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Abstract—In large-scale Internet applications running on geographically distributed datacenters, such as video streaming, it
is important to efficiently allocate requests among datacenters. To the best of our knowledge, existing approaches, however,
either solely focus on minimizing total cost for provider, or guaranteeing QoS for end-users. In this paper, we apply the software
defined network (SDN) controller to enable the central control of the entire network, and propose a joint optimization model to
consider high bandwidth utilization for provider and low delay for users. We present the Nash bargaining solution (NBS) based
method to model both requirements of provider’s high bandwidth utilization and end-users’ low delay. Specifically, we formulate
the design of request allocation under those requirements as an optimization problem, which is NP-hard. To solve such hard
optimization problem, we develop an efficient algorithm blending the advantages of Logarithmic Smoothing technique and the
auxiliary variable method. According to the theoretical analysis, we verify the existence and uniqueness of our solution and the
convergence of our algorithm. We conduct a large amount of experiments based on real-world workload traces and demonstrate
the efficiency of our algorithm compared to both greedy and locality algorithms.
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1 INTRODUCTION

LARGE-SCALE Internet applications, such as video
streaming (Netflix), web search (Google), and so-

cial network (Facebook), provide service to hundreds
of millions of end-users. The enormous, and growing
demand of these applications has motivated service
providers to deploy geographically distributed data-
centers for both reliability and performance reasons.
In particular, Netflix is using the Amazon Simple
Storage Service (S3) [1] for storing all of its video
masters, which are further transcoded to a number of
formats, and are then distributed to Content Distri-
bution Networks (CDNs), ready to be served to end-
users [2], [3].

The resulting deployment of application leads to a
particular important request allocation problem, which
means that massive end-users’ requests across the
wide area must be directed to an appropriate data-
center. Intuitively, such request allocation is able to be
completed with a simple method that allocates each
request to the closest datacenter [4]. Nevertheless,
such a naive method can lead to two main conse-
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quences from the perspectives of both provider and
end-users, respectively.

On the one hand, due to the oversubscription [5], a
datacenter may be overloaded when it comes to the
peak workload time. Moreover, different datacenters
may reach their peak workload at different times
[6]. As a consequence, some datacenters may become
overloaded, while some datacenters may experience
extremely low bandwidth utilization at a particular
moment. For datacenters with low bandwidth uti-
lization, it is a waste of both investment and energy
for the provider [7]. Meanwhile, the overloading are
vulnerable to failures [8], and can further lead to poor
application performance. This makes end-users un-
willing to use provider’s service and further impacts
the revenue of provider.

On the other hand, as business increases, there is a
rising demand for end-users’ requirements for low de-
lay [9]. Unfortunately, with the naive localized alloca-
tion strategy, users close to the datacenters experience
low delay, while users far away from the datacenters
are likely to suffer high delay. Furthermore, as users
are increasing to select the closest datacenters, the
phenomenon of high delay will become worse when
datacenters come to the peak time.

Motivated by these, we focus on the request allo-
cation in geographically distributed datacenters, and
jointly optimize bandwidth for provider and delay
for end-users. More precisely, some workload can be
shifted from overloaded datacenters to the datacenters
that have low bandwidth utilization, so as to increase
the bandwidth utilization with the overall system per-
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spective of the provider. Additionally, the user delay
is usually consisting of the transport delay outside
datacenters and the response time inside datacenters.
This implies that end-users can choose a litter far-
ther datacenter that provides low response time, so
as to decrease the delay. Unfortunately, the current
request allocation on geo-distributed services, either
solely focus on minimizing total cost for provider,
i.e., energy cost [10], bandwidth cost [11], or guar-
anteeing the quality of service (QoS) [12] for end-
users. However, such cost savings may not necessarily
imply QoS guaranteeing. Moreover, the resource over-
provisioning for users’ QoS will in turn increase the
provider’s cost. Hence, this results in a significantly
challenge to the joint optimization for provider and
end-users.

To make an optimal request allocation, we believe
that the global information controlling is needed.
Fortunately, such central network control is becoming
feasible due to the success of SDN controller [13].
Inspired by this, we construct our multiple datacen-
ters model based on the SDN controller. We propose
NBS based method to model provider’s requirement
of high bandwidth utilization at all datacenters and
end-users’ requirements of low delay. Specifically, the
delay contains the transport delay outside datacenters
and the response time inside datacenters. We model
the response time based on the G/G/1 queue. Then,
we formulate an optimization problem, which is NP-
hard. To solve it, we further propose an efficient
request allocation algorithm by blending the advan-
tages of the Logarithmic Smoothing technique and
the auxiliary variable method. We theoretically prove
the existence and uniqueness of our solution and
the convergence of our algorithm. Extensive simula-
tion experiments based on real-world workload traces
demonstrate that our request allocation algorithm
can efficiently improve the bandwidth utilization for
provider and reduce the delay for end-users, and
outperforms both greedy and locality algorithms.

To sum up, our main contributions of this paper are
as follows:

• We focus on the emerging request allocation
problem in geographically distributed datacen-
ters, and propose a joint optimization model to
consider high bandwidth utilization for provider
and low delay for end-users. Specifically, we
present Nash bargaining solution based method
to model both the requirement of provider’s high
bandwidth utilization at all datacenters and end-
users’ low delay.

• We formulate the request allocation under those
requirements as an optimization problem. Such
optimization can be NP-hard. To solve it, we
propose an efficient request allocation algorithm
by introducing the auxiliary variable method to
eliminate inequality, rather than directly applying
the Logarithmic Smoothing technique. We perfor-

m theoretical analysis to prove the existence and
uniqueness of our solution, and the convergence
of our algorithm.

• We conduct a large amount of experiments based
on real-world workload traces. With the simu-
lation results, we show that our algorithm out-
performs the conventional greedy and locality
algorithms, and can efficiently improve the band-
width utilization for provider and reduce the
delay for end-users.

