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Abstract—Currently, parallel data transmissions in large-scale
datacenter networks are becoming increasingly crucial to appli-
cation performance. Despite fine-grained control by SDN-enabled
networks, some transmission errors, such as misconfigurations,
will inevitably occur, resulting in high-level forwarding policies
that cannot be conformed to at the data plane. Therefore, flow
trajectory detection is very important for allowing datacenter
network operators to troubleshoot problems and ensure that all
traffic flows are running on the correct paths. However, existing
solutions detect flow trajectories by recording the entire path of
each packet. These methods are prone to imposing significant
overheads in terms of both the number of switch entries and the
amount of packet header space required. To considerably reduce
this overhead, we present FlowTracer, an efficient flow trajectory
detection solution, which can sample a path one link at a time
instead of recording the entire path. FlowTracer consists of a
method of probabilistic packet tagging and a method of trajec-
tory reconstruction. In this paper, we first introduce the method
of probabilistic packet tagging, which is performed in OpenFlow-
enabled switches with very few switch entries and limited packet
header space by means of double VLAN tags. Then, we explore
the topological structure of datacenter networks and propose
our method of trajectory reconstruction, which is performed at
end hosts and achieves rapid convergence. Finally, we evalu-
ate FlowTracer on a 48-ary fat-tree topology. The results show
that FlowTracer can detect trajectories quickly while placing far
smaller demands on both switch entries and packet header space
than state-of-the-art techniques.

Index Terms—Datacenter, SDN, trajectory detection, proba-
bilistic packet tagging, trajectory reconstruction.

I. INTRODUCTION

DATACENTER networks are currently essential for car-
rying traffic for a variety of applications, from online
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Internet services, e.g., Web searches, social media, and
online commerce, to distributed computing services, e.g.,
MapReduce, Spark and Pregel. The parallel data transmissions
in datacenter networks are thus becoming increasingly crucial
to application service performance. Although software-defined
networking (SDN) [1] has emerged as a key technology
for making transmission management easier and more fine-
grained [2], experience shows that transmission errors will
inevitably occur [3], [4] due to two main causes. The first
is unexpected switch port failure [5], [6], causing traffic flow-
ing through the affected switch to be forwarded to another port
that belongs to a non-shortest path. The second cause is con-
trol plane transaction conflict [7] or unsynchronized controller
instances [8], which also cause traffic to be forwarded along
incorrect paths. These transmission errors result in high-level
forwarding policies (expressed at the control plane) that cannot
be conformed to at the data plane. Therefore, it is very impor-
tant for datacenter network operators to troubleshoot problems
and ensure that all traffic is running on the correct paths.

However, trajectory detection in large-scale SDN-enabled
datacenter networks poses severe challenges. Conventional
tools, e.g., ping, traceroute, SNMP, configuration version
control, netperf/iperf and sFlow/NetFlow, are all insuffi-
cient to provide insight into the behavior of SDN-enabled
networks [9]. At this point, prior works have proposed consid-
erable trajectory detection solutions, which can be categorized
into the following two folds:

Firstly, some of the existing solutions [10]–[12] focus on
the control plane. For example, SDN traceroute [10] collects
the switch’s packet-in message at each hop and reconstructs
the trajectory at the controller. VeriFlow [11] analyzes the
configurations pushed to network devices to infer forwarding
paths. NetSight [12] forces all switches to send postcards when
traffic passes through them and introduces a history plane for
trajectory reconstruction. We argue that solutions of this kind,
based on after-the-fact analysis at a non-data plane, require
excessive out-of-band data collection.

Secondly, other researchers use the in-band technology at
the data plane [13]–[15]. For example, Jeyakumar et al. [13]
introduces a tiny packet program (TPP) interface to enable
end hosts to collect the packet histories of each switch. But
it is not compatible with standard SDN frameworks, e.g.,
OpenFlow [16]. There also exist OpenFlow-compatible tech-
niques. For instance, CherryPick [17] attempts to identify
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each trajectory by sampling only two links, which, how-
ever, is insufficient in the case of many detours (more
than 10 hops). As for other OpenFlow-compatible techniques
like PathletTracer [14] and PathQuery [15], they imprint
each packet with compressed path information and can still
fail in large-scale datacenter with large number of paths,
because: 1) they need to reserve substantial entries in the
switches for trajectory detection, while these entries are lim-
ited and expensive in TCAM-based switches [18]; 2) they
may require excessive packet header space (far more than
24 bits), especially when the packets traverse non-shortest
paths.

Bearing the above points in mind, we ask one question:
what happens if we try to reformulate the trajectory detec-
tion problem by sampling paths one link at a time rather
then recording entire paths? In fact, a meaningful trajectory
detection method should focus on the detection of trajec-
tories corresponding to large flows because of their higher
impact on performance [19], [20]. Note that a flow can be
regarded as a sequence of packets with the same 5-tuple. If,
upon receipt of a packet, each switch chooses to sample an
adjacent link for storage in the packet field with some prob-
ability p, then every packet received by the end host will
arrive carrying the information of one of the links it traversed.
After sufficient packets have been sent, the end host will
have received at least one sample for every link on the flow
trajectory.

FlowTracer, an in-band trajectory detection technique, is
designed based on the above considerations, with the goal of
reducing the overhead in terms of both switch entries and
packet header space. In summary, we make the following
contributions:

1) We introduce a method of probabilistic packet tagging
that is performed in OpenFlow-enabled switches with
very few switch entries and limited packet header space
by means of double VLAN tags.

2) We explore datacenter topologies and propose a method
of path reconstruction that is performed at end hosts and
achieves rapid convergence. A theoretical analysis of its
performance is presented.

3) We implement FlowTracer and evaluate it on a 48-
ary fat-tree topology. The results show that FlowTracer
can detect trajectories quickly while placing far smaller
demands on both switch entries and packet header space
than state-of-the-art techniques.

