
Optimizing the Cost-Performance Tradeoff for
Geo-distributed Data Analytics with Uncertain

Demand
Wenxin Li∗, Renhai Xu∗, Heng Qi∗†, Keqiu Li∗, Xiaobo Zhou‡, Wenyu Qu‡
∗School of Computer Science and Technology, Dalian University of Technology, China.

†Graduate School of Information Science, Nagoya University, Japan.
‡Tianjin Key Laboratory of Advanced Networking, School of Computer Science and Technology, Tianjin University, China.

Heng Qi is the corresponding author: hengqi@dlut.edu.cn.

Abstract—In the era of global-scale services, analytical queries
are performed on datasets that span multiple data centers (DCs).
Due to the scarce and expensive inter-DC bandwidth, various
methods have been proposed to reduce either the traffic cost
or the completion time for those analytics queries. However,
current methods make no attempt to maximize the number
of successfully served query requests. Moreover, most of them
rely on unrealistic assumptions — such as analytical queries
are repeated or known in advance. In this paper, we target at
characterizing and optimizing the cost-performance tradeoff for
geo-distributed data analytics. Our objectives are two-fold: (1) we
minimize the inter-DC traffic cost when serving geo-distributed
analytics with uncertain query demand, and (2) we maximize the
system throughput, in terms of the number of query requests
that can be successfully served with guaranteed queuing delay.
To achieve these objectives, we take advantage of Lyapunov
optimization techniques to design a two-timescale online control
framework. Without prior knowledge of future query requests,
this framework makes online decisions on input data placement
and admission control of query requests. Extensive trace-driven
simulation results demonstrate that our framework is capable of
reducing inter-DC traffic cost, improving system throughput and
guaranteeing a maximum delay for each query request.

I. INTRODUCTION

Globe-scale organizations (e.g., Google [1] and Microsoft
[2]) construct multiple data centers (DCs) across the world
to deliver their services. These services continuously produce
large volumes of data when logging user activity or monitoring
server status [3, 4]. These data are born and stored in multiple
DCs, and introduce an interesting research topic of geo-
distributed data analytics (GDA) [5–7]. Such GDA has huge
impact on business process, and is of great importance to
service providers. For example, GDA enables service providers
to make advertisement decisions by querying user logs, and
detect attacks/faults by querying system logs.

While recognizing the significance of GDA, it faces two
challenges. First, GDA incurs substantial traffic cost, no matter
it is performed in a centralized or distributed way. The
centralized way aggregates all datasets to a single DC before
executing queries, while distributed way leaves data in-place
and executes queries directly on these geo-distributed datasets.
Clearly, the centralized way transfers large volume of input
data among multiple DCs, while the distributed way also

generates massive cross-DC intermediate data when contin-
uously receiving a large number of query requests. Second,
modern GDA system not only needs to handle millions of
query requests per minute today, it also must be able to handle
the ever-increasing number of query requests in the future
[8]. While the query demands are rapidly growing, inter-DC
network capacity growth has been decelerating [6], making
the cross-DC bandwidth become the performance bottleneck
for the query requests. This eventually leads to high queuing
delay for each query request.

In response to these challenges, we believe that it is crucial
to characterize and optimize a cost-performance tradeoff for
a GDA system. In other words, how to minimize the involved
traffic cost while maximizing the number of query requests
that can be served with guaranteed delay? Intuitively, it may
be a step towards the right direction to design an offline
algorithm to obtain the optimal solution. However, such offline
optimization inevitably relies on a prior knowledge of future
query demand. The query demand mainly refers to the number
of query requests in each time, and it is typically uncertain
over time. Moreover, the arrivals of query requests may not
follow any stationary distributions, yet are not known a prior.

To the best of our knowledge, no existing work is in place
to solve such cost-performance tradeoff problem for GDA
queries with uncertain demand. State-of-the-art methods can
be divided into two categories: 1) The first one is to reduce the
inter-DC traffic by leveraging efficient data replication and task
aggregation strategies for GDA queries [6, 9]; 2) The second
one is to shorten the completion time of GDA query jobs via
efficient data/task placement and flow scheduling strategies
[5, 7, 10]. However, they make no attempt to maximize the
number of successfully served query requests. Moreover, they
rely on assumptions that are often unrealistic — such as
analytical queries are repeated or known in advance.