The rest of this paper is organized as follows. In
Section II, we present the related work. In Section
III, we show our model and notation. In Section IV,
we present our Logarithmic Smoothing based request
allocation algorithm. In Section V, we discuss the
experiment evaluation. Finally, in Section VI we con-
clude this paper.

2 RELATED WORK

Recently, request allocation problem has gained
considerable research interest over the past few years.
However, existing solutions solely focus on the benefit
of either provider or end-users. We review first solu-
tions considering the benefit of end-users. Xu et al.
[14] adopt a general fairness criterion based on Nash
bargaining solutions, and present a general optimiza-
tion framework that models the realistic environment
and practical constraints that a cloud faces. Zhang
et al. [15] proposed to optimize traffic engineering
across all upstream ISPs, assuming requests are sim-
ply allocated to the closest ingress point. Wong et al.
[4] supported locality policies based on on-demand
network probing. Nevertheless, this locality policy can
benefit end-user close to the infrastructure while can
lead to poor performance for users far away from
the infrastructure. Wu et at. developed a prototype
generic workflow system for scientific workflows, and
formulate a task scheduling problem to minimize
the end-to-end delay under a user-specified financial
cost constraint [16]. Their work mainly targets in a
single datacenter. This is different from our work since
we focus on the request allocation in geographically
distributed datacenters. Other solutions consider the
benefits for provider. Wendell et al. [12] developed a
decentralized request allocation algorithm for cloud
services with minimum network costs and balancing
considered. Qureshi et al. [10] proposed a simple cost-
aware request allocation policy that utilizes geograph-
ical diversity of electricity price to preferentially allo-
cate request to datacenters where energy is cheaper.
They showed that this sort of optimization can reduce
the electricity bill by 13% when assuming power-
proportional datacenters. Mathew et al. [17] focused
on load balancing for the provider. Mohsenian-Rad et
al. [18] considered how request allocation can be used
to help with load balancing in the electric grid. Liu et
al. [19] considered the effect of request allocation on
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providing environment gains by using green energy.
Xu et al. [11] developed an efficient request allocation
algorithm that considers both bandwidth and electric-
ity cost. Boloor et al. [20] proposed a novel approach
of data-oriented dynamic service-request allocation
with gi-FIFO scheduling to globally increase the profit
charged by cloud computing system. Le et al. [21] con-
sidered the joint optimization problem of minimizing
carbon emission and electricity cost while their user
assignment algorithm does not attempt to minimize
the distance between users and the datacenters.

Polverini et al. explore the benefit of electricity
price variations across time and locations, and pro-
pose an online algorithm for batch jobs scheduling
in geographically distributed datacenters [22]. They
focused on the energy cost, and do not optimize
the network resource for the provider. In addition,
they consider the fairness with respect to the queuing
delay, which is different from our delay. Xu et al. [23]
developed a request allocation algorithm based on the
alternating direction method of multipliers (ADMM),
which efficiently balance the trade-off between per-
formance and cost. The difference from our scheme
is that they take advantage of the cost diversity, and
allocate request to a datacenter with low bandwidth
price as well as energy price, so as to reduce the
cost for the provider. Our focus is shifting workload
from overloaded datacenters to datacenters with low
utilization. In addition, their delay does not contain
the response time inside the datacenters. Gao et al.
designed FORTE with access latency, electricity cost,
and carbon footprint considered in [24]. Our study
differs in the user delay. The user delay we considered
consists of both the transport delay outside of data-
centers and the response time inside of datacenters,
which is different from their access latency in [24].

3 MODEL AND NOTATION

3.1 The Multiple Datacenters Model
Traditionally, request allocation is handled by deploy-

ing mapping nodes, which are typically HTTP or au-
thoritative ingress proxies that route end-user request-
s from a given locale to the appropriate datacenter,
or authoritative DNS servers [25] that resolve local
queries for the same names of Web sites. Nowadays,
with the success of software defined networks, such
request allocation is easily and practically handled by
the SDN controller that enables the central control
of the entire network [13]. In other words, informa-
tion (i.e., bandwidth utilization, congestion level) of
each datacenter can be gathered at the SDN con-
troller. Once massive requests come to the controller,
the controller is able to make appropriate and even
optimal request allocation strategies with the global
information.

Motivated by this, we construct our multiple data-
centers model based on the SDN controller. Our mod-

Fig. 1. The multiple datacenters model, where the
controller handles request allocation.

el consists of a provider and a set S = {1, 2, · · · , s}
of end-users, which is shown in Fig.1. To handle
massive requests, the provider deploys a central S-
DN controller. We assume that the provider hosts a
set of geographically distributed datacenters M =
{1, 2, · · · ,m} for better reliability and performance,
and provides a set N = {1, 2, · · · , n} of application
instances. Generally, for each application instance i ∈
N , provider will make several copies. For example,
the same encoded content is delivered from multiple
CDNs (i.e., Akamai, LimeLight, and Level-3) for the
same video with the same quality level in Netflix [3].
Without loss of generality, we assume that the same
collection N is hosted by each datacenter. c(j) is the
fixed bandwidth capacity of datacenter j. Let b(i) be
the amount of bandwidth to handle one request when
serving i ∈ N . ∀i ∈ N , we assume that each end-user
k ∈ S can only request once for a given moment. Let
r(k, i) be the binary variable that indicates whether k
requests i:

r(k, i) =

{
1 if k requests i,

0 otherwise.

Let x(j, k, i) be a binary variable that denotes whether
j gets the request from k to i:

x(j, k, i) =


1 if r(k, i) ̸= 0 and j gets the

request from k to i,

0 otherwise.

Important notations used throughout this paper are
listed in Table I.