The remainder of this paper is organized as follows.
Section II presents the motivation for and challenges facing
the problem of trajectory detection in large-scale SDN-enabled
datacenter networks. In Section III, we present our method of
probabilistic packet tagging, which is performed in OpenFlow-
enabled switches. In Section IV, we discuss our rapidly
convergent method of path reconstruction, which is performed
at end hosts. We discuss the current limitations of FlowTracer
and relevant assumptions in Section V. In Section VI, we eval-
uate and analyze the performance of FlowTracer. Section VII
summarizes related work, and we conclude the paper in
Section VIII.

Fig. 1. The switch entry overhead of PathletTracer for different cases of
packet detours in a 48-ary fat-tree topology.

II. MOTIVATION AND CHALLENGES

Detecting trajectories by recording the entire path in
each packet offers both robustness and extremely rapid
convergence; however, it has several serious limitations.
Principal among these is the infeasible high overhead incurred
by appending the path information to packets in flight.
Moreover, since the length of a path is not known a priori,
it is impossible to ensure that there will be sufficient unused
space in a packet for its complete trajectory.

For techniques of this kind, all the path information is com-
pressed and stored in a codebook, in which each path has a
unique identifier. Additionally, each packet needs to record the
path identifier in its header space. On the one hand, the number
of paths determines the size of the identifier and can further be
used to determine the bit length of the packet header. On the
other hand, the number of paths also determines the number
of switch entries used for matching operations. More impor-
tantly, packet detours complicate the tracing task due to the
vast increase in the number of possible paths in a datacen-
ter network as the path length increases. Since the overheads
in terms of both switch entries and packet header space are
tightly coupled with the network scale, existing solutions that
may work well in smaller networks may not necessarily scale
to the case of large-scale SDN-enabled datacenter networks.

To more intuitively illustrate this point, we implemented the
state-of-the-art technique PathletTracer [14] in a 48-ary fat-tree
topology (the detailed topology of the datacenter network is
introduced in Section VI-A). Since the technique depends on
the layer in which the switch resides, we plot the number of
switch flow rules for PathletTracer in each layer separately.
Note that the design of PathletTracer is independent of the
routing mechanism used in the network. Thus, it can be seen
that the switch entry overhead is caused by trajectory detection
rather than flow forwarding. As illustrated in Fig. 1, the num-
ber of required flow rules in ToR switches for tracing 7-hop
paths considerably outstrips the size of TCAM. As the number
of hops per path increases, the demand increases nonlinearly.
The flow rules that cannot be stored in TCAM must instead
be stored in SRAM or even DRAM, at the cost of supporting
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Fig. 2. The packet header space overhead of PathletTracer for different cases
of packet detours in a 48-ary fat-tree topology.

less efficient lookups. Scaling up the network (e.g., from a 48-
ary fat-tree topology to a 64-ary fat-tree topology) imposes a
similar limitation in terms of flow rules since this also causes
a vast increase in the number of paths. Therefore, the ques-
tion of how to detect trajectories in a large-scale datacenter
network while placing far fewer demands on switch entries is
a major challenge.

In addition to the switch entry demand, the demand on
packet header space presents another challenge. As illustrated
in Fig. 2, the packet header space required for tracing a 9-hop
path is incompatible with current mainstream technology, e.g.,
Q-in-Q, VXLAN and GRE. As the network scale and the num-
ber of hops increase, the problem of space exhaustion will
become more serious since the size of the path identifiers will
become much larger.

The main issue faced by PathletTracer, leading to an exces-
sive number of flow rules and high header space consumption,
is that the number of equivalent paths is considerable and
will significantly increase as the network scale increases or if
the packets do not traverse shortest paths (e.g., the non-5-hop
cases in these figures). To uniquely identify a vast number
of paths, long path identifiers are unavoidably required. To
tag these identifiers, many flow rules are also unavoidably
required. Thus, existing solutions such as PathletTracer are not
practical due to their significant overheads in terms of switch
entries and header space.

To reduce both the switch overhead and the per-packet
header space requirement, we can sample paths one link at
a time instead of recording entire paths. A single static “link”
field can be reserved in the packet header; this field need only
be large enough to hold the information for a single link (i.e.,
its switch pair and its distance to the receiver). Upon receiv-
ing a packet, each switch chooses to sample an adjacent link
for storage in the “link” field with some probability p. After
sufficient packets have been sent, the receiver (end host) will
have received at least one sample of every link on the path.
With this approach, the situation can be very different. On the
one hand, since each packet records only the information of
only one link instead of the complete path, the overhead in
terms of the packet header space will remain fixed as both the
network scale and the number of hops increase. On the other

Fig. 3. Probabilistic packet tagging for link sampling. All packets of the
flow traverse the path SRC-E1-A1-C2-A3-E4-DST. Each link is sampled with
a fixed probability p, and each packet records at most one link.

hand, since each link is sampled at a certain probability, only a
few flow rules are needed on each switch for probability oper-
ations, thus eliminating the large number of flow rules used
for matching operations. The overhead in terms of the number
of switch entries will also remain fixed as the network scale
and the number of hops increase. The details of the proposed
method of probabilistic packet tagging (i.e., link sampling)
are introduced in Section III, and the details of the proposed
method of path reconstruction (i.e., leveraging link samples to
form complete trajectories) are introduced in Section IV.

III. PROBABILISTIC PACKET TAGGING

In this section, we describe the link sampling process
in OpenFlow-enabled switches. To this end, we record
the information on one link in the form of a three-tuple
<head_switch_id, tail_switch_id, distance>. head_switch_id
and tail_switch_id indicate the head switch and tail
switch, respectively, of the link; thus, <head_switch_id,
tail_switch_id> is the corresponding switch pair. distance
denotes the distance between the link and its receiver. The
topology of a datacenter network is typically known and
permanent. Thus, head_switch_id and tail_switch_id can be
uniquely determined in accordance with the datapath identifier
(DPID) values of OpenFlow-enabled switches.