In this paper, we make the first attempt to study the
cost-performance problem for large-scale GDA systems, in
the presence of uncertain query demand. Our primary focus
is to minimize the inter-DC traffic cost and maximize the
number of query requests that can be successfully served with
guaranteed delay. To this end, we blend the advantages of both

978-1-5386-2704-4/17/$31.00 c©2017 IEEE

Non-blocking

Master

Worker

Worker

Worker

Request Queue

Input Data

Placement

Request

Admission

Fig. 1. An illustrative example of a GDA system.

input data placement and query request admission techniques.
Specially, a stochastic optimization problem is formulated and
solved by an efficient two-timescale online control framework
based on Lyapunov optimization techniques. Without a prior
knowledge of future query requests, this framework makes
online decisions on the input data placement in time slots of
longer periods of time, and also determines the number of
query requests that can be served with guaranteed delay in
smaller time scales. We conduct extensive simulations based
on 7-day worth of traces from Google Cluster Usage, to
show the effectiveness of our framework in reducing inter-DC
traffic cost, improving system throughput, and guaranteeing a
maximum delay for each query request.

The rest of this paper is organized as follows. Section II
presents the problem statement and our system model. In
Section III, we present our two-timescale online control frame-
work. We present the performance evaluation in Section IV.
Section V summarizes the related work. Finally, the conclu-
sions are drawn in Section VI.

II. PROBLEM STATEMENT AND SYSTEM MODEL

A. Problem Statement

In geo-distributed analytics, multiple DCs are connected to
a non-blocking network, via dedicated uplinks and downlinks,
as shown in Fig. 1. The bottlenecks are only between DCs and
the non-blocking core, which is reasonable because of recent
studies and measurements [5, 11]. Data can be generated on
any DCs and as such, a dataset could be distributed across
many DCs. Each dataset can only be used for one type of
query requests. Each query request is viewed as a job such as
MapReduce or Spark job. Input tasks of these query requests
(e.g., map tasks) are executed on their corresponding input
data, and write their outputs to their respective localities. These
outputs are then fetched by a number of reduce tasks, which
leads to a large amount of intermediate data.

The problem this paper studied is to design an algorithm
to make decisions on both the input data placement and the
admission control of query requests in an online manner.
The primary objective is to minimize the incurred inter-DC
traffic cost and maximize the number of query requests that
can be served with guaranteed queuing delay. The input data
placement, determining how much amount of input data should

be placed on each DC for each query type, is executed
in time slots of longer periods of time. The query request
admission, deciding the number of query requests that can be
simultaneously executed, is performed in smaller time scales.

B. Basic Cost-Performance Tradeoff Model

We consider a GDA system to logically span a set of DCs,
M={1, 2, . . .,M}. For each DC j, let Uuj and Udj denote
the uplink and downlink bandwidth capacities, respectively.
There are N query types, N={1, 2, . . ., N}. Specifically, let
Di denote the total amount of input data for i-th query type.
Inspired by the modeling work in DC networks [12, 13], we
consider the system to operate in a discrete-time mode, where
the time can be divided into K coarse-grained time slots. Each
coarse-grained time slot is further divided into T fine-grained
time slots. Each fine-grained time slot has a same duration ~,
typically 5 or 15 minutes.

1) Online Control decisions: At the beginning of each
coarse-grained time slot t=kT (k=1, 2, . . .,K), the first con-
trol decision is to determine how much amount of input data
should be placed on each DC for each query type. Specifically,
let Di,j(t) denote such decision variable with respect to j-th
DC and i-th query type. Second, in each fine-grained time slot
τ , a number Ai(τ) of requests of i-th query type arrive, and
are stored in a queue Qi(τ). Accordingly, another important
control decision is to determine how many requests, Si(τ),
can be simultaneously served for each query type, in time slot
τ . The rest requests are then deferred to later times with more
available link bandwidth or lower traffic cost. So, we have the
following queuing dynamics over time for each query type.

