
Received 21 November 2019; revised 19 December 2019; accepted 2 January 2020. Date of publication 7 January 2020; date of current version 24 January 2020.

Digital Object Identifier 10.1109/OJCOMS.2020.2964303

Latency-Constrained Cost-Minimized Request
Allocation for Geo-Distributed Cloud Services

XINPING XU 1, WENXIN LI2, HENG QI 1, JUNXIAO WANG1, AND KEQIU LI 1 (Senior Member, IEEE)
1School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China

2Department of Computer Science and Engineering, Hong Kong University of Science and Technology, Hong Kong

CORRESPONDING AUTHOR: H. QI (e-mail: hengqi@dlut.edu.cn)

This work was supported in part by the National Key Research and Development Program of China under Grant 2016YFB1000205,
in part by the State Key Program of National Natural Science of China under Grant 61432002, in part by the National Natural

Science Foundation of China–Guangdong Joint Fund under Grant U1701263, and in part by the National Natural
Science Foundation of China under Grant 61702365, Grant 61672379, and Grant 61772112.

ABSTRACT Latency to end-users and regulatory requirements push cloud providers to operate many
datacenters all around the globe to host their cloud services. An emerging problem under such geo-
distributed architecture is to assign each user request to an appropriate datacenter to benefit both cloud
providers (e.g., low bandwidth cost) and end-users (e.g., low latency)—known as request allocation.
However, prior request allocation solutions have significant limitations: they either focus only on optimizing
the benefits for one entity (e.g., providers or users), or ignore some practical yet indispensable factors
(e.g., heterogeneous latency requirements of different users and diverse per unit bandwidth cost among
different datacenters) when optimizing benefits for both entities. In this paper, we study the problem of
minimizing the total bandwidth cost for cloud service providers while guaranteeing the latency requirement
for end-users. Specifically, we formulate an integer programming with consideration of the diversities in
both the delay of requests and per unit bandwidth cost of datacenters. To efficiently and practically solve
this problem, we first relax the integer programming into a continuous convex optimization and then take
the advantages of random sampling to enforce the solution to be a feasible one for the original integer
programming. We have conducted rigorous theoretical analysis to prove that our algorithm can provide a
considerable good competitive ratio. Extensive simulations demonstrate that our proposed algorithm can
reduce the total bandwidth cost by 30% while guaranteeing the latency requirements of all requests, as
compared to conventional methods.

INDEX TERMS Cloud services, request allocation, latency, bandwidth cost, random sampling and
rounding.

I. INTRODUCTION

NOWADAYS, most cloud service providers (e.g.,
Google, Microsoft, Amazon) have deployed a geo-

graphically distributed infrastructure [1], [2], where data-
centers are placed at different regions across the world to
enhance application robustness and reduce user access delay
at the same time. As shown in Figure 1, the user submits ser-
vice request to the service mapping node. Service mapping
nodes can be domain name servers, HTTP proxies, and even
software defined controllers. The service mapping node is
responsible for directing each request to a specific datacenter
to provide cloud services. For example, in Google CDN [3],

different data centers have the same copy of contents, and
user requests to access that content need to be redirected to
one data center.
The problem of distributing user requests among multiple

datacenters is known as request allocation, which is criti-
cal for both service providers and end-users. On the one
hand, if requests are allocated to the datacenter far away
from end-users or a near one but with excess workloads,
then delay requirements may not be satisfied. On the other
hand, non-optimized request allocation strategy will lead to
a great waste of bandwidth resources, thereby increasing the
operating costs of cloud service providers significantly.
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FIGURE 1. User requests allocation diagram across data centers.