Consider the example shown in Fig. 3. The receiver (end
host of E4) uses the link information in the marked packets to
trace the path back to the sender (end host of E1). The path
is the ordered list of links between E1 and E4: <E1, A1, 4>,
<A1, C2, 3>, <C2, A3, 2>, <A3, E4, 1> and <E4, null, 0>.
We constrain the sampling probability p to be identical for
each link. Since the links are arranged serially, the probabil-
ity that a packet will be marked with a link and then left
unchanged by all downstream switches is a strictly decreasing
function of the distance to the receiver. This situation can be
formulated as a joint probability model. For clarity of explana-
tion, we define the event M0 as the case in which the receiver
receives a packet marked with the link that is 0 hops away
(i.e., distance is 0). The probability of M0 is

P(M0) = p, (1)

which can be easily proven. Based on this probability, we can
derive

P(M1) = P(T1∩!T0) = P(T1)(1 − P(T0)) = p(1 − p), (2)
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where the events T1 and T0 are defined as the sampling of
the link at a distance of 1 and the sampling of the link at a
distance of 0, respectively. The event M1 is defined as the case
in which the receiver receives a packet marked with the link
that is 1 hop away (i.e., distance is 1). Note that a sample can
be replaced by any or all downstream switches. Therefore,
the events T1 and T0 are mutually independent, while the
events M1 and M0 are mutually exclusive. Similarly, it can be
inferred that

P(Mn−1) = P(Tn−1∩!Tn−2 ∩ · · · ∩!T1∩!T0)
= P(Tn−1)(1 − P(Tn−2)) · · · (1 − P(T1))

× (1 − P(T0))
= p(1 − p)n−1, (3)

where n is the number of switches on the path. The event
Mn−1 is defined as the case in which the receiver receives
a packet marked with the link that is n − 1 hops away (i.e.,
distance is n − 1). To further clarify the above mappings, let
us return to the example depicted in Fig. 3, where n is 5.
If the link sampling probability p is 0.2, then the probability
of receiving a packet marked with the link <E1, A1, 4> is
0.08192, the corresponding probability for the link <A1, C2,
3> is 0.1024, the probability for the link <C2, A3, 2> is
0.128, the probability for the link <A3, E4, 1> is 0.16, and
the probability for the link <E4, DST , 0> is 0.2. The con-
vergence time of link sampling is equivalent to the number
of packets that the receiver must observe to reconstruct the
path. For the case of n = 5 and p = 0.2, the expected num-
ber of packets needed to reconstruct the path is bounded by
19. The theoretical analysis is presented in Section IV-A. We
also present a method of reducing the convergence time. This
method is discussed in Section IV-B.

A. Probabilistic Packet Tagging Algorithm

The basic idea of probabilistic packet tagging is that
switches will probabilistically write three-tuples of the form
<head_switch_id, tail_switch_id, distance> into packets dur-
ing forwarding. For this purpose, we need to reserve two static
fields, head_switch_id and tail_switch_id, in each packet to
represent the switch pair at each end of a sampled link as
well as an additional small field to represent the distance of
the sampled link from the receiver.

To implement the link sampling procedure on switches, we
design three types of switch operations, as follows:

Op1: reset head_switch_id to the current switch, and reset
distance to 0.

Op2: set tail_switch_id to the current switch, and increase
distance by 1.

Op3: increase distance by 1.
Upon receiving a packet, a switch generates a random num-

ber in the range [0, 1]. When this random number is less than
the predefined probability p, the switch chooses to mark the
packet and will execute Op1. Otherwise, if the value of the
distance field is already zero, this indicates that the packet was
marked by the previous switch. In this case, the switch will
execute Op2. By writing its own DPID into the tail_switch_id
field, it represents that the link between itself and the previous

Fig. 4. Two illustrative cases of the link sampling mechanism.

Fig. 5. Packet header fields exploited by FlowTracer.

switch has been sampled. Finally, if the switch chooses not to
mark the packet (the random number is in the range (p, 1]),
then it will execute Op3.

Fig. 4 shows two illustrative cases of the link sampling
mechanism. For the case shown in Fig. 4(a), switch E1
executes Op1, switch A1 executes Op2, and the remain-
ing (downstream) switches execute Op3. The receiver thus
receives a packet marked with the link <E1, A1, 4>. The
receiver therefore knows that the packets of this flow traverse
E1-A1 and that this link is 4 hops away. For the case shown
in Fig. 4(b), switches E1 and A1 both execute Op1, switch
C2 executes Op2, and the remaining (downstream) switches
execute Op3. The receiver therefore knows that the packets of
the flow traverse A1-C2 and that this link is 3 hops away. In
practice, these two cases correspond to the experiences of two
packets on the same flow path. It can be seen that the link
information is sampled only between participating switches.
When a packet arrives at the receiver, its distance field repre-
sents the number of hops traversed since the link was sampled.
The pseudocode that is executed on the switches is shown in
Algorithm 1.

B. Packet Header Space Encapsulation

FlowTracer employs the technology of double VLAN tags
(Q-in-Q, 802.1ad, 0x88a8) to store the switches’ DPID val-
ues. When a packet is sent from the sender’s network protocol
stack, we assume that it is encapsulated with a standard layer 3
Ethernet header, where the initial TTL value is set to 63. When
the packet traverses a switch in the flow path, it will be encap-
sulated with an outer skin of double VLAN tags. Each VLAN
tag, of 12 bits in length, is sufficient to store one switch’s
DPID.

As illustrated in Fig. 5, we let one of the VLAN tags store
head_switch_id and the other store tail_switch_id. The 64−ttl
field is used to track the distance value. A 12-bit VLAN tag
can theoretically be used to identify 4,096 unique switches,
and the decrement operation can be executed 63 times on the
TTL field. Therefore, FlowTracer offers sufficient support for
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Algorithm 1: Probabilistic Packet Tagging
Input: packets of flow W;

link sampling probability p;
switch’s unique identifier id;

Output: packets with updated header space;
1 foreach packet w in W do
2 let x be a random number from [0,1];
3 if x < p then
4 write id into w.head_switch_id;
5 write 0 into w.distance;

6 else
7 if w.distance = 0 then
8 write id into w.tail_switch_id;

9 increment w.distance by 1;

an 48-ary fat-tree topology and allows the packets of a flow
to traverse non-shortest paths of at most 64 hops, with many
detours.