Qi(τ + 1) = max{Qi(τ)− Si(τ), 0}+Ai(τ), ∀τ. (1)

These queues takes Ai(τ) as input and Si(τ) as output. Qi(τ)
is called as the backlog at time τ , as it represents the amount
of unserved query requests at time τ .

2) Constraints: We have the following constraints.
Ensuring the completion of input data placement: Denote

the amount of input data to be moved out of (or to be moved
in) DC j for i-th query type in t as f1i,j(t) (or f1

′

i,j(t)).

f1
i,j(t) = max(Di,j(t− T)−Di,j(t), 0), (2)

f1′
i,j(t) = max(Di,j(t)−Di,j(t− T), 0). (3)

Such data movements must be completed before executing
the query requests. Here, we enforce the input data movement
to be completed within one fine-grained time slot.

N∑
i=1

f1
i,j(t)

Uuj
≤ ~,∀j, ∀t, (4)

N∑
i=1

f1′
i,j(t)

Udj
≤ ~,∀j, ∀t, (5)

M∑
j=1

Di,j(t) = Di, ∀i,∀t. (6)

Eq. (4) constrains the outward data movement, while Eq. (5)
constrains the inward data movement. No matter how to move
the input data, the total amount of input data for each query

type should be fixed, as shown in Eq. (6). It should be noted
that, during these data movements, no query requests can be
served, as shown in the following

Si(τ) = 0, ∀i,∀τ=t,∀t, (7)
0 ≤ Si(τ) ≤ Qi(τ), ∀i,∀τ=t+1, . . ., t+T−1,∀t. (8)

Guaranteeing queuing delay of query requests: The queuing
delay is closely related to the queue backlog, and hence we
bound the length of queue backlog. This in turn determines
the delay performance for each query request. Let Q ,
limt→∞

1
t

∑t−1
τ=0 E|Qi(τ)| denote the time averaged expected

backlog. To guarantee a maximum delay lmax, we consider
the following two constraints

Q = lim
t→∞

1

t

t−1∑
τ=0

E|Qi(τ)| <∞, (9)

Qi(τ) < Qmax,∀i,∀τ, (10)

where Qmax is the maximum backlog. The maximum delay
lmax is a proportional function of Qmax, which we will show
in Section III-A. So, when the queue backlog is bounded, the
maximal delay can also be guaranteed [12].

Link capacity constraint: Both the uplink and downlink
bandwidth capacities should be satisfied when transferring the
intermediate data generated by query requests. Specifically,
define f2i,j(τ) as the amount of intermediate data to be
uploaded by DC j for i-th type of GDA query in each fine-
grained time τ . Then, we have

f2
i,j(τ) = Di,j(t)αi(1−

Di,j(t)

Di
)Si(τ). (11)

Here, the term Di,j(t)/Di represents the fraction of reduce
tasks assigned to DC j, which is proportional to the amount
of input data that placed on it. It should be noted that we
simply use such proportional task placing strategy to derive the
distribution of the intermediate data. One can further reduce
the cost with better task placements [5, 6], but it is beyond
the scope of this paper.

Similarly, we also define the amount of intermediate data
to be downloaded as f2

′

i,j(τ), which is calculated as follows

f2′
i,j(τ) = (Di −Di,j(t))αi

Di,j(t)

Di
Si(τ). (12)

We now can formulate the link capacity constraint with the
following inequalities satisfied:

N∑
i=1

f2
i,j(τ)

~
≤ Uuj ,∀j, ∀τ, (13)

N∑
i=1

f2′
i,j(τ)

~
≤ Udj , ∀j, ∀τ. (14)

3) Characterizing the Cost-Performance Tradeoff: We
have two objectives, as shown in the following.