3.2 The NBS Based Model

The above multiple datacenters model contains two
entities: the provider and users. The provider has a
strong desire for high bandwidth utilization at all
datacenters, and users aim to experience low delay.
In the following, we detailed study different entities,
and apply the Nash bargaining solution [26] to model
the benefit of both providers and end-users. The Nash
bargaining solution is known as non-zero-sum game,
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where players cooperate in this game to achieve a
win-win solution.

3.2.1 High bandwidth utilization for provider

Since the service provider has cost a lot to build M
datacenters, the question becomes how the bandwidth
resource can be better utilized. Recall that due to
the over-subscribed phenomenon and different peak
workload in datacenters, it is likely to come to the case
where some datacenters are overloaded, and some
datacenters experience extremely low bandwidth u-
tilization. An efficient request allocation should shift
some workload from overloaded datacenters to dat-
acenters with low bandwidth utilization, so as to
increase the bandwidth utilization at all datacenters
for the provider.

To achieve this goal, we relate the entire multiple
datacenters model to a bargaining market. Requests
issued by end-users are considered as commodities
in this market. Each datacenter is viewed as a player,
and each player makes its decision by bargaining for
its desired commodities, so as to maximize its own
utility. Note that the bandwidth utilization is the only
metric for the player (”datacenter”), and we simply
use the bandwidth utilization p(j) as the utility for
player j. The bandwidth utilization of datacenter j
can be defined as the the total amount of utilized
bandwidth divided by the bandwidth capacity of
datacenter j. The definition is as follow

p(j) =

∑
k,i r(k, i)b(i)x(j, k, i)

c(j)
.

So, in this Nash bargaining game, each player en-
ters this game with a utility function, and aims to
maximize its own utility. Players cooperative in this
game to achieve a win-win solution, in which the so-
cial utility products are maximized. This corresponds
to the requirements of the provider, which aims to
achieve high bandwidth utilization at all datacenters.
Consequently, we model the benefit of provider as
the Nash product in the Nash bargaining game, i.e.,∏

j p(j).

3.2.2 Low delay for end-users

Delay is arguably the most important performance
metric for end-users. Existing approaches, however,
tend to favor end-users closer to the infrastructure. As
a consequence, this will result in poor performance for
disadvantaged users far away from the infrastructure,
and can potentially lead to substantial revenue losses
for the provider. In particular, Amazon reports that
every 100 ms delay in page load time decreases sales
by 1 percent [27]. In this paper, the delay contains two
parts. The first part is the transport delay between end-
users and datacenters. The second part is the response
time inside of datacenters.

Datacenter: 1

Capacity: 2

Response: 50

30
40

60

Datacenter: 2

Capacity: 2

Response: 30

50

5060
60

30

User 1 User 2 User 3

Fig. 2. An illustrative request allocation with two data-
centers and three users.

Let l(j, k) denote the transport delay between data-
center j and end-user k. To model the response time,
let’s build a set of parallel queues for each application
instance inside of datacenters, such as queue(j, i).
Requests arrive one by one into its corresponding
infinite capacity queue. θ(j, i) is the mean arrival
rate of requests and τ(j, i) represents the inter-arrival
time. Let φ(j, i) denote the mean service time. Hence,
ϱ(j, i) = θ(j, i)φ(j, i) represents the traffic offered
corresponding to the fraction of the time in which the
server is busy if each application instance is served
by a single server. Let σ2

φ(j,i) and σ2
τ(j,i) represent

the squared coefficient of variation of service time
and request inter-arrival time, respectively. Based on
G/G/1 queue and the method in Bloch et al. [28], we
have the delay of the link between datacenter j and
end-user k for application instance i as follows:

δ(j, k,i) = l(j, k) + φ(j, i)+

φ(j, i)
ϱ(j, i)

1− ϱ(j, i)

(
σ2
φ(j,i) + σ2

τ(j,i)

2

)
,

where the third term is the average waiting time in
queue(j, i). Then, the average delay experienced by
user k is calculated as follows:

t(k) =

∑
j,i r(k, i)x(j, k, i)δ(j, k, i)∑

i r(k, i)
.

Note that there are multiple end-users in the
above multiple datacenters model. Each users aims
to achieve minimum delay. Clearly, one user’s delay
is likely to affect other one’s. This is because that the
traffic in those parallel queues can become heavier
as requests arrive one by one. So, we are interested
in a Nash bargaining game. In this game, end-users
are viewed as players and datacenters are viewed as
commodities. Since the only metric in the benefit of
end-user is delay, we can simply model the utility
of end-user k as 1

t(k) . Rational players will seek an
appropriate datacenter to maximize itself utility. To
this end, players cooperate in this game to achieve
a win-win solution, where each user can enjoy low
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TABLE 1
Notations and Definitions

Notation Definition
M the set of datacenters
S the set of end-users
N the set of application instances
j the jth datacenter, j = 1, 2, · · · ,m
k the kth end-user, k = 1, 2, · · · , s
i the ith application instance, i = 1, 2, · · · , n
c(j) the bandwidth capacity of datacenter j
b(i) the amount of bandwidth to handle one request when serving i
r(k, i) whether end-user k requests i
x(j, k, i) whether datacenter j gets the request from end-user k to i
p(j) the bandwidth utilization of j
l(j, k) the transport delay between datacenter j and end-user k
θ(j, i) mean arrival rate of requests in queue(j, i)
φ(j, i) mean service time in queue(j, i)
σ2
φ(j,i) squared coefficient of variation of service time φ(j, i)

σ2
τ(j,i) squared coefficient of variation of request inter-arrival time τ(j, i)

δ(j, k, i) the latency of the link between datacenter j and end-user k for instance i
t(k) the average latency experienced by user k
e [1, 1, · · · , 1]T
Diag(x) diagonal matrix with m diagonal elements being vector x
vec(X) a row vector of length sn formed by matrix X ∈ Rs×n

In a (n× n) identity matrix
µ the smoothing parameter
θµ reduction ratio for smoothing parameter
γ the penalty parameter
θγ reduction ratio for penalty parameter

delay. In summary, we can model the benefit of end-
users as the social utility products, which are defined
by
∏

k
1

t(k) .