C. Standard SDN Interface Adaptation

For compatibility with the standard SDN interface
OpenFlow [21], we implement Algorithm 1 with off-the-shelf
SDN switches. For a commodity SDN switch, e.g., Pica8
P-3297, the ASIC typically offers the line rate for double
VLAN tags, i.e., Q-in-Q. FlowTracer is implemented with only
three table entries on the OpenFlow platform.

As illustrated in Fig. 6, we employ the group bucket
<bucket-id:1> to execute Op1. When this bucket is selected
with probability p, the switch pushes its own DPID into the
first VLAN field and writes a value of 64 into the TTL field.
If the value of the TTL field is already 64, we employ the flow
entry <flow-id:1> to execute Op2. In this case, the value of
the first VLAN field was set by the previous switch. The cur-
rent switch will push its own DPID into the second VLAN
field and decrement the TTL field by 1. Finally, we employ the
group bucket <bucket-id:2> to execute Op3. When this bucket
is selected with probability 1-p, the switch simply decrements
the TTL field by 1. Through this mechanism, link sampling can
be incrementally performed on OpenFlow switches. Certainly,
this mechanism allows considerable TCAM capacity to be
saved for the switches in the datacenter network. The con-
sumption of additional packet header space is also limited to
double VLAN tags.

While each marked packet carries only one link sample from
the path it has traversed, by combining a modest number of
such packets, a receiver can reconstruct the entire path. Since
the receiver knows at which switch the sender resides, the
receiver can use these marked packets to reconstruct the path
back to the sender.

A general method of path reconstruction can be easily
devised: the receiver continues to track marked packets until
all links are identified. Then, the trajectory can be detected
by sequentially connecting the links in accordance with their
distance values. However, this general method is prone to
slow convergence, especially when the packets traverse a non-
shortest path with many detours. To address this shortcoming,
we explore the relevant network topologies and propose a

Fig. 6. The OpenFlow implementation of probabilistic packet tagging. Each
switch is installed with two flow table entries and one group table entry.

rapidly convergent method of path reconstruction based on
this general method. The general method and the advanced
method are both introduced in Section IV.

IV. RAPIDLY CONVERGENT PATH RECONSTRUCTION

In this section, we show how the end host reconstructs
the paths based on the received marked packets. For nota-
tional purposes, we assume that the receiver has a map of
its upstream switches, denoted by G. G is a directed acyclic
graph (DAG) with the receiver as the root. This assump-
tion is reasonable and practical. It is easy to obtain such
a map of upstream switches for a receiver. In addition, the
receiver typically knows at which switch the sender resides.
This information rarely changes in a datacenter network. The
end host maintains a map <[Flow[Packet]], G> for the flows
in G. Before presenting the rapidly convergent method of path
reconstruction, we will first discuss how the general method
works.

A. General Path Reconstruction

Intuitively, for path reconstruction, the receiver will use the
upstream switch map G as a roadmap and perform a breadth-
first search from the root. Let the set of link fields marked
with a distance d be denoted by [Flow [Packet ]]d (not includ-
ing duplicates). At distance 1, the receiver enumerates all
switches that are one hop away from itself in G, checks which
of these switches have DPID values that match with the link
fields in [Flow [Packet ]]d , and stores the matching DPID val-
ues in set S1. Therefore, S1 is the set of switches that are
one hop away from the receiver in the reconstructed path
graph. Similarly, Sd denotes the set of switches at distance
d from the receiver in the reconstructed path graph. Once the
receiver finds the DPID values at which the senders reside,
with the maximum distance, the complete path graph can be
determined. The pseudocode that is executed at the end host
is shown in Algorithm 2.

Performance Analysis: Since FlowTracer is based on a prob-
abilistic method, the expected number of packets required for
tracing a path should be analyzed.

As described in Section III, if we constrain the sampling
probability p to be identical for each link, then the probability
of receiving a packet marked with a sampled link that is d
hops away is p(1 − p)d . This function is monotonic in the
distance from the receiver. The events of receiving packets
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marked with different links are mutually exclusive and inde-
pendent. Now, we will formulate the general problem of path
reconstruction as a special case of coupon collection with dif-
ferent collection probabilities. The coupon collection problem
is one of the most famous problems in probability theory [22].
The aim of the coupon collection problem is to answer the fol-
lowing question: Suppose that there are n types of coupons,
that each type of coupon has the same probability of acqui-
sition, and that the supply of coupons is unlimited. If we
have acquired each type of coupon at least once, how many
coupons have been collected already? In contrast to the clas-
sical version, the special case of interest in FlowTracer is as
follows: Supposing that there are n types of links sampled in
the packets, a link sample of the j th type will be obtained
with probability p(1 − p)n−j .

Let W be the number of packets required for tracing an
n-hop path. The expectation value of W is expressed as
follows:

E (W ) =
∑

k

kP(W = k)

=
∑

k

k(P(W ≥ k) − P(W ≥ k + 1))

=
∑

k=1

kP(W ≥ k) −
∑

k=0

kP(W ≥ k + 1)

=
∑

k=1

kP(W ≥ k)

−
∑

k=1

(k − 1)P(W ≥ k) =
∑

k=1

P(W ≥ k). (4)

Since the probability of W ≥ k can be expressed as

P(W ≥ k) =
∑

J={j0,...,ji},J⊆{0,...,n−1},J �=∅

(−1)|J |+1

×
⎛

⎝1 −
∑

j∈J

pj

⎞

⎠
k−1

, k ≥ 2,P(W ≥ 1) = 1,

(5)

if we substitute equation (5) into (4), the expectation value
can be expressed as

E (W ) =
∑

k=1

∑

J={j0,...,ji},J⊆{0,...,n−1},J �=∅

(−1)|J |+1

×
⎛

⎝1 −
∑

j∈J

pj

⎞

⎠
k−1

= 1 +
∑

J={j0,...,ji},J⊆{0,...,n−1},J �=∅

(−1)|J |+1

× 1 − ∑
j∈J pj∑

j∈J pj
. (6)