Inter-DC traffic cost: For modern GDA system, it is crucial
to minimize the inter-DC traffic cost incurred by a large
amount of query requests. The inter-DC traffic cost contains
two parts: the traffic cost of input data movement and the

traffic cost of intermediate data transmission. It should be
noted that we do not enforce any complicated traffic pricing
model, e.g., 95th percentile pricing. The traffic cost is simply
considered to be proportional to the volume of traffic. As such,
the total inter-DC traffic cost in each coarse-grained time slot
t is calculated as follows

C(t) =

N∑
i=1

M∑
j=1

f1
i,j(t) +

t+T−1∑
τ=t

N∑
i=1

M∑
j=1

f2
i,j(τ). (15)

Define C(τ) ,
∑N
i=1

∑M
j=1

(
1
T f

1
i,j(t) + f2i,j(τ)

)
, and then

we have C(t) =
∑t+T−1
τ=t C(τ). Here, C(τ) can be viewed as

the total cost in each fine-grained time slot τ .
System throughput: For large-scale GDA system, another

important performance metric is the overall system throughput,
in terms of the total number of query requests that can
be simultaneously served. Specifically, in each fine-grained
time slot τ , the system throughput is simply defined as the
summation of served requests across all query types

S(τ) =

N∑
i=1

Si(τ). (16)

With the above objectives, the cost-performance tradeoff
problem can now be formulated as the following stochastic
problem P1:

min
Di,j(t),Si(τ)

lim
t→∞

1

t

t−1∑
τ=0

E{C(τ)− λ · S(τ)}

Subject to: Eqs. (1), (4), (5), (6), (7), (8), (9), (10), (13), (14).

(17)

Here, λ is a weight factor, representing how much we
emphasize the throughput maximization. With such weight
factor, any desired trade-off point between the cost and per-
formance can be achieved. We further observe that P1 is a
long-term optimization problem, where the current control
decisions are coupled with the future decisions. For example,
current decisions may defer excessive query requests and
hence block the service of future query requests. To solve such
long-term optimization, the dynamic programming technique
is a commonly used method [14], which, however, requires
significant knowledge of the query request. Hence, we are
motivated to take advantage of the Lyapunov framework [15]
to design online control algorithms, without requiring a prior
knowledge of the query requests.

III. A TWO-TIMESCALE ONLINE CONTROL FRAMEWORK

A. Transforming into Lyapunov Optimization

The key of Lyapunov optimization technique is to transform
a long-term optimization problem to many sub-problems, each
of which can be solved in one time slot. To this end, we
first introduce a set of delay-aware virtual queues, which
can guarantee a maximal queuing delay lmax for each query
request. Specifically, we construct a group of delay-aware
virtual queues Yi(t), ∀i, based on the technique of ε-persistent
queue [16]. The queuing dynamics is defined as:

Yi(t+ 1) = max{Yi(t)− Si(t) + ε1Qi(t)>0, 0}, ∀i, (18)

where 1Qi(t)>0 is an indicator variable that is 1 if Qi(t) > 0
and 0 otherwise. ε is a positive parameter, which is the key
to ensure that Yi(t) grows whenever there is query requests
in Qi(t) that has not been serviced. The following Lemma
shows that the deferred query requests should be served within
a worst case delay lmax under any feasible algorithm. Due to
the page limit, we omit the proof process.

Lemma 1: If Q(t) < Qmax and Yi(t) < Ymax are
satisfied for any time slot t and any query type i, then any
query requests can be served within a maximal queuing delay
lmax = d(Qmax + Ymax)/εe.

Now, we focus on transforming the original problem P1
into Lyapunov optimization. Let Θ(t) denote the concatenated
vector of all queues, Θ(t) = [Yi(t), Qi(t)]. Then, we define
the Lyapunov function as follows:

L(Θ(t)) =
1

2

(
N∑
i=1

Y 2
i (t) +

N∑
i=1

Q2
i (t)

)
(19)

This Lyapunov function quantitatively reflects the conges-
tion of all queues [15], which should be persistently pushed
towards a lower congestion state to keep the queue stabili-
ties. Hence, we introduce T -slot conditional Lyapunov drift
∆T (Θ(t)), which is defined as follows

∆T (Θ(t)) = E{L(Θ(t+ T))− L(Θ(t))|Θ(t)} (20)

Based on the Lyapunov framework [15], it is the need
to make decisions on Di,j(t), Si(τ) to minimize the drift-
plus-penalty term every T time slots. The drift-plus-penalty is
defined as follows

∆T (Θ(t)) + V E{
t+T−1∑
τ=t

(C(τ)− λS(τ)) |Θ(t)} (21)

where V (≥ 0) is a control parameter representing how
much we emphasize the cost-performance tradeoff (Problem
P1) compared to the system stability.