3.3 Joint Optimization Model

Given the above models, the goal of joint optimiza-
tion is to choose the request allocation policy x(j, k, i)
such that provider gains high bandwidth utilization
at its datacenters, and each user is enjoying low
delay. This is captured by the following optimization
problem:

max
x(j,k,i)

∏
j

p(j) +
∏
k

1

t(k)

s.t. ∀j,
∑
k,i

r(k, i)b(i)x(j, k, i) ≤ c(j),

∀k, ∀i,
∑
j

x(j, k, i) = 1,

∀j,∀k, ∀i, x(j, k, i) ∈ {0, 1}.

(1)

The optimization problem maximizes its objective
function, which represents the sum of benefits of
provider and end-users. The first constraint enforces
the total workload in datacenter j not to exceed its

bandwidth capacity c(j) and the second denotes that
each request can only be allocated to one datacenter.
We ignore the case r(k, i) = 0 while x(j, k, i) = 1, since
it has no influence on the objective. The last constraint
enforces that x(j, k, i) can only take on {0, 1}.

To have a roundly understanding of our optimiza-
tion model, we show an illustrative request allocation
in Fig. 2. The provider hosts two datacenters. Each
datacenter has a capacity for holding two requests.
The response time in datacenter 1 is 50, while the
response time in datacenter 2 is 30. There are three
users. User 1 has two requests and both user 2 and
user 3 have one request. The number on each line
is the transport delay between users and datacenters.
Simply applying localized request allocation, three
requests are allocated to datacenter 1 and only one
request is directed to datacenter 2. It is clear that
one request will be dropped due to the capacity of
datacenter 1, while datacenter 2 still has room for
one request. Hence, if we choose to move one request
from datacenter 1 to datacenter 2, the problem can
be resolved. However, one question is that which one
should be moved. Based on our optimization model,
the optimal solution is to direct the request issued
by user 2 to datacenter 2. Such that the utilization
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is increased, and each user obtains a 80 transport
delay. So, we need to develop an efficient algorithm
to compute such an optimal request allocation.

Note that the optimization problem in Equation (1)
is a nonlinear integer optimization problem whose
variables can only take on integer quantities or dis-
crete values, and is NP-hard [29]. Since there is a finite
set of possible solutions, one possibility is simply to
examine all such solutions, i.e, perform an exhaustive
enumeration of all solutions. However, we might have
to perform up to 2msn function evaluations to deter-
mine the optimal solution by enumeration. It would
seem attractive if the third constraint is dropped, thus
Equation (1) could be replaced by a continuous prob-
lem. In the following, we present our algorithm based
on Logarithmic Smoothing [30] which is a continuous
approach that has recently received renewed interest
in solving nonlinear integer programming problem.

4 LOGARITHMIC SMOOTHING BASED RE-
QUEST ALLOCATION ALGORITHM

We first provide a brief primer on Logarithmic
Smoothing, which is the corner stone of our algorithm
design.

4.1 A Primer on Logarithmic Smoothing

Logarithmic Smoothing [30] has recently received
renewed interest in solving nonlinear integer pro-
gramming problem. The smoothing algorithm solves
problem in the form:

min f(z)

s.t. Az = ♭,

z ∈ {0, 1}n,

where z ∈ Rn, A ∈ Rp×n and ♭ ∈ Rp. Logarithmic S-
moothing aims to eliminate all the integer constraints.
The smoothing function can be defined as:

−
n∑

i=1

ln zj −
n∑

i=1

ln(1− zj).

The barrier function is well-defined when 0 < z < e
and it can efficiently eliminate constraints z ∈ {0, 1}n.
When the decision variable zi is 0 or 1, the smoothing
function tends to ∞. This implies that a logarithmic
barrier function is insufficient to achieve desirable
rounding. When the variables are not close to zero
or one, extra penalty terms must be added to the
objective to ensure a 0− 1 solution. We introduce the
penalty term

n∑
i=1

zi(1− zi).

Thus, the actual problem associated with the barrier
function and the penalty term becomes:

min f(z)− µ

(
n∑

i=1

ln zj +
n∑

i=1

ln(1− zj)

)

+ γ
n∑

i=1

zi(1− zi)

s.t. Az = ♭,

where µ > 0 is the smoothing parameter, and γ > 0 is
the penalty parameter. The coordination of smoothing
function and penalty term can efficiently eliminate the
constraint z ∈ {0, 1}n.

Let’s consider a simple example, as follows:

min z2

s.t. z ∈ {0, 1}.

The optimal solution for this simple example is z = 0.
If we solve this problem by Logarithmic Smoothing,
the smoothed problem becomes:

min z2 − µ (ln z + ln(1− z)) + γz(1− z).

Fig. 3 shows the original function and smoothed
function for different values of smoothing parameter
µ and penalty parameter γ. For µ = 0.1 and γ = 1,
the smoothed function closely follows the original
function. When µ decreases to 0.1 and γ increases to
10, the smoothed function becomes a concave function
and the optimal solution is z = 0 which is the same as
for the original optimal solution. This implies that an
increase in γ and a decrease in µ makes the optimal
solution of the smoothed optimization closer to the
original solution. Thus, we only need to find suitable
µ and γ, such that the nonlinear integer programming
can be transformed to an equivalent continuous opti-
mization. Based on the guidelines, we now formally
give the design of our algorithm.

4.2 Problem transformation
Our joint optimization problem (1) cannot be read-

ily solved using Logarithmic Smoothing, due to the
following facts. First, the decision variable x(j, k, i) is
constrained by an inequality, rather than an equality
constraint required by the Logarithmic Smoothing.
Second, the smoothing function should be modified
if the inequality constraint is successfully transformed
to equality constraint.

In response to these challenges, we introduce a new
set of auxiliary variables

y = [y(1), · · · , y(m)]T

which represent the residual bandwidth usage, and
thus to transform the inequality constraint to the
equality constraint

∀j,
∑
k,i

r(k, i)b(i)x(j, k, i) + y(j) = c(j).
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Fig. 3. The effect of smoothing the original optimization with varying smoothing parameter µ and penalty
parameter γ.

To easy presentation, we write our problem in the
matrix form. Let

x = [x(1, 1, 1), · · · , x(m, s, n)]T ,

c = [c(1), · · · , c(m)]T ,

A1 = Diag(vec((r(k, i)b(i))s×n)),

A2 = [e1, · · · , esn, e1, · · · , esn, · · · , e1, · · · , esn],

where el is the l-th column of Isn. A1 is a (m×msn)
matrix and A2 is a (sn × msn) matrix. Then, we get
the matrix form optimization problem with equality
constraints only, which is shown as follows:

min − G(x)
s.t. A1x+ y = c,

A2x = e,

x ∈ {0, 1}msn,

(2)

where G(x) =
∏

j p(j) +
∏

k
1

t(k) .
Since the inequality constraints are transformed

into equality constraints, the smoothing function to
be added should be a modification of that in the
primer Logarithmic Smoothing to take into account
the bounds on y. Consequently, the new smoothing
function is

Φ(x, y) =
∑
j

ln y(j)−∑
j,k,i

(lnx(j, k, i) + ln(1− x(j, k, i))) .

Again, an optional penalty term can be added to force
the binary variables to their bounds. The penalty term
is defined as

Ψ(x) =
∑
j,k,i

x(j, k, i) (1− x(j, k, i)) .

Hence, the actual problem we are solving is:

min G(x, y)
s.t. A1x+ y = c,

A2x = e,

(3)

where G(x, y) = −G(x) + µΦ(x, y) + γΨ(x). µ > 0
is the smoothing parameter and γ > 0 is a penalty
parameter. In general, it is possible to show that
the penalty function introduced this way is ”exact”
in the sense that there exists an unique solution to
Equation (3). For completeness, a proof is shown in
the following theorem.
Theorem 1 (Existence and Uniqueness): There exists a real
µ̃ > 0 such that if µ ≥ µ̃, then there exists an unique
solution to Equation (3).

Proof: Please refer to the Appendix A.

4.3 Algorithm Design

We design our algorithm based on the guidelines
above. The actual problem we are solving is a continu-
ous problem, which enables us to make use of the La-
grange multiplier information. Primal-dual methods
[31] have been used to solve programming problems
with much success, e.g., minimum cost flow problem.
Here, we use a similar approach to deal with our
problem in Equation (3), of which the first-order
optimality conditions are as follows:

∇xG(x, y) +AT
1 α+AT

2 β = 0, (4)

∇yG(x, y) + α = 0, (5)

A1x+ y = c, (6)

A2x = e, (7)

where α and β represent the Lagrange multiplier
for the first and second constraint in Equation (3),
respectively. Applying Newton’s method directly, we
get the following equation:

g1 g2 AT
1 AT

2

g3 g4 Im 0
A1 Im 0 0
A2 0 0 0



∆x
∆y
∆α
∆β

 =


h1

h2

h3

h4

 , (8)
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where

g1 = ∇xxG(x, y),
g2 = ∇xyG(x, y),
g3 = ∇yxG(x, y),
g4 = ∇yyG(x, y),

and

h1 = −
(
∇xG(x, y) +AT

1 α+AT
2 β
)
,

h2 = − (∇yG(x, y) + α) ,

h3 = − (A1x+ y − c) ,

h4 = − (A2x− e) .

We observe that Equation (8) can be reduced as follow:[
H AT

2

A2 0

] [
∆x
∆β

]
=

[
w
h4

]
, (9)

where

H = g1 − g2A1 −AT
1 g3 +AT

1 g4A1,

and
w = h1 − g2h3 −AT

1 h2 +AT
1 g4h3.

The rest of the Newton directions can then be obtained
by

∆y = h3 −A1∆x,

∆α = h2 − g3∆x− g4∆y.

Letting Z be the null-space matrix of A2, then we have
A2Z = 0. Let x0 be any feasible point such that A2x0 =
e, thus ∆x = Zx′ for some x′. Substituting this into the
top part of Equation (9) and multiplying both sides by
ZT , we get

ZTHZx′ = ZTw, (10)

where x′ could be obtained by using a conjugate
gradient method [32]. Next, update x = x + ρ∆x,
where ρ is obtained by performing a linear search
method [33]. Further, sequently update y, α and β.
Our algorithm is summarized in Algorithm 1, where
µ starts with a large value and ends up with one that
may be close to zero while γ runs the opposite way.
θµ and θγ are the rate of decrease of µ and the rate of
increase of γ, respectively.

The convergence of our algorithm is shown in the
following theorem.
Theorem 2 (Convergence) : (1). Let x(γ, µ) be any local
minimizer of Equation (3). Then, x(γ, µ) → {0, 1}msn as
γ → ∞ and µ → 0.
(2). Let {µt}∞t=1 be a recursive sequence of positive numbers
such that lim

t→∞
µt = 0. Also, suppose that there exists

(x∗, y∗, α∗, β∗) that satisfies Equation (4) to Equation (7),
then

lim
t→∞

x(µt) = x∗.