Because the probability of receiving a sample is smaller
the farther away the corresponding link is from the receiver,
the time to convergence is dominated by the time required to
receive a sample from the farthest switch. For convenience of
analysis, we consider the following special case to simplify
equation (6): Suppose that the probability of obtaining the

information for each link is identical and equal to p∗ = p(1−
p)n−1. Since

p∗ = p(1 − p)n−1 ≤ pj = p(1 − p)j ,∀j ∈ [0,n − 1], (7)

the expected number of packets required for tracing an n-hop
path satisfies

E(W ) < E∗(W ) =

n−1∑

i=0

1

p∗(n − i)
=

1

p∗
n−1∑

i=0

1

n − i
=

1

p∗Hn ,

(8)

where Hn is the n-th harmonic number. From the asymp-
totic behavior of the harmonic numbers, the following can
be obtained:

E (W ) < E∗(W ) =
1
p∗Hn

=
1

np∗

(
n log n + γn +

1
2

+ O
(

1
n

))
, (9)

where γ ≈ 0.5772 is the Euler-Mascheroni constant. Now,
we can use the Markov inequality to bound the desired
probability:

P
(

W ≥ c
p∗Hn

)
< P

(
W ∗ ≥ c

p∗Hn

)
≤ 1

c
. (10)

We can also obtain the variance of W ∗, which satisfies

Var(W ∗) =
n∑

i=1

1 − ip∗

i2p∗2
<

n∑

i=1

1
i2p∗2

=
1

p∗2

n∑

i=1

1
i2

<
π2

6p∗2
=

π2

6p2(1 − p)2n−2
. (11)

Then, we can use the Chebyshev inequality to bound the other
desired probability:

P
(∣∣∣∣W − 1

p∗Hn

∣∣∣∣ ≥
c
p∗

)
< P

(∣∣∣∣W
∗ − 1

p∗Hn

∣∣∣∣ ≥
c
p∗

)

≤ π2

6c2
. (12)

Finally, we can attempt to determine a minimal upper bound
on the expected number of required packets. According to
equation (9), the expectation value can be expressed as

E (W ) <
1

np∗

(
n log n + γn +

1
2

+ O
(

1
n

))

=
1

np(1 − p)n−1

(
n log n + γn +

1
2

+ O
(

1
n

))

≈ 1
np(1 − p)n−1

n(lnn + O(1)) ≈ n lnn
np(1 − p)n−1

=
lnn

p(1 − p)n−1
. (13)

Taking the second derivative of the denominator, we find

d2

dp

[
p(1 − p)n−1

]
> 0. (14)

Since the denominator is convex and the numerator is con-
stant, the upper bound on the expectation value expressed
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Algorithm 2: General Path Reconstruction
Input: map <[Flow[Packet]], G>;

switches at which the senders reside R;
end-host receiver v;

Output: path graph of flow packets in G;
1 let G be a DAG with its root at v;
2 let Sd be empty for 1 ≤ d ≤ max(distance);
3 foreach d in [1, max(distance)] do
4 foreach DPID of switch s ∈ [Flow [Packet ]]d do
5 insert s into Sd ;

6 if DPID of switch s ∈ R then
7 max(distance)s−v = d ;

8 extract the path graph from (S1,Sd , . . . ,R);

in (13) should have an extremum within p ∈ [0, 1]. Then,
let the first derivative of the denominator be 0:

d
dp

[
p(1 − p)n−1

]
= 0. (15)

When p = 1
n , the denominator is maximal for any n. The

expectation value of W has the minimal upper bound under
this condition.

Theorem I: For a path of n hops in a datacenter network,
the link sampling probability p of FlowTracer should be set
to 1

n such that the upper bound on the expected number of
required packets will have the minimal value. The variance of
the expectation value is less than π2/6p2(1 − p)2n−2. The
expectation value will be greater than cHn/1(1 − p) with a
probability of less than 1/c. The expectation value will lie
outside [c/p(1−p)−Hn/p(1−p), c/p(1−p)+Hn/p(1−p)]
with a probability of less than π2/6c2.

In a fat-tree topology, the equal-cost shortest paths between
any two end hosts can be up to 5 hops in length, e.g., the
path E1-A1-C2-A3-E4 in Fig. 3. Theoretically, tracing a path
with n = 5 is expected to require at most 52 packets if the
probability is set to 1

2 , at most 20 packets if the probability
is set to 1

5 , and at most 25 packets if the probability is set
to 1

10 . By contrast, for a path with detours such that n = 7,
tracing this path is expected to require at most 38 packets if
the probability is set to 1

5 , at most 35 packets if the proba-
bility is set to 1

7 , and at most 37 packets if the probability
is set to 1

10 . Although FlowTracer cannot trace a trajectory
from a single packet, with the typical high-speed bandwidth
of datacenters [23], [24], the required number of packets can
be delivered to the destination almost instantaneously.

In practice, the determination of the sampling probabil-
ity (also called the bucket weight) typically relies on the
real topology and the flow distribution. For an operator, it
is important to ensure that most flows will be traced with
good performance (i.e., few required packets). Thus, the first
thing to consider is the hop count of the flows that occupy
the majority of the network. For some symmetrical topologies
such as fat trees, under the assumption that all leaf servers are
performing TCP transmission with each other and the rates of
transmission are identical, 5-hop flows must account for the
vast majority for two reasons: (1) detours do not, in fact, occur
very often, and (2) the rate of interpod transmission is much

Algorithm 3: Accelerated Path Reconstruction
Input: map <[Flow[Packet]], G>;

switches at which the senders reside R;
end-host receiver v;

Output: path graph of flow packets in G;
1 let G be a DAG with its root at v;
2 let Sd be empty for 1 ≤ d ≤ max(distance);
3 foreach d in [1, max(distance)] do
4 switch link type do
5 case TOR-AGG:

6 case CORE-AGG:
7 foreach DPID of switch s ∈ [Flow [Packet ]]d do
8 insert s into Sd ;
9 search for the shortest path to the next-hop switch

s′;
10 insert s′ into Sd−1;

11 case Others:

12 if DPID of switch s ∈ R then
13 max(distance)s−v = d ;

14 extract the path graph from (S1,Sd , . . . ,R);

greater than that of intrapod transmission. Given these consid-
erations, it is desirable to set the probability on the basis of
5-hop paths.