B. Two-timescale Online Control Algorithm

To design an online control algorithm, an intuitive ap-
proach is to derive the upper bound of the drift-plus-penalty
term, and minimize such upper bound every T time slots.
However, this needs to know the future concatenated queue
backlog Θ(t)=[Yi(t), Qi(t)] over time slot τ∈[t, t+T−1].
Θ(t) depends on the query request arrival process Ai(τ)
and the decision Si(τ), which, however, may not always be
available. Due to the continuous variations of the system,
we therefore approximate the near future queue backlog as
the current value, i.e., Yi(τ) = Yi(t), Qi(τ) = Qi(t) for all
t < τ < t+T−1. This significantly reduces the computational
complexity of designing an online control algorithm. The
following theorem gives an upper bound for such drift-plus-
penalty term. We omit the proof process in this paper due to
the page limit.

Theorem 1: Let V≥0, ε>0, T≥1 and t=kT, τ∈[t, t+T−1].
Assume that there exist certain peak levels for both arrival

Algorithm 1 2TGDA Online Control Algorithm
1: In the beginning of every coarse-grained time slot
t=kT, k=1, 2, . . ., observing system state Qi(t) and Yi(t)
(∀i), determine the control decisions Di,j(t) to minimize
the following problem P3:

min
Di,j(t)

V E{
N∑
i=1

M∑
j=1

max{Di,j(t− T)−Di,j(t), 0}|Θ(t)}

+ V TE{
N∑
i=1

M∑
j=1

Di,j(t)αi(1−
Di,j(t)

Di
)Qi(t)|Θ(t)}

Subject to: Eqs. (4), (5), (6). (22)

2: At each fine-grained time slot τ∈[t, t+T−1], with the
observed Qi(t), Yi(t), and the newly decisions Di,j(t),
decide Si(τ) to minimize the following problem P4:

min
Si(τ)

E{
N∑
i=1

Qi(t) (Ai(τ)− Si(τ)) |Θ(t)}

− E{
N∑
i=1

(Yi(t) + V λ)Si(τ)|Θ(t)}

Subject to: Eqs. (1), (7), (8), (9), (10), (13), (14)

(23)

3: Update the queue backlogs Qi(t), Yi(t) according to
equalities (1) (18) and the newly determined decisions.

and service rates of query requests Amax and Qmax, such
that Ai(τ)≤Amax and Si(τ)≤Qmax,∀i,∀τ . Then, the drift-
plus-penalty can be bounded as follows

∆T (t) + V E{
t+T−1∑
τ=t

(C(τ)− λS(τ)) |Θ(t)}

≤ HT + V E{
t+T−1∑
τ=t

(C(τ)− λS(τ)) |Θ(t)}

+ E{
t+T−1∑
τ=t

N∑
i=1

Yi(t) (ε− Si(τ)) |Θ(t)}

+ E{
t+T−1∑
τ=t

N∑
i=1

Qi(t) (Ai(τ)− Si(τ)) |Θ(t)}

(24)

where H = TN
2 (2Q2

max +A2
max + ε2).

By substituting the definitions of C(τ) and S(τ) into the
right hand side of Eq. (24), we get the following relaxed
problem P2:

minV E{
N∑
i=1

M∑
j=1

max{Di,j(t− T)−Di,j(t), 0}|Θ(t)}

+ V E{
t+T−1∑
τ=t

N∑
i=1

M∑
j=1

Di,j(t)αi(1−
Di,j(t)

Di
)Si(τ)|Θ(t)}

− E{
t+T−1∑
τ=t

N∑
i=1

(Yi(t) + V λ)Si(τ)|Θ(t)}

+ E{
t+T−1∑
τ=t

N∑
i=1

Qi(t) (Ai(τ)− Si(τ)) |Θ(t)}

Subject to: Eqs. (1), (4), (5), (6), (7), (8), (9), (10), (13), (14).

(25)

In the relaxed problem P2, the decision variables, Di,j(t)
and Si(τ), are still coupled with each other in the term of
V E{

∑t+T−1
τ=t

∑N
i=1

∑M
j=1Di,j(t)αi(1− Di,j(t)

Di
)si(τ)|Θ(t)}.