Although the request allocation problem is crucial, it
also faces the following two challenges. First, it is typical
that many requests could be submitted simultaneously by
different users which may impose different latency require-
ments [4] to their requests. Moreover, too many requests may
make the uplink of a particular datacenter congested, result-
ing in long queuing delay and even leading to the latency
requirements of end users unsatisfied. Second, cloud ser-
vice providers typically make a huge investment in renting
bandwidth from ISPs, for traffics from and to their datacen-
ters. Further, as datacenters are located in different regions,
a cloud service provider will rent bandwidth from differ-
ent ISPs with various pricing strategies, forming significant
heterogeneity on per unit bandwidth cost across different
datacenters [5].
To the best of our knowledge, however, existing work can-

not tackle above challenges of the request allocation problem
for geo-distributed cloud services. On the one hand, some of
existing proposals only focus on minimizing the operation
cost for service providers (e.g., [6]–[9]) or simply guarantee-
ing the quality of service for end users (e.g., [10]–[13]). On
the other hand, even though some solutions (e.g., [14], [15])
do optimize the benefits of both service providers and end
users, they simply ignore the latency variety from different
end users and the diversity on per unit bandwidth cost of
different datacenters. Therefore, these programs play a very
small role in the actual scene, with regard to minimizing
the bandwidth cost for service providers while providing
guaranteed performance for end users.
In this paper, we focus on the essential problem of request

allocation for geo-distributed cloud services. The primar-
ily goal is to minimize the total bandwidth cost while

guaranteeing the latency requirement of each request, when
assigning a large amount of concurrent user requests to a set
of geographically distributed datacenters owned by any given
cloud service provider. Particularly, we first formulate an
integer programming. In this problem, we take into account
the diverse latency requirement of user requests, the hetero-
geneity on per unit bandwidth cost of different datacenters, as
well as the bandwidth capacity of each datacenter’s upstream
link. The formulated optimization is a general assignment
problem which is typically NP-hard. To solve this problem
efficiently, we propose a latency-constrained cost-minimized
algorithm. We first relax the integer programming into a con-
vex problem. Based on the optimal solution of this convex
problem, we then apply the technique of random sampling to
make sure the solution of this convex problem is feasible to
the original integer programming problem. By taking a rig-
orous theoretical analysis, we demonstrate that our algorithm
has a good competitive ratio in minimizing the total band-
width cost. We finally conduct extensive simulations to verify
the performance of our proposed algorithm. The results
demonstrat the effectiveness of our proposed algorithm on
reducing the total bandwidth cost for service providers sig-
nificantly while guaranteeing the latency requirement of user
requests.
The main contributions of this paper are as follows:

• We study the problem of distributing user requests
among geo-distributed datacenters to minimize the total
bandwidth cost subject to the heterogeneous latency
constraints from end-users.

• We develop the mathematical model and formulate an
integer programming which considers the diverse per
unit bandwidth cost across different datacenters. To
solve this problem efficiently, we further develop an
algorithm that seamlessly combines the techniques of
convex optimization and random sampling, which has
a good competitive ratio in minimizing total bandwidth
cost.

• We conduct extensive simulations to evaluate the
performance of our proposed algorithm, in terms of
reducing total bandwidth cost for cloud providers and
guaranteeing latency requirements of end-users.

The rest of this paper is organized as follows. In Section II,
we develop a mathematical model then the problem for-
mulation. We present the design details of our proposed
algorithm in Section III. The simulations results are shown
in Section IV. Section V discusses the related work and
Section VI concludes this paper.

II. MODELING AND PROBLEM FORMULATION
In this section, we develop a mathematical model to study
the problem of minimizing the bandwidth cost for providers
while guaranteeing the latency requirement of user requests.
Table 1 gives the definition and explanation of the symbolic
variables involved in this paper.
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TABLE 1. Notations and definitions.

A. MATHEMATICAL MODEL
Below are the assumptions and simplifications made through-
out this paper. Firstly, each of those requests could be
directed to an appropriate datacenter, we assume each data-
center hosts the services and contents required by any request
which is popular across cloud service providers as discussed
in [15]. Such request dispatching can actually be conducted
with many tools such as the cloud service gateway, CDN
system or centralized software defined controller. In case of
CDN, the cache devices that are responsible for providing
content services upon user requests would be deployed in
the physical edge of the network as the edge layer; when the
edge layer fails to hit, it will request the central layer which
needs to revert to the source station at the worst case. We
also assume that the latency a request experienced contains
two parts. The first part is the transport delay between user
requests and the service gateway. The second part is the
response time within datacenters. Note that our cost model
is also simplified, we only care about the bandwidth cost
while ignore others which is commonly seen in recent studies
such as [5].
We consider a cloud service provider with a set of