Although detours rarely occur, when they do, the general
method of path construction may take a long time to con-
verge. Due to detours, packets will traverse paths containing
many more links. In turn, the number of packets that the
receiver must observe to reconstruct such a path will be much
greater. In fact, the expected number of required packets will
increase nonlinearly. For instance, for a 5-hop path ( n = 5),
it is expected that at most 20 packets will be required for
path reconstruction. However, when the hop count increases
to 7 (with one detour), the number of packets expected to be
required increases to 35 (by almost a factor of two).

To address this situation, we explore the topological struc-
ture of datacenter networks and present a rapidly convergent
version of the path reconstruction method. We find that a
straightforward solution to the problem is to reduce the number
of links required to reconstruct the path.

B. Datacenter Network Topology Exploration

In the widely used datacenter k-ary fat-tree topology, the
number of core layer switches is k2

4 and the total number
of aggregation layer switches and access layer switches is
k2

2 . Overall, the total number of switches is 5k2

4 . By means
of packet header encapsulation with double VLAN tags, as
described in Section III-B, 4,096 switches can be uniquely
identified; thus, this approach is sufficiently compatible with
a 48-ary fat-tree network topology. We consider the detour
model in such a topology.

In a datacenter network, although not common, some packet
detours will inevitably occur for several reasons. On the one
hand, misconfiguration failures at switches or links may force
rerouting to alternative non-shortest paths [25], [26]. Consider
the topology in Fig. 3, where the packets are routed on the
shortest path E1-A1-C2-A3-E4. If the link C2-A3 fails, the
route must be changed to a non-shortest path. On the other
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hand, recently proposed techniques may reroute packets to
idle non-shortest paths to avoid link congestion [27]–[29].
Therefore, the ability to detect flow trajectories in the case of
packet detours is very important. For some topologies, such
as fat trees, that have symmetrical structures, we find that the
flow trajectories can be uniquely determined without requiring
all links to be known to the receiver.

Theorem II: In a datacenter fat-tree topology, only the links
leading from the access layer to the aggregation layer and
from the core layer to the aggregation layer are required to
be known to the receiver. By searching for the shortest paths
between these necessary links, all other links on the path can
then be inferred.

Proof: First, let the flow trajectory be < s1, s2, . . . , si ,
si+1, . . . , sN−1, sN >. The DPIDs of switches s1 and sN are
known, and they should be the first and last switches located in
the access layer. Let the information on the i-th link known to
the receiver be Li = (si , si+1, distance(si , si+1)). Because
distance(s1, s2) = max i1→N (distance(si , si+1)) = N − 1
and the DPID of S1 is known, the receiver can determine the
value of N via L1 and only via L1. In other words, L1 is essen-
tial for the receiver to identify the complete path. On the other
hand, to uniquely determine the entire trajectory, it is simply
necessary to ensure that all subtrajectories are uniquely deter-
mined. Given the symmetrical nature of the fat-tree topology,
any subpath is composed of uplinks and downlinks, and the
entire subpath is uniquely determined as long as the uplink
or downlink is uniquely determined. Once the receiver has
received confirmation of L1 and L3, there is no need for it to
be informed of L2, and so on. The number of intrapod links is
2(j + 1), j ≥ 0, and the number of interpod links is 2k, k ≥ 0.
Therefore, within a pod, all uplinks are essential, and between
pods, all downlinks are essential. When both the intrapod and
interpod subtrajectories can be uniquely determined, the entire
trajectory will be uniquely determined. Thus, Theorem II is
proven.

We identify five possible detour cases under the assumption
of packet-level forwarding strategy consistency,1 as follows:
(1) intrapod detour, (2) source pod detour, (3) destination pod
detour, (4) core layer detour, and (5) mixed detour. We con-
sider that the number of detours should be greater than or
equal to 0. In the case that the number of detours is 0, the
trajectory lies on the shortest path.

The typical path with no detour is shown in Fig. 3.
According to Theorem II, only the link E1-A1 and the link
C2-A3 are required to be known to the receiver. As long as
the receiver receives a packet tagged with the link at distance
4, E1-A1, it can be sure that the packets of the flow traversed
a 5-hop path. Then, if the receiver is also informed of the link
at distance 2, C2-A3, the complete path E1-A1-C2-A3-E4 can
be uniquely determined. Since the remaining links A1-C2 and
A3-E4 can then be inferred, the receiver is required to receive
information on only two links, i.e., E1-A1 and C2-A3, instead
of all 4 links.

1Packet-level forwarding strategy consistency is defined as follows: a switch
uses the same strategy to forward each packet of a given flow. This situation
is common in datacenter networks because the forwarding rules installed in
a switch are typically flow entries.

Fig. 7. A 7-hop path with a source pod detour, SRC-E1-A2-E2-A1-C2-A3-
E4-DST (n = 7). The detour changes the subpath E1-A1 to E1-A2-E2-A1.

Consider the case in which detours occur during intrapod
transmission. Intrapod detours conform to the pattern SRC-
ToR-(Agg-ToR)i-Agg-ToR-DST, where i is the number of
detours within the pod. According to Theorem II, tracing a
5-hop path with an intrapod detour requires only one link at
distance 4 and one link at distance 2, i.e., two links leading
from the access layer to the aggregation layer, instead of all
4 links. In contrast to such intrapod detours, the other four
types of detours occur during interpod transmission.