Proof: Please refer to the Appendix B.
Practicality. The dominating operation during one

Algorithm 1 Algorithm for Request Allocation
Input: Request, r(k, i), ∀k, ∀i;

Bandwidth capacity, c(j), ∀j;
Amount of bandwidth for one request, b(i), ∀i;
The initial value of smoothing parameter, µ0;
The initial value of penalty parameter, γ0;
Smoothing parameter reduction, θµ;
Penalty parameter increment, θγ ;

Output: x(j, k, i);
1: Initialize γ = γ0, µ = µ0. Letting x0 be any feasible

point such that A2x0 = e, and then initialize
y, α, β;

2: Update x by applying conjugate gradient method
[32] for Equation (10) and performing a linesearch
method [33];

3: Given ∆x, sequently update y, α and β;
4: Update µ = θµµ, γ = θγγ;
5: Repeat step 2 until convergence or γ and µ to their

tolerance values;
6: return x(j, k, i), ∀j,∀k, ∀i;

iteration of our algorithm is the conjugate gradient
method. The complexity of the conjugate gradient
method is O(η ×

√
κ), where η is the number of non-

zero entries of the matrix ZTHZ, and κ is its condition
number [34]. Hence, the complexity of our algorithm
is O(} × η ×

√
κ), where } is the maximum iteration

number of our algorithm. Normally, the smoothing
parameter decreases from 1000 to 10−4, while the
penalty parameter increases from 1 to 105 [35]. If
we set θµ and θγ to 0.2 and 5, respectively. Then,
the maximum iteration number } is less than 10. In
addition to the low value of }, the value of η is also
low since the matrix ZTHZ can be a spare matrix.
Moreover, the condition number κ is usually set to
no more than 100, and thus

√
κ is less than 10 [34].

To further investigate the practicality, our algorithm
can be triggered in a laissez-fair manner. In other
words, whenever the bandwidth resource provided
by one datacenter cannot sustain requests for applica-
tions placed on that datacenter, the request allocation
algorithm is triggered. The idea is, if requests can be
satisfied under current provision, we will maintain
the same even if the request allocation is not the
optimal. Once a datacenter reaches its peak workload,
our algorithm can be triggered to make the optimal
request allocation where high bandwidth utilization
for provider and low delay for users are jointly con-
sidered.

5 EXPERIMENT EVALUATION

In this section, we first show the detailed implemen-
tation of our simulation. Then, we sequently present
the performance of provider and users.
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Fig. 4. A 24-epoch sampled request traffic of 100
URLs in the Wikipedia traces [36].

5.1 Simulation Setup

We simulate that the provider deploys 5 (m=5) dat-
acenters and 100 (n=100) application instances in total.
In our simulation, there are 500 (s=500) end-users, and
we use WikiPedia request traces [36] to represent the
request traffic. The dataset we use contains requests
issued to Wikipedia from 04:10 AM, September 19,
2007 GMT to 04:11 AM, September 20, 2007 GMT
with line record format < number, timestamp, url >.
We extract requests of 100 URLs for a 24-hour period
duration. In each hour, we randomly sample requests
of one minute. Such that we have a 24-epoch sampled
request traffic of 100 URLs in the Wikipedia traces
[36], which is shown in Fig. 4. We believe that the
dataset we use faithfully reflect the request distribu-
tion for a cloud service, and it is appropriate to use
them for the purpose of verifying the performance of
our request allocation algorithm.

Since the Wikipedia traces do not contain any end-
user information, to emulate the geographical dis-
tribution of requests, we randomly split the total
request traffic among 500 end-users. Without loss
of generality, each datacenter is equipped with the
same fixed bandwidth capacity (i.e., 6000 units), and
each kind of application instance i ∈ N consumes
the same amount of bandwidth (i.e. 1 unit) when
handling one corresponding request. The transport
delay mainly relies on the Internet while we mainly
concern about the intra-datacenter network. However,
if the transport delay is well measured, we can use
it for optimization. For simplicity, we assume that
the transport delay between datacenters and end-
users is randomly generated from 0 to 50ms in our
simulations.

Since we use the G/G/1 queue model, each appli-
cation hosted by a datacenter is actually assumed to
be served by a single server. The service time is related
to the server speed. For simplicity, we set the mean
service time in each queue to 50ms. Certainly, the
corresponding squared coefficient of variation σ2

φ(j,i)

equals to 0. In our simulation, we assume that all
queues are empty at the first epoch, which means that

the waiting time is 0. Hence, the response time equals
to the mean service time at the first epoch. Then, at
the end of each epoch, we compute the waiting time
based on the arrival of requests, and further obtain
the response time, which is then to be used for the
request allocation in the next epoch. The initial value
of µ is set as the maximum eigenvalue of ∇2(−G(x))
and the initial value of γ is set as 1% of the absolute
value of the minimum eigenvalue of ∇2(−G(x)). We
set θµ = 0.5, θγ = 2. The tolerance values of µ and γ
are set to be 10−4 and 104, respectively.

Our algorithm is compared with two algorithms.
The first one is a greedy algorithm [37] which is an
algorithm that follows the problem solving heuristic
of making the locally optimal choice at each stage
with the hope of finding a global optimum. In our
implementation, the greedy algorithm greedily allo-
cates each request to a datacenter that can provide the
lowest delay. The second one is a locality algorithm
that allocates each request to the closest datacenter
[4]. These two algorithms mainly aim to reduce the
delay from the perspectives of end-users, and do
not consider benefit for the provider. To illustrate
clearly, let RAAF denote our proposed algorithm, GA
represent the greedy algorithm, and LA represent the
locality algorithm.

5.2 The performance of provider
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Fig. 5. Average of improvement on bandwidth utiliza-
tion.

We first evaluate the performance of provider. Fig.
5 shows the improvements on average bandwidth uti-
lization across all datacenters over a 24-epoch period
of time. The improvement is computed as the average
bandwidth utilization of our RAAF minus that of the
compared algorithms (i.e., GA, or LA). As we can
see, the average improvement on bandwidth utiliza-
tion varies with the same trend as the total request
pattern in Fig. 4. Specifically, maximum improvement
is almost 0.8 and 0.4, compared with GA and LA,
respectively. Moreover, when the number of requests
increases, improvements on bandwidth utilization be-
come more evident. The reason is that when applying



10

the greedy algorithm and locality algorithm, partial
datacenters are overloaded, while some other datacen-
ters are likely to experience extremely low bandwidth
utilization. Moreover, such overloading can be more
worse when the number of requests is increasing.
Hence, these results verify that our request allocation
algorithm can achieve high bandwidth utilization for
the provider.
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Fig. 6. Reduction in standard deviation of the band-
width utilization.