datacenters, denoted as M = {d1, d2, . . . , dM}. For each
datacenter di ∈ M, ui stands for the bandwidth capac-
ity of its upstream link. In order to indicate the diversity
on the bandwidth cost of different datacenters, we use ci
to represent per unit bandwidth cost of datacenter di. We
consider that there are a set of concurrent user requests dur-
ing any given time, denoted as N = {r1, r2, . . . , rN}. For
each request rj, bj is the amount of bandwidth needed with
lj as its latency requirement. We take the transport delay
between datacenter di and user request rj as hji. On the
other hand, we denote the response time inside the data-
center as Pi(·) which is a function of the total workload
assigned to di. While Pi(·) can take various forms depend-
ing on the queuing model and the configuration employed
on datacenter di. It only requires that Pi(·) is an increasing,
differentiable and convex function. To indicate decisions on
request allocation, we choose xji as a binary variable rep-
resenting whether request rj is assigned to datacenter di
or not.

B. PROBLEM FORMULATION
We are now in a position to formulate the problem of mini-
mizing the total bandwidth cost for cloud service providers,
while guaranteeing the latency requirement for end users
when assigning requests to geographically distributed dat-
acenters. This problem is characterized by the following
optimization, denoted as P1:

min
∑

di∈M

∑

rj∈N
bjcixji (1)

s.t.
∑

rj∈N
bjcixji ≤ ui, ∀di ∈ M, (2)

∑

di∈M
Pi

⎛

⎝
∑

rj∈N
bjxji

⎞

⎠xji +
∑

di∈M
hjixji ≤ lj, ∀rj ∈ N , (3)

∑

di∈M
xji = 1, ∀rj ∈ N , (4)

xji ∈ {0, 1}, ∀di ∈ M,∀rj ∈ N . (5)

The objective of Eq. (1) for the above optimization
problem is to minimize the total bandwidth cost for cloud
service provider. Eq. (2) means the total amount of band-
width consumed on the upstream link of datacenter dj
must not exceed the corresponding bandwidth capacity ui.
Eq. (3) enforces that the latency each request experienced
should be bounded by its requirement lj, where the first
term

∑
di∈M Pi(

∑
rj∈N bjxji)xji measures the response time∑

di∈M hjixji is the transport delay. Eq. (4) implies each
request could only be assigned to one datacenter. Finally,
Eq. (5) makes sure that xji can only take 0 or 1.

Note that P1 is a comprehensive integer optimization
problem whose variables can only take integer values, i.e., 0
or 1. It appears to be in the form of a Generalized Assignment
Problem, which is NP-hard or even APX-hard to approxi-
mate [16]. Though one may approach the optimal solution by
decoupling the problem into several 0-1 knapsack problems,
it would introduce high computational complexity [17]. For
the sake of practical algorithms design, we are seeking to
implement some feasible heuristics alternatively.

III. ALGORITHM DESIGN
In this section, we present the details of our algorithm design.
In the following part, we start by transforming the original
P1 into a continuous convex optimization problem. Then,
we present the technique of random sampling. Finally, we
show that our algorithm has a non-trivial competitive ratio
for the original problem P1.

A. PROBLEM TRANSFORMATION
As mentioned above, P1 is actually hard to solve. We are
therefore motivated to first relax P1 into a continuous convex
optimization, which is shown as the following problem P2:

min
∑

di∈M

∑

rj∈N
bjcixji (6)

s.t.
∑

rj∈N
bjcixji ≤ ui, ∀di ∈ M, (7)
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Algorithm 1 Latency-Constrained Cost-Minimized Request
Allocation
Input:

The amount of bandwidth to handle request rj: {bj};
The latency requirement of request rj: {lj};
The transport delay of request rj to datacenter di: {hji};
The uplink bandwidth capacity of datacenter di: {ui};
Per unit bandwidth cost of datacenter di: {ci};

Output:
Whether datacenter di serves request rj: {xji};

1: Calculate the optimal solution for problem P2 and obtain
{xji} where variables may be fractional;