Source pod detours are detours that occur only within
the source pod. Source pod detours conform to the pat-
tern SRC-ToR-(Agg-ToR)i -Agg-Core-Agg-ToR-DST, where i
is the number of detours within the source pod. Fig. 7 depicts a
7-hop path with a source pod detour. According to Theorem II,
tracking this path with a source pod detour requires the link
at distance 6, E1-A2; the link at distance 4, E2-A1; and the
link at distance 2, C2-A3. The Agg-Core link can be uniquely
determined as long as the link C2-A3 is known to the receiver.
In addition, the Agg-ToR link can be uniquely determined as
long as the links E1-A2 and E2-A1 are known. Therefore,
the receiver is required to receive information on only these
three links, i.e., E1-A2, E2-A1 and C2-A3, instead of all
6 links.

Similarly, destination pod detours are detours that occur
only within the destination pod. Destination pod detours
conform to the pattern SRC-ToR-Agg-Core-Agg-(ToR-Agg)j -
ToR-DST, where j is the number of detours within the
destination pod. Fig. 8 shows a 7-hop path with a destination
pod detour. According to Theorem II, tracing this path with a
destination pod detour requires the link at distance 6, E1-A1;
the link at distance 4, C2-A3; and the link at distance 2, E3-
A4. Therefore, only these three links are required to be known
to the receiver, instead of all 6 links, for the complete path to
be uniquely determined.

Core layer detours are detours that occur only within the
core layer. Core layer detours conform to the pattern SRC-
ToR-Agg-Core-(Agg-Core)k -Agg-ToR-DST, where k is the
number of detours within the core layer. A 7-hop path with a
core layer detour is shown in Fig. 9. According to Theorem II,
tracing this path with a core layer detour requires the link at
distance 6, E1-A1; the link at distance 4, C1-A5; and the link
at distance 2, C2-A3. Therefore, only these three links are
required to be known to the receiver instead of all 6 links.

Finally, mixed detours are the most complex detours, simul-
taneously occurring within the source pod, the destination
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Fig. 8. A 7-hop path with a destination pod detour, SRC-E1-A1-C2-A3-E3-
A4-E4-DST (n = 7). The detour changes the subpath A3-E4 to A3-E3-A4-E4.

Fig. 9. A 7-hop path with a core layer detour, SRC-E1-A1-C1-A5-C2-A3-
E4-DST (n = 7). The detour changes the subpath C1-A3 to C1-A5-C2-A3.

Fig. 10. A 13-hop path with mixed detours, SRC-E1-A2-E2-A1-C1-A5-
E6-A6-C4-A4-E3-A3-E4-DST (n = 13). The mixed detours simultaneously
occur in the source pod, the destination pod, the core layer and a non-
source/destination pod.

pod, the core layer and/or one or more non-source/destination
pods. In fact, all possible detours in a fat-tree topology
can be abstracted as mixed detours. Mixed detours con-
form to the pattern SRC-ToR-(Agg-ToR)i-Agg-Core-(Agg-
(ToR-Agg)j-Core)k-Agg-(ToR-Agg)l-ToR-DST, where i is the
number of detours within the source pod, j is the number of
detours within a non-source/destination pod, k is the number
of detours within the core layer, and l is the number of detours
within the destination pod. A 13-hop path with mixed detours
is shown in Fig. 10. According to Theorem II, tracing this path
with mixed detours requires the link at distance 12, E1-A2;
the link at distance 10, E2-A1; the link at distance 8, C1-A5;
the link at distance 6, E6-A6; the link at distance 4, C4-A4;
and the link at distance 2, E3-A3. By searching for the shortest
paths between these necessary links, all other links on the path
can be inferred. Therefore, only these six links are required to
be known to the receiver instead of all 12 links.

C. Rapidly Convergent Path Reconstruction

In summary, according to Theorem II, the number of links
required to be known to the receiver is reduced from n − 1 to
1
2 (n − 1), which will significantly accelerate the convergence
of path reconstruction. The rapidly convergent method of path
reconstruction is summarized in Algorithm 3. Compared to the
general version shown in Algorithm 2, the accelerated method
requires only the links leading from the access layer to the
aggregation layer and from the core layer to the aggregation
layer. All other links ( Agg-ToR and Agg-Core) on the path are
no longer required. These links can be uniquely determined by
searching for the shortest paths between the necessary links.
Obviously, the expected number of packets that need to be
observed at the receiver can thus be considerably reduced.

V. DISCUSSION

Variable Probability: Since the receiver needs only to be
aware of the links leading from the access layer to the aggre-
gation layer and from the core layer to the aggregation layer,
one interesting question is whether it would be better to lever-
age a variable sample probability instead of a fixed sample
probability for tracing the flow paths. The basic idea is that
we would regard the above two types of links as critical links
and regard other links as noncritical links. To further acceler-
ate the convergence of path reconstruction, the switches could
be assigned a higher probability of sampling critical links and
a lower probability of sampling noncritical links. In particular,
an extreme manifestation of this idea would to sample only
critical links and never sample other links. Theoretically, this
method would ensure that each packet received at the receiver
would carry a sample of a critical link. However, to distinguish
critical links from noncritical links, it would be necessary to
install additional flow rules on the switches. We find that the
number of additional flow rules is proportional to the number
of ports on the switches. Although this method is feasible in
SDN-enabled networks, it may not be suitable for incremental
deployment in large-scale datacenters.

Multitenancy: The method proposed in this paper relies on
double VLAN tags in the data packets to encode the link sam-
ples. However, one common scenario in datacenter networks
is multitenancy, which might result in conflicting usage of the
VLAN tags. To allow the method to work in the case of mul-
titenancy, we suggest that network operators should leverage
VXLAN or GRE [30] for segmented encapsulation for mul-
titenancy. Both are current mainstream technologies used for
multitenancy in large-scale SDN-enabled datacenter networks
and can provide 24-bit virtual network identifiers for distin-
guishing more than 16 million tenants. Moreover, they can
coexist well with the double VLAN tags (Q-in-Q) used in
FlowTracer.