In our online algorithm, we replace Si(τ) with Qi(t) in this
term, so as to enable the decision-making on two timescales.
Our online two-timescale 2TGDA control algorithm is illus-
trated in Algorithm 1. Specifically, at the beginning of each
coarse-grained time slot t, 2TGDA decides how much amount
of input data to be placed on each DC for each query type,
by solving problem P3. Then, at the beginning of each fine-
grained time slot τ∈[t, t+T−1], it determines how many query
requests can be executed simultaneously, by solving problem
P4. At the end of each fine-grained time slot, it updates the
queue backlogs.

IV. PERFORMANCE EVALUATION

A. Simulation setup

20 40 60 80 100 120 140 160
0

200

400

600

800

1000

Time Slot (Hour)

T
h

e
 n

u
m

b
e

r
o

f
q

u
e

ry
 r

e
q

u
e

st
s

Type 1

Type 2

Type 3

Type 4

Fig. 2. 7-day real world traces from [17].

Datasets: To simulate the arrival patterns of query requests,
we use Google cluster traces [17], which contain the informa-
tion about job submissions during a period of 29 days. Each
job is viewed as a query request. These jobs are divided into
four types, as the scheduling class information in this trace
indicates the type of the job and its value ranges from 0 to
3. Specifically, we extract the information of jobs in a 7-day
duration. The extracted traces contain 168 time slots, with each
time slot being 1 hour. Fig. 2 plots the number of requests
every 1-hour, for all query types.

Parameters settings: We consider a GDA system with 30
DCs, which is a common size in typical service companies
[5]. In this 30-DC setup, the uplink and downlink bandwidths
of each DC are all randomly distributed within [1, 10]Gbps.
Initially, for each query type, the amount of input data stored
on each DC are randomly generated as a uniform distribution
within [1, 10]Gb. The ratios of intermediate data to input data
for the four query types (e.g., αi,∀i) are set to be 0.5, 0.7, 0.9,
1.1, respectively. In order to study the impact of weight factor
λ on the performance of our algorithm, we fix the values of
other parameters to be constants, e.g. T = 10, V = 10, ε = 1.

Compared algorithms: We compare our 2TGDA with two
algorithms. The first algorithm aims at minimizing the traffic
cost caused only by intermediate data while maximizing the
throughput, which is also designed based on the Lyapunov
optimization techniques. It is different from our 2TGDA as
it ignores the input data placement, and hence we refer it as

“GDA-wo-dp”. Another algorithm is an online algorithm that
always schedules query requests immediately regardless of the
inter-DC traffic cost, which is referred as “Impatient”.

B. Simulation results

We mainly evaluate three performance metrics: time-
averaged cost, time-averaged throughput and queuing delay.
The simulation results are summarized in Fig. 3. We can
clearly observe that no matter how the weight factor λ
changes, the performance metrics achieved by the Impatient
algorithm will never change. This is because that Impatient
algorithm immediately schedules the query requests, as long
as meeting the link capacity. For the GDA-wo-dp algorithm,
the achieved time-averaged cost increases as the weight factor
λ increases, as shown in Fig. 3(a). The reason is that GDA-
wo-dp also studies a cost-performance problem, where λ
emphasizes the importance of the system throughput maxi-
mization. This eventually enforces GDA-wo-dp to achieve a
higher cost with a larger value of λ. Actually, this is also
why it achieves an increasing throughput as λ increases, as
shown in Fig. 3(b). We can further observe that GDA-wo-
dp guarantees a decreasing value of maximum queuing delay
lmax as λ increases, as shown in Fig. 3(c). This is mainly
because that a larger value of λ leads to a larger throughput,
making fewer query requests to be blocked. An interesting
observation is that the time-averaged cost achieved by our
2TGDA algorithm decreases as the increasing of λ which is
actually the weight factor indicating the importance of system
throughput maximization. The main reason is that our 2TGDA
algorithm tactfully considers the input-data placement, saving
the traffic cost for intermediate data. Moreover, more cost
can be saving if there are more concurrent query requests.
So, that is why 2TGDA achieves an increasing time-averaged
throughput with the increasing of the weight factor λ. Finally,
with the increasing of λ, the maximum queuing delay lmax
achieved by our 2TGDA algorithm can be controlled slowly
increase at the beginning, fast increase in the middle, and
finally close to a stable value.

The above results show that our 2TGDA algorithm can
simultaneously reduce the traffic cost, improve the system
throughput, and provide a maximal delay guarantee for each
query request, by choosing a sufficient large value of the
weight factor λ (e.g., λ = 105).

V. RELATED WORK

Existing work in geo-distributed data analytics can be di-
vided into two categories based on their objectives. Regarding
the inter-DC traffic cost, Vulimiri et al. solve an integer linear
program to optimize the query execution plan and aggressively
cache the results of prior queries for the subsequent queries
[6]. Pixida is a scheduler that takes advantage of the graph
partition method to minimize the inter-DC data transfers [9].
The above solutions do not consider any performance issues
related to the geo-distributed data analytics queries, and also
ignore the relationship between input data and the intermediate
data generated by many queries. Regarding the job completion

0 2 4 6 8
7.26

7.282

7.304

7.326

7.348

7.37

7.392

7.414

7.436

7.458

7.48
x 10

7

Ti
m

e−
av

er
ag

ed
 c

o
st

log(λ) (T=10,V=10, ε=1)

0 2 4 6 8
0.05

0.875

1.7

2.525

3.35

4.175

5

5.825

6.65

7.475

8.3
x 10

7

Ti
m

e−
av

er
ag

ed
 c

o
st

2TGDA

GDA−wo−dp

Impatient

(a) Time-averaged cost vs. λ

0 2 4 6 8
670

673

676

679

682

685

688

691

694

697

700

Ti
m
e−
av
er
ag
ed
 t
h
ro
u
g
h
p
u
t

log(λ) (T=10,V=10, ε=1)

0 2 4 6 8
0

75

150

225

300

375

450

525

600

675

750

Ti
m
e−
av
er
ag
ed
 t
h
ro
u
g
h
p
u
t

2TGDA

GDA−wo−dp

Impatient

(b) Time-averaged throughput vs. λ

0 2 4 6 8
1

1.21

1.42

1.63

1.84

2.05

2.26

2.47

2.68

2.89

3.1
x 10

4

M
ax

im
u

m
 q

u
eu

in
g

 d
el

ay

log(λ) (T=10,V=10, ε=1)

0 2 4 6 8
2.3

2.87

3.44

4.01

4.58

5.15

5.72

6.29

6.86

7.43

8
x 10

4

M
ax

im
u

m
 q

u
eu

in
g

 d
el

ay2TGDA

GDA−wo−dp

Impatient

(c) Maximum queuing delay vs. λ

Fig. 3. The performance of (a) time-averaged cost, (b) time-averaged throughput, (c) maximum queuing delay, for different methods under different values
of weight factor λ.

time, Iridium optimizes the placement of both the input data
and reduce task [5]. Hung et al. propose SWAG, which
leverages a greedy job scheduling algorithm to optimize the
average job completion time [10]. CLARIENT is a recently
proposed solution for reducing the query completion time,
which use heuristics to jointly selects the placements and
schedules of tasks [7]. However, all of they make no attempt
to maximize the number of successfully served query requests.
Moreover, they rely on assumptions that are often unrealistic
— such as analytical queries are repeated or known in advance
(e.g., [5, 7]), or each DC serves one task per second [10].

VI. CONCLUSIONS

This paper studies a cost-performance problem for geo-
distributed data analytics, with the aim of minimizing the
inter-DC traffic cost as well as maximizing the number of
query requests that can be successfully served with guaranteed
queuing delay. To this end, we take advantage of Lyapunov
optimization to design a two-timescale online control algo-
rithm. Without requiring a prior knowledge of subsequent
query requests, this algorithm makes online decisions on both
the input data placement and the query request admission.
We use trace-driven simulation to verify that our algorithm
is effective in arbitrating the cost-performance tradeoff and
guaranteeing a maximal queuing delay for each query request.

ACKNOWLEDGMENT

This work is supported by the National Key Research
and Development Program of China No. 2016YFB1000205,
the State Key Program of National Natural Science of
China (Grant No. 61432002), the National Science Founda-
tion for Distinguished Young Scholars of China (Grant No.
61225010), NSFC Grant Nos. 61272417, 61300189, 61370199
and 61672379; Specialized Research Fund for the Doctoral
Program of Higher Education (Grant No. 20130041110019),
and the Fundamental Research Funds for the Central Uni-
versities (Grant. DUT15QY20); the Dalian High-level Talent
Innovation Program (No. 2015R049), and the JSPS KAKENHI
under Grant 16F16349.

REFERENCES

[1] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu et al., “B4: Experience with a
globally-deployed software defined wan,” in Proc. of ACM SIGCOMM,
2013.

[2] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri,
and R. Wattenhofer, “Achieving high utilization with software-driven
wan,” in Proc. of ACM SIGCOMM, 2013.

[3] A. Gupta, F. Yang, J. Govig, A. Kirsch, K. Chan, K. Lai, S. Wu, S. G.
Dhoot, A. R. Kumar, A. Agiwal et al., “Mesa: Geo-replicated, near
real-time, scalable data warehousing,” in Proc. of the VLDB, 2014.

[4] A. Rabkin, M. Arye, S. Sen, V. S. Pai, and M. J. Freedman, “Aggregation
and degradation in jetstream: Streaming analytics in the wide area,” in
Proc. of USENIX NSDI, 2014.

[5] Q. Pu, G. Ananthanarayanan, P. Bodik, S. Kandula, A. Akella, P. Bahl,
and I. Stoica, “Low latency geo-distributed data analytics,” in Proc. of
ACM SIGCOMM, 2015.

[6] A. Vulimiri, C. Curino, P. B. Godfrey, T. Jungblut, J. Padhye, and
G. Varghese, “Global analytics in the face of bandwidth and regulatory
constraints,” in Proc. of USENIX NSDI, 2015.

[7] R. Viswanathan, G. Ananthanarayanan, and A. Akella, “Clarinet: Wan-
aware optimization for analytics queries,” in Proc. of USENIX OSDI,
2016.

[8] R. Ananthanarayanan, V. Basker, S. Das, A. Gupta, H. Jiang, T. Qiu,
A. Reznichenko, D. Ryabkov, M. Singh, and S. Venkataraman, “Photon:
fault-tolerant and scalable joining of continuous data streams,” in Proc.
of ACM SIGMOD, 2013.

[9] K. K. M. M. N. Preguiça and R. Rodrigues, “Pixida: Optimizing data
parallel jobs in bandwidth-skewed environments,” in Proc. of VLDB
Endowment, 2015.

[10] C.-C. Hung, L. Golubchik, and M. Yu, “Scheduling jobs across geo-
distributed datacenters,” in Proc. of ACM SoCC, 2015.

[11] “Measuring internet congestion: A preliminary report,” https://ipp.mit.
edu/sites/default/files/documents/Congestion-handout-final.pdf,2014.

[12] W. Deng, F. Liu, H. Jin, and C. Wu, “Smartdpss: cost-minimizing multi-
source power supply for datacenters with arbitrary demand,” in Proc. of
IEEE ICDCS, 2013.

[13] Y. Yao, L. Huang, A. Sharma, L. Golubchik, and M. Neely, “Data
centers power reduction: A two time scale approach for delay tolerant
workloads,” in Proc. of IEEE INFOCOM, 2012.

[14] D. P. Bertsekas, D. P. Bertsekas, D. P. Bertsekas, and D. P. Bertsekas,
Dynamic programming and optimal control. Athena Scientific Belmont,
MA, 1995, vol. 1, no. 2.

[15] M. J. Neely, “Stochastic network optimization with application to
communication and queueing systems,” Synthesis Lectures on Commu-
nication Networks, vol. 3, no. 1, pp. 1–211, 2010.

[16] M. J. Neely, A. S. Tehrani, and A. G. Dimakis, “Efficient algorithms
for renewable energy allocation to delay tolerant consumers,” in Proc.
of IEEE SmartGridComm, 2010.

[17] C. Reiss, J. Wilkes, and J. Hellerstein, “Google cluster-usage traces,”
http://code.google.com/p/googleclusterdata.