2: for each user request rj ∈ N do
3: Sample one di from the set M with a probability xji;
4: if ui less than bj or Eq. (8) of lj unsatisfied then
5: Repeat Step 3;
6: else
7: Set xji = 1;
8: Update the bandwidth capacity, i.e., ui = ui − bj

and the response time of datacenter di, i.e., Pi(·);
9: endif
10: endfor

∑

di∈M
Pi

⎛

⎝
∑

rj∈N
bjxji

⎞

⎠xji +
∑

di∈M
hjixji ≤ lj, ∀rj ∈ N ,

(8)∑

di∈M
xji = 1, ∀rj ∈ N , (9)

0 ≤ xji ≤ 1, ∀di ∈ M,∀rj ∈ N . (10)

where xji is a continuous variable rather than a 0-1 inte-
ger. We can easily check the transformed problem P2 is a
comprehensive convex optimization, as its objective and con-
straint functions are all convex with respect to xji. Hence, P2
can be solved efficiently with standard convex programming
solvers, such as CVX [18]. However, even with the optimal
solution of P2, it cannot in turn provide a feasible request
allocation strategy for the original problem P1 directly. To
enforce the optimal solution of P2 is feasible to P1, we then
propose to leverage the technique of random sampling.

B. RANDOM SAMPLING
The key idea of this technique is to assign user requests
to datacenters simply based on a precomputed probability
distribution, which actually can be derived from the optimal
solution of the convex optimization problem P2. Algorithm 1
summarizes the whole procedure.
Algorithm 1 starts from the optimal solution of P2 (Step

1). Then, in the for loop (Step 2-10), it chooses a datacen-
ter for each request independently. Specifically, it samples
one datacenter for each request rj with a probability xji. If
the sampled datacenter does not have enough bandwidth or
it leads the user request to miss its latency requirement,

Algorithm 1 will repeat this sampling process till an eligible
datacenter found.
Remarks: Our Algorithm 1 has several significant merits.

First, the dominating overheads of our algorithm are solving
the relevant convex optimization P2 and performing random
sampling. The convex problem P2 can be efficiently solved
with standard solvers CVX which can return the results
within 200 iterations for large-scale problems. Meanwhile,
the operation of random sampling only has a time-complexity
of O(N). Hence, we conclude that our algorithm requires
very little overhead. Second, our algorithm can easily be
extended to support online using cases. For instance, we can
detect a request scheduling event in an online fashion, i.e.,
if there is new request arriving or existing request being
successfully served. Once observing such an event, we can
trigger Algorithm 1 to determine request allocation strategy
for concurrent user requests. Finally, our algorithm can pro-
vide a theoretical performance guarantee for minimizing the
total bandwidth cost. More specifically, it can provide an
upper bound on the total bandwidth cost.

C. ANALYSIS
We now present the theoretical results that our Algorithm 1
can achieve. Specifically, we leverage the following theorems
to derive an upper bound for the optimal total bandwidth
cost.
Theorem 1 (Lower Bound of the Optimal Total Bandwidth

Cost of P1): Define CP1 and CP2 as the optimal total band-
width cost for problems P1 and P2, respectively. Then, we
have CP2 ≤ CP1.
Proof: We only proves that P2 is a relaxation of P1, as

this will directly results in CP2 ≤ CP1. Specifically, for any
feasible solution S := {xji} of P1, we can always find a
feasible solution of P2, such that the total bandwidth cost in
P2 equals to CS (the total bandwidth cost related to solution
S). To be particular, we can define a solution S′ := {xji′ } of
P2 with following steps:

• First, set CS′ = CS;
• Second, for each rj, set xji = 1, and xji′ = 0 for all
i′ �= i;

Because S is a feasible solution of P1, we know that the
constructed solution S′ can satisfy all constraints in P2. This
implies that P2 is a relaxation of P1, and thus the theorem
is proved.
Lemma 1: Assume that {ah}Hh=1 are independent random

variables, such that ah (1 ≤ h ≤ H) takes value 0 with
probability 1−ph (0 < ph < 1), and takes vh with probability
ph. Define A = ∑H

h=1 ah. Then, for � ≥ 0, λ ≥ 2e such that
vh ≤ � and E[A] ≤ �, we have Pr[A > λ�] ≤ exp(−λ

2 ).
Proof: The proof process are similar to that in [19], [20].

We omit the details here.
Theorem 2 (Upper Bound of the Total Bandwidth Cost

Achieved by Algorithm 1): Suppose Pavg is the aver-
age response time across all datacenters. Then, the total
bandwidth cost achieved by Algorithm 1 is at most
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max(2 ln 16M, 2 ln 16N) times the optimal total bandwidth
cost with probability at least 7/8, where M and N are the
number of datacenters and requests, respectively.
Proof: For each di ∈ M, we define

ρi =
∑

j bjciI(xji = 1)

ui
(11)

where I(χ) is an indicator that equals to 1 if event χ is true
and 0 otherwise. Similarly, we define

ρj =
(∑

i Pi(
∑

rj∈N bjxji) + ∑
i hji

)
I(xji = 1)

lj
(12)

Then, we have ρ = max(maxi ρi, maxj ρj), which is the
smallest scaling factor of xji to ensure a valid solution to
P2. In the following, we fix i and j, and focus on deriving
the upper bounds of the probabilities that ρi and ρj exceed
2 ln 16M and 4 ln 16N, respectively.

We first define random variables Xj = CibjI(xji = 1) and
X = ∑N

j=1 Xj, which have the following prosperities:
• Each Xj is independent.
• The random variable Xj takes value of either 0 or cibj,
and Pr[Xj = cibj] = xji.

• Using constraint (6) in P2, we have E[X] =∑N
j=1 CibjI(xji = 1) ≤ ui.

These prosperities exactly satisfy the needs of Lemma 1.
Hence, by setting λ = 2 ln 16M and � = ui, we have Pr[ρi >

2 ln 16M] ≤ exp(− ln 16M).
Similarly, we define two type of random variables, Yi =

(Pavg+hji)I(xji = 1) and Y = ∑M
i=1 Yi. Also, these variables

have the following prosperities:
• All Yi’s are independent.
• Yi is either 0 or Pavg+hji, and Pr[Yi = Pavg+hji] = xji.
• By using constraint (7) of P2, we have E[Y] =∑M

i=1(Pavg + hji)I(xji = 1) ≤ lj.
Hence, combining Lemma 1, and setting λ = 2 ln 16N and
� = lj, we yield Pr[ρj > 2 ln 16N] ≤ exp(− ln 16N).

Considering the union bound, we have the following
inequalities

Pr

[
max
i

ρi > 2 ln 16M

]
≤

M∑

i=1

Pr[ρi > 2 ln 16M]

≤ M exp(− ln 16M)

= 1/16 (13)

Pr

[
max
j

ρj > 2 ln 16N

]
≤

N∑

j=1

Pr
[
ρj > 2 ln 16N

]

≤ N exp(− ln 16N)

= 1/16 (14)

With Eq. (13) and (14), we yield the following inequality,
by the union bound.

Pr[ρ > max(2 ln 16M, 2 ln 16N)]

≤ Pr

[
max
i

ρi > max(2 ln 16M, 2 ln 16N)

]

FIGURE 2. Total bandwidth cost generated by different methods.

+ Pr

[
max
j

ρj > max(2 ln 16M, 2 ln 16N)

]

≤ Pr

[
max
i

ρi > 2 ln 16M

]
+ Pr

[
max
j

ρj > 2 ln 16N

]

= 1

8
(15)

The theorem can then be inferred.

IV. PERFORMANCE EVALUATION
A. SIMULATION SETUP
We simulate a cloud service provider with 40 datacenters.
For simplicity, we eliminate the unit of all parameters in our
simulation. Particularly, we set the bandwidth capacity of the
upstream link for each datacenter as 1000. Per unit band-
width cost for each datacenter is randomly selected within
the range of [0.03, 0.3]. In our simulation, we consider there
are 1000, 1500 and 2000 concurrent user requests, respec-
tively and the latency requirement of each request is set
between 50 and 500. Also, the amount of bandwidth needed
to handle each request is uniformly chosen within the range
of [5, 15]. The response time inside each datacenter, i.e.,
Pi(·) is formulated as its remaining capacity multiplied by
a coefficient, which is randomly selected from 1 to 100
initially.
We compare our algorithm with the following two meth-

ods. The first one is the latency-only algorithm, which
greedily dispatches each request to a datacenter with the low-
est overall latency. The second one is the cost-only algorithm
which directs each request to a datacenter with the lowest
bandwidth cost incurred. To ease the presentation, we denote
“LC” as our proposed algorithm, “LO” as the latency-only
which ignores costs, whereas “CO” as the cost-only which
ignores latency, individually.