Multiple paths: In this paper, we focus on the design of
FlowTracer for datacenter networks. A natural question here
is whether it is possible to generalize FlowTracer to the
case of load balancing [31]–[33]. For flow-level load bal-
ancing schemes such as ECMP, the packets of each flow
traverse the same path. However, for non-flow-level load bal-
ancing schemes such as Flowlet, the packets of a flow traverse
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multiple paths. For a multipath flow, there is a sub-flow in each
path. We assume that the route of each sub-flow is sufficiently
stable, and the number of packets in each path is sufficient for
path reconstruction. When the assumption holds, the trajectory
of each sub-flow can be reconstructed independently. With the
trajectories of all sub-flows reconstructed by FlowTracer, the
complete trajectory of the multipath flow can then be detected.
Theorem II and its proof still apply in the case of multipath
routing.

Path Changes: In this paper, we assume that the trajectory
of each flow is constant during the path reconstruction. In prac-
tice, even a small possibility, it’s still possible that the fault
(e.g., switch port failure) happens to occur during the pro-
cess. When this happens, the route may oscillate and the flow
trajectory may change. For the same flow, the receiver may
detect multiple trajectories, even including incomplete trajec-
tories. Given this, the detected result is probably inconsistent
with the actual one. However, note that the process of path
reconstruction is cyclical. Although FlowTracer may reach its
limits in the cycle encountering path changes, the consistent
results are always detected in the next cycles, whose route has
become stable.

Trajectory Length: While FlowTracer can trace a trajectory
containing many detours, it should be kept in mind that there
is a low probability of encountering many detours in prac-
tice. Since datacenter networks typically suffer only infrequent
failures and misconfigurations [6]–[8], multiple detours will
occur at the same time only rarely. Moreover, in a typical dat-
acenter topology, the length of the shortest path between any
two nodes is not too long. Thus, it is not a common task for
FlowTracer to trace long trajectories. However, the ability to
trace flow trajectories in the case of many detours is still crit-
ical since it can help to accurately detect network failures and
misconfiguration issues. Techniques that only work well for
tracing the shortest paths do not necessarily scale to the case
of many detours. As the network scale increases, the number of
potential detours will be greater, and the drastically increased
number of paths caused by such detours will complicate the
trajectory tracing task to an even greater extent.

Mice vs. Elephant Flows: We assume that the sender
(source) sends sufficient packets that this sampling process
can converge. Our approach relies on this property because we
mark each packet with only a small piece of the path, meaning
that the receiver must observe many such packets to recon-
struct the complete path back to the sender. In practice, many
mice flows2 might emerge that require only a few packets to
be transferred; then, this assumption may not hold. Note that
this consideration is common to most flow measurement tech-
niques, such as that presented in [34]. However, because mice
flows often exert less impact on performance, it is desirable to
focus instead on the measurement of elephant flows, which are
more likely to play a predominant role [24]. Consequently, it
might be challenging for the link sampling mechanism to iden-
tify the paths of mice flows. In other words, FlowTracer trades

2A mice flow is a short (in total bytes) flow set up by a TCP (or other
protocol) flow.

slightly reduced accuracy for significantly improved scalability
in terms of switch entries and header space.

Flow Loss: One of the assumptions made in the design of
FlowTracer is that a trajectory is traced when the flow reaches
its destination. However, a flow might not reach its destination
for a multitude of reasons, including drops due to network con-
gestion, routing loops, or switch misconfigurations (e.g., race
conditions [12]). It might be challenging for FlowTracer to
identify the precise locations of such flow drops. Note that
this problem is a common limitation for the reconstruction
of trajectories at end hosts [14]. To overcome this limitation,
previous work such as Pingmesh [35] could play a comple-
mentary role in combination with FlowTracer. In Pingmesh,
a tracer is deployed at each end host to collect data on the
end-to-end latency of the network. It can diagnose when and
where a flow is lost by detecting the pattern of latency. In
practice, a Pingmesh tracer could be deployed at each end
host together with a FlowTracer path reconstructor. FlowTracer
would be responsible for path detection in the case that the
packets can reach their destination, whereas Pingmesh would
serve the complementary purpose of detecting flow loss.

VI. EVALUATION

In this section, we show that FlowTracer detects trajec-
tories quickly while placing far lesser demands on both
switch entries and packet header space than state-of-the-art
techniques. Specifically, we evaluate FlowTracer and the state-
of-the-art technique PathletTracer [14] in testbed experiments
using a 48-ary scale fat-tree topology. We seek to answer
the following questions: (1) What is FlowTracer’s overhead
in terms of the required flow rules and packet header space?
(2) How many decoding entries are required at the end host
for FlowTracer? (3) How does FlowTracer perform in terms
of detection latency?

Code and Data Sharing. We have made the data snapshots
and code used for FlowTracer3 available to the research com-
munity in the hope that this will stimulate and facilitate further
research.

A. Experimental Setup

Network Topology: We simulated a 48-radix fat-tree topol-
ogy with 48-port OpenFlow-enabled switches capable of pro-
viding a full 1 Gbps of bandwidth to up to 27,648 hosts, which
should be a common scenario in large-scale SDN-enabled dat-
acenter networks [36], [37]. There are 576 core switches. Each
core switch has one port connected to each of 48 pods. Each
pod contains an edge (ToR) layer and an aggregation layer
with 24 switches each. The edge (ToR) switches in every pod
are assigned to 24 hosts each. There are 576 equal-cost paths
between any given pair of hosts in different pods. The number
of links in the topology is 110,592 in total. The simulation of
this topology was implemented with Mininet [38] and Open
vSwitch [5]. All switches offer support for the OpenFlow 1.3
specification.

3https://github.com/FlowAnalysis/FlowTracer
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Fig. 11. Network traffic characteristics collected per second in terms of (a) flows, (b) packets and (c) bytes.

Fig. 12. FlowTracer’s demands in terms of the number of switch flow rules for detecting trajectories compared to PathletTracer. For detecting non-shortest
paths, i.e., cases in which packets traverse a larger number of links due to detours, the number of switch flow rules required by PathletTracer increases
superlinearly. In contrast, the number of switch flow rules required by FlowTracer remains constant.

Network Traffic: We generated traffic between two end hosts
in different pods, as shown in Fig. 11. