different function components,
we further analyze the number and throughput of flows
meeting their deadlines, so as to evaluate the emphasis of
different scheduling schemes on the fairness. We set the
time interval of arriving flows and the link bandwidth as
6 ms and 200 Mbps, respectively.

As illustrated in Fig. 6, almost the same percentage of
flows undergoing the four function components get sched-
uled under MDFS. That is, MDFS treats flows fairly and
flows with loose deadlines also get the same scheduling

opportunities as others. However, EDF prefers flows with
urgent deadlines. That is, the flows, which undergo the
statistical monitoring, the basic forwarding and the redun-
dancy elimination, get more scheduling opportunities
than the rest flows. The D3-like scheduling scheme results
in even more unfair scheduling consequences.

We depict the throughput of flows undergoing the four
function components in Fig. 7. Compared with FCFS and
EDF, flows achieve approximate throughput under MDFS.
In addition, the preference of EDF extremely damages its
performance when flows with long processing time are set
with small deadlines.

6 CONCLUSION

The middleboxes with multiple types of resources realize
a large range of functionalities and hence efficiently
improve the network environment in data centers. Tradi-
tional deadline-driven flow scheduling schemes apply to
the scheduling scenario, where just one resource is taken
into account. Additionally, such schemes introduce enor-
mous modifications on protocols and hardware, which
limit the usage in practice. Moreover, when flows pass
through a middlebox, existing scheduling schemes fail to
guarantee the deadline requirements of flows. Such obser-
vations motivate us to propose MDFS, a deadline-driven
flow scheduling scheme in a multi-resource environment,
which is essential and open problem. The extensive
experiment results indicate that MDFS can achieve effi-
cient and reliable performance. Even under an over-
loaded setting, MDFS can treat flows fairly and satisfy the
deadline requirements of most flows. Most importantly,
MDFS also provides reliable service for flows such that
flows will never miss their deadlines as long as they start
to be processed.

Fig. 6. The number of flows meeting their deadlines when undergoing
different functionalities.

Fig. 7. The throughput of flows meeting their deadlines when undergoing
different functionalities.

Fig. 5. Two kinds of flows missing their deadlines.
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