B. SIMULATION RESULTS
Total bandwidth cost: Figure 2 shows the total bandwidth
cost of different algorithms when 1000, 1500 and 2000 con-
current requests are made separately. It can be observed that
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FIGURE 3. CDF per user request cost.

TABLE 2. The rate of user requests with the latency requirement satisfied.

the total cost of LC proposed in this paper is significantly
less than that of LO, which is in line with expectations.
Because CO only minimizes bandwidth cost for datacenters,
while LO only focuses on latency optimization for each
request. Specifically, compared with LO, the total cost of
LC can be reduced by 30.0% in 2000 concurrent requests,
which can also satisfy the latency requirements of all user
requests. These results directly show that our proposed algo-
rithm can significantly reduce the total bandwidth cost, when
user requests are allocated across geographically distributed
data centers.
Latency constraint satisfaction: User requests are also very

sensitive to latency experienced. Therefore, this paper also
evaluates the overall latency satisfaction of user requests.
Comparatively speaking, although LC dose not minimize
latency unilaterally, it can fully meet the latency requirements
of all requests, as shown in Table 2. Table 2 lists the rate of
user requests with the latency requirement satisfied, under
different algorithm types. Here we can observe that both
LO and LC can guarantee the latency demand of all user
requests, while CO cannot. The reason lies in the fact that
CO only optimizes the bandwidth cost, without considering
the latency requirements of user requests.
CDF of per user request cost: To further understand costs

performance at the micro level, the cumulative distribution
functions of the bandwidth cost per user request at 1000 and
2000 concurrencies are plotted in Figures 3. It can be clearly
seen that the curve of LC is always on the left side compared
with CO and stays very closely to LO for the most of cases,
which indicates that our LC algorithm in this paper can
always achieve lower bandwidth cost. Taking Figure 3(c)
as an example, further observation shows that under this
scenario, 80% of user requests of LC corresponds to a lower
cost of 1.683; compared with LO algorithm, the cost is
reduced by 37.1%; and compared with CO algorithm further,

the cost is only increased by 8.5% slightly, considering CO
could not 100% satisfy the latency requirement of all user
requests.
Impact of bandwidth requirement: So far, the bandwidth

requirement of each request is randomly chosen in the range
of [5, 15]. One may wonder if choosing such bandwidth
requirements in a different range can impact the performance
of the proposed request allocation algorithm. To answer this
point, we conduct multiple experiments. In each experi-
ment, we fix the latency requirement of each request to 275
while varying the range in which the bandwidth requirements
are randomly chosen. Fig. 4(a) first shows the total band-
width cost under different value ranges of the bandwidth
requirements. It is clear that under each scenario, our LC
algorithm can always achieve relatively low bandwidth costs.
Specifically, compared with LO, the total cost of LC can be
reduced by as much as 42.5% in 500 concurrent requests
when varying the bandwidth requirement bj from 5 to 10,
while being able to satisfy the latency requirements of
all user requests. These results directly demonstrate that
our algorithm is effective in reducing total bandwidth cost,
irrespective of the changing of bandwidth requirement.
Impact of latency requirement: We next evaluate the

impact of latency requirement. To be clear, we randomly
choose the latency requirement lj in the ranges of [50, 100],
[50, 250] and [50, 500], respectively, while keeping bj as a
constant value of 25. The results are illustrated in Fig. 4(b),
under fixed bandwidth requirement bj = 25. One can eas-
ily check it’s very similar to the scenarios of before, with
the cost reduction around 30% typically comparing to LO. It
should be noted that with different ranges of latency require-
ments, CO would keep at a constant lower value while on the
other hand, its delay requirement satisfaction is increasing
from 69% to 97% along with the boundary got loosened.

V. RELATED WORK
Request allocation problem for large-scale geo-distributed
cloud services has attracted wide attention. This section
only reviews the research work closely related to this paper.
According to different optimization objectives, existing work
can be roughly divided into the following three categories.
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FIGURE 4. Total cost with 500 concurrent requests when (a) Varying bandwidth
requirement bj , with fixed lj = 275, and (b) Varying latency requirement lj , with fixed
bj = 25.