In addition to the bandwidth utilization, another
important performance for the provider is the stan-
dard deviation of bandwidth utilization. We show
the reduction in standard deviation of the bandwidth
utilization across all datacenters over the 24-epoch
period of time in Fig. 6. Similarly, the reduction can be
computed as the standard deviation of the compared
algorithms (i.e, GA, or LA) minus that of our RAAF.
As we know, a reduced standard deviation of band-
width utilization reflects a more balanced bandwidth
utilization. It is obvious that the standard deviation of
bandwidth utilization is successfully reduced. More
precisely, the maximum reduction of the standard
deviation of the bandwidth utilization is almost 2 and
1, compared with the GA and LA, respectively. We
can further observe that the reduction on the standard
deviation of bandwidth utilization is closely following
the total requests pattern in Fig. 4. This implies that
the reduction of standard deviation of bandwidth uti-
lization increases as the number of requests increases.
These results show that our request allocation is able
to mitigate bandwidth resource under-utilization due
to imbalanced bandwidth usage across all datacenters.

5.3 The performance of users

For the performance of users, we consider an im-
portant metric, the number of requests that is suc-
cessfully handled. As shown in Fig. 7, it is clear that
the number of handled requests has increased by
applying our RAAF algorithm, with improvements
of more than 2 × 104 and 1 × 104, compared with
the GA and LA algorithm, respectively. Moreover, the
improvements on the number of handled requests
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Fig. 7. Improvement on the number of requests suc-
cessfully handled.

are closely following the improvement on bandwidth
utilization. This result confirms what we observed in
the improvement on bandwidth utilization, since the
more efficient available bandwidth is being utilized,
the more requests can be handled.
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Fig. 8. Average of reduction on user delay.

In addition to reducing the loss of the number of
requests, our algorithm can also reduce the user delay.
To verify this, we plot the reduction on average user
delay across all users over the time in Fig. 8. Note that
only the successfully handled requests are used for
the computation of user delay in our implementation.
We have two main observations from Fig. 8. First,
the user delay is successfully reduced at most of the
time, compared with the GA algorithm. Moreover,
maximum reduction on user delay is more than 300
ms. Second, the average user delay in our RAAF algo-
rithm is the same with that of LA at most of the time,
and is even lower than that of LA at some epochs.
This implies that our RAAF can successfully reduce
the average user delay at some epochs, compared
with LA. Hence, we can conclude that apart from the
loss user requests, our algorithm can still reduce user
delay that is computed by the successfully handled
requests.

To further investigate the performance of users,
in Fig. 9, we show the reduction in the standard
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Fig. 9. Reduction in standard deviation of the user
delay.

deviation of user delay. A lower standard deviation of
user delay reflects a more fair delay among users. It is
clear that the standard deviation of user delay is suc-
cessfully reduced. More precisely, the maximum re-
duction is almost 0.15, compared with GA. Moreover,
the maximum reduction is more than 0.1, compared
with LA. This implies that our Nash bargaining game
based model can ensure the fairness among users.
For the convergence of our algorithm, we direct the
interest readers to [30]. To sum up, we believe that
our algorithm is practical for real-word problems.

6 CONCLUSION

Our focus in this paper is the request allocation in
geographically distributed datacenters. To efficiently
allocate requests, we apply the SDN controller to
enable the central control of the network, and joint-
ly consider high bandwidth utilization for provider
and low delay for users. Specifically, the provider’s
requirement of high bandwidth utilization at all dat-
acenters and users’ low delay requirements are both
modeled based on the Nash bargaining game. Then,
we formulate the design of request allocation under
those requirements as an optimization problem, which
is an integer optimization as well as NP-hard. To
efficiently solve such an optimization problem, we
propose a request allocation algorithm by introduc-
ing auxiliary variables to eliminate inequality con-
straints, rather than directly applying the Logarithmic
Smoothing technique. Theoretical analysis proves the
existence and uniqueness of our optimal solution and
the convergence of our algorithm. We empirically
evaluate our algorithm based on real-world workload
traces. The experimental results show that our algo-
rithm can efficiently improve the bandwidth utiliza-
tion for the provider and reduce the delay for users,
compared with both greedy and locality algorithms.
As future work, we plan to more thoroughly study the
decentralized implementation of request allocation by
deploying one controller in each datacenter.

APPENDIX A
PROOF OF THEOREM 1

Let x∗(µ) be a solution to

min Θ(x) = −G(x) + µΦ(x, y)

s.t. A1x+ y = c,

A2x = e,

(11)

We first show the existence of x∗(µ). Let

Λ = {x : A1x+ y = c, A2x = e}

and j, k, i represent the indices j, k, i. Define

Ω = [1/4, 3/4]msn
∩

Λ.

Observe that the Hessian of Φ(x, y) is a diagonal
matrix with diagonal entry being

1

x2
j,k,i

+
1

(1− xj,k,i)2
.

This implies that there exists a real µ̃ > 0, such that
Θ(x) is a strictly convex function, which has been
proved in [38].

Since Ω is a compact set and Θ(x) is a continuous
function on Ω, there exists real number £1,£2 such
that

£1 ≤ Θ(x) ≤ £2

for all x ∈ Ω. Since

lim
x→0+,1−

Θ(x) = ∞,

there exists 0 < ϵ < 1
4 such that for all x ∈

((0, ϵ]
∪
[1− ϵ, 1))

msn∩
Λ,

Θ(x) > £2.

Define Ω1 = [ϵ, 1 − ϵ]msn
∩
Λ. Again by continuity of

Θ(x) on Ω1, there exists z ∈ Ω1, such that

Θ(z) ≤ Θ(x)

for all x ∈ Ω1. Moreover, Θ(z) ≤ £2 as Ω ⊂ Ω1. Then,
we have

Θ(z) < Θ(x)

for all x ∈ (0, 1)msn\Ω1. Thus, z is required x∗(µ).
The uniqueness of x∗(µ) follows from the convexity
of Θ(x).

Now, we show that Equation (2) and the following
equation have the same minimizer.

min − G(x) + γΨ(x)

s.t. A1x+ y = c,

A2x = e.

(12)

Let ϕ(x) = −G(x). Let t(p) for p = 1, 2, · · · , 2msn

denote the elements of the set {0, 1}msn. T(p) denotes
the set

{ẋ ∈ [0, 1]msn : ∥ẋ− t(p)∥ < 1/4}.
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Suppose x ∈ T(q) for some q. Then for t
(q)
j,k,i = 0, we

have

xj,k,i = |xj,k,i − t
(q)
j,k,i|

≤ ∥x− t(q)∥
≤ 1/4,

so that

|xj,k,i − t
(q)
j,k,i| = xj,k,i

≤ 2xj,k,i(1− xj,k,i).

Similarly, for t
(q)
j,k,i = 1, we have

1− xj,k,i ≤ |xj,k,i − t
(q)
j,k,i|

≤ |x− t(q)|
≤ |xj,k,i − t

(q)
j,k,i|,

so that

|xj,k,i − t
(q)
j,k,i| = 1− xj,k,i

≤ 2xj,k,i(1− xj,k,i).

By Taylor’s theorem, there exists τ ∈ [0, 1]msn such
that

ϕ(x) = ϕ(t(q)) + (∇ϕ(τ))
T
(x− t(q)).

Since ∇ϕ(x) is continuous on the compact set [0, 1]msn,
there exists L0 > 0 such that

ϕ(t(q))− ϕ(x) ≤ |ϕ(x)− ϕ(t(q))|
= | (∇ϕ(τ))

T
(x− t(q))|

≤ L0∥(x− t(q))∥

= L0

√∑
j,k,i

(xj,k,i − t
(q)
j,k,i)

2

≤ L0

∑
j,k,i

|xj,k,i − t
(q)
j,k,i|

≤ 2L0

∑
j,k,i

xj,k,i(1− xj,k,i)

= 2L0Ψ(x).

So if γ > 2L0,

ϕ(t(q)) ≤ ϕ(x) + γΨ(x)

for x ∈ T(q). Suppose x ∈ C = [0, 1]msn\
(∪2msn

p=1 T(p)

)
.

There exists L1, L2, such that ϕ(x) ≥ L1 and Ψ(x) ≥
L2 for all x ∈ C. In particular, L2 > 0 since x ̸= t(p)

for all p. This implies for all x ∈ C,

ϕ(x) + γΨ(x) ≥ L1 + γL2

≥ ϕ(t(p))

for all p if γ ≥ (L3 −L1)/L2 where L3 = maxp ϕ(t
(p)).

Thus, if γ > max{2L0, (L3 − L1)/L2}, we have L3 ≤
ϕ(x) + γΨ(x). Letting

p′ = argmin
p

ϕ(t(p))

and
γ∗ = max{2L0, (L3 − L1)/L2},

we also have

ϕ(t(p
′)) + γΨ(t(p

′)) = ϕ(t(p
′))

≤ ϕ(x) + γΨ(x)

for all x ∈ [0, 1]msn
∩
Λ if γ > γ∗. t(p

′) is the same
minimizer of Equation (2) and Equation (12). Note
that G(x, y) = Θ(x)+γΨ(x). Thus, the theorem follows
from the observation that Equation (3) and Equation
(11) have the same minimizer.

APPENDIX B
PROOF OF THEOREM 2

(1): Let x(γ) be a solution to Equation (12). Obvi-
ously,

lim
µ→0

x(γ, µ) = x(γ).

Observe that Equation (5) is a sequence of penal-
ty subproblems for Equation (2). By the theoretical
analysis of theorem 1, we have x(γ) → {0, 1}msn

for sufficiently large γ. Thus, x(γ, µ) → {0, 1}msn as
γ → ∞ and µ → 0.

(2): We can simply get following equations:

∇x∗G(x∗, y∗) +AT
1 α

∗ +AT
2 β

∗ = 0, (13)
∇y∗G(x∗, y∗) + α∗ = 0, (14)
A1x

∗ + y∗ = c, (15)
A2x

∗ = e. (16)

And for each t,

∇x(µt)G(x(µt), y(µt)) +AT
1 α(µt) +AT

2 β(µt) = 0, (17)

∇x(µt)G(x(µt), y(µt)) + α(µt) = 0, (18)

A1x(µt) + y(µt) = c, (19)

A2x(µt) = e. (20)

From Equation (15), Equation (16), Equation (19),
Equation (20) we can get[

A1 Im
A2 0

] [
x(µt)− x∗

y(µt)− y∗

]
=

[
0
0

]
, (21)

Also from Equation (13), Equation (14), Equation (17),
Equation (18) we have[

H1

H2

]
+

[
A1 Im
A2 0

]T [
α(µt)− α∗

β(µt)− β∗

]
=

[
0
0

]
, (22)

where

H1 = ∇x(µt)G(x(µt), y(µt))−∇x∗G(x∗, y∗),

and

H2 = ∇y(µt)G(x(µt), y(µt))−∇y∗G(x∗, y∗).

Premultiplying both sides of Equation (22) by
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[
x(µt)− x∗

y(µt)− y∗

]T
and using Equation (15), Equation (19)

and Equation (21), we obtain (x(µt)−x∗)T (H1+H2) =
0. This implies that lim

t→∞
x(µt) = x∗.
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