The first type of research is aimed at optimizing the
benefits of cloud service providers, e.g., [6]–[9]. For exam-
ple, Qureshi et al. [6] reduced the energy cost of cloud
service providers by designing an efficient service request
allocation mechanism. The core basis is to combine the
diversity in unit price of different geographical locations.
Mathew et al. [7] reduced cloud service provider energy con-
sumption and achieve load balancing in the CDN scenario by
dynamically powering on/off the CDN server. Gao et al. [8]
found that the proportion of green energy in different geo-
graphic locations can vary significantly, and based on this, an
efficient request allocation algorithm was designed to save
energy and reduce carbon dioxide emissions. Liu et al. [9]
achieved green energy-saving and load balancing through
service request allocation techniques.
The second type of research mainly focuses on the

interests of end users, e.g., [10]–[13]. For example, Wong and

Sirer [10] used network detection technology to provide
design basis for specific implementation of the nearest ser-
vice access. Xu and Li [11] proposed DC-FAIR request
allocation method based on the Nash equilibrium game
theory model, so that the service request of an end user
who is far away from the distance can be treated fairly.
Zhang et al. [12] select service access points nearby for
users to reduce the latency of service requests.
However, as the above two kinds of research only honor

the benefits of one part, which in turn inevitably affect the
interests and performance of the other part.
The last type of request allocation related research con-

siders the interests of both cloud service providers and end
users. For example, Xu and Li [14] proposed a distributed
ADMM-based request allocation algorithm to jointly bal-
ance the performance of cloud providers and their operation
cost. Li et al. [15] proposed to develop a NBS based model
and implement a Logarithmic Smoothing based algorithm
to jointly consider high bandwidth utilization for providers
and low delay for end users. Liu et al. [21] put forward
Footprint system for delivering large online services in the
“integrated” setting including proxies, data centers and the
wide area network. The system optimizes the proxy selec-
tion of user requests, the choice of data center as well as the
transmission path, which can improve the overall efficiency
of the system and reduce the service delay of user requests.
Bogdanov et al. [22] designed Kurma system for distributed
storage services across different regions. The system inte-
grates network latency and response time distribution to
accurately estimate the rate of SLO violation when redirect-
ing requests. Kurma can reduce the violation rate, achieve
load balancing, and also reduce the service costs. Based on
traditional network flow techniques, Fair model is proposed
by Xu and Liang [23] to take into account the comprehen-
sive operation cost of the supplier and the SLA of end users,
then optimize variable electricity costs.
Although the above methods are all feasible, however,

they generally neglect the diversity on the latency require-
ment from end users, as well as the heterogeneity on per
unit bandwidth cost of different data centers. Therefore,
while guaranteeing the overall delay, their reduction in the
bandwidth cost for cloud service providers is very limited.

VI. CONCLUSION
In this paper, we study an emerging problem of how to allo-
cation each user request to an appropriate data center, aiming
at minimizing the total bandwidth cost for cloud service
providers while guaranteeing the latency requirements of end
users. We formulate an integer programming problem and
first relax it into a continuous convex optimization problem,
which can be easily solved. Then, we design a request allo-
cation algorithm based on random sampling to ensure that
the solution of this optimization problem is feasible to the
original one, thus accordingly obtain the decision for request
allocation. We have proved that our algorithm can provide
a tight upper bound for the total bandwidth cost. Finally,
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we conduct comprehensive simulations. The results show
that, our proposed algorithm is cost-effective for cloud ser-
vice providers while guaranteeing the latency requirements
of end users, as compared to conventional algorithms.

REFERENCES
[1] S. Jain et al., “B4: Experience with a globally-deployed software

defined WAN,” in Proc. ACM SIGCOMM, 2013, pp. 3–14.
[2] C.-Y. Hong et al., “Achieving high utilization with software-driven

WAN,” in Proc. ACM SIGCOMM, 2013, pp. 15–26.
[3] R. Krishnan et al., “Moving beyond end-to-end path information to

optimize CDN performance,” in Proc. 9th ACM SIGCOMM Conf.
Internet Meas., 2009, pp. 190–201.

[4] B. Vamanan, J. Hasan, and T. N. Vijaykumar, “Deadline-aware dat-
acenter TCP (D2TCP),” ACM SIGCOMM Comput. Commun. Rev.,
vol. 42, no. 4, pp. 115–126, 2012.

[5] W. Li, K. Li, D. Guo, G. Min, H. Qi, and J. Zhang, “Cost-minimizing
bandwidth guarantee for inter-datacenter traffic,” IEEE Trans. Cloud
Comput., vol. 7, no. 2, pp. 483–494, Apr.–Jun. 2019.

[6] A. Qureshi, R. Weber, H. Balakrishnan, J. V. Guttag, and B. V. Maggs,
“Cutting the electric bill for Internet-scale systems,” in Proc. ACM
SIGCOMM, 2009, pp. 123–134.

[7] V. Mathew, R. K. Sitaraman, and P. J. Shenoy, “Energy-aware load
balancing in content delivery networks,” in Proc. IEEE INFOCOM,
Orlando, FL, USA, 2012, pp. 954–962.

[8] P. X. Gao, A. R. Curtis, B. Wong, and S. Keshav, “It’s not easy
being green,” ACM SIGCOMM Comput. Commun. Rev., vol. 42, no. 4,
pp. 211–222, 2012.

[9] Z. Liu, M. Lin, A. Wierman, S. H. Low, and L. L. H. Andrew,
“Greening geographical load balancing,” in Proc. ACM SIGMETRICS,
2011, pp. 233–244.

[10] B. Wong and E. G. Sirer, “ClosestNode.com: An open access, scal-
able, shared geocast service for distributed systems,” Oper. Syst. Rev.,
vol. 40, no. 1, pp. 62–64, 2006.

[11] H. Xu and B. Li, “A general and practical datacenter selection frame-
work for cloud services,” in Proc. IEEE 5th Int. Conf. Cloud Comput.,
Honolulu, HI, USA, 2012, pp. 9–16.

[12] Z. Zhang, M. Zhang, A. G. Greenberg, Y. C. Hu, R. Mahajan,
and B. Christian, “Optimizing cost and performance in online ser-
vice provider networks,” in Proc. USENIX Conf. Netw. Syst. Design
Implement., 2010, pp. 33–48.

[13] C. Q. Wu, X. Lin, D. Yu, W. Xu, and L. Li, “End-to-end delay
minimization for scientific workflows in clouds under budget con-
straint,” IEEE Trans. Cloud Comput., vol. 3, no. 2, pp. 169–181,
Jun. 2015.

[14] H. Xu and B. Li, “Joint request mapping and response routing
for geo-distributed cloud services,” in Proc. IEEE INFOCOM, 2013,
pp. 854–862.

[15] W. Li, H. Qi, K. Li, I. Stojmenovic, and J. Lan, “Joint optimization
of bandwidth for provider and delay for user in software defined data
centers,” IEEE Trans. Cloud Comput., vol. 5, no. 2, pp. 331–343,
Apr./Jun. 2017.

[16] J. K. Karlof, Integer Programming: Theory and Practice. Boca Raton,
FL, USA: CRC Press, 2005.

[17] Y. Feng, B. Li, and B. Li, “Bargaining towards maximized resource
utilization in video streaming datacenters,” in Proc. IEEE INFOCOM,
Orlando, FL, USA, 2012, pp. 1134–1142.

[18] CVX Research. Accessed: Feb. 12, 2019. [Online]. Available:
http://cvxr.com/

[19] W. Li, X. Yuan, K. Li, H. Qi, and X. Zhou, “Leveraging endpoint
flexibility when scheduling coflows across geo-distributed datacen-
ters,” in Proc. IEEE Conf. Comput. Commun. (INFOCOM), 2018,
pp. 873–881.

[20] H. Tan et al., “Joint online coflow routing and scheduling in data center
networks,” IEEE/ACM Trans. Netw., vol. 27, no. 5, pp. 1771–1786,
Oct. 2019.

[21] H. H. Liu et al., “Efficiently delivering online services over inte-
grated infrastructure,” in Proc. 13th Usenix Conf. Netw. Syst. Design
Implement., 2016, pp. 77–90.

[22] K. L. Bogdanov, W. Reda, G. Q. Maguire, Jr., D. Kostić, and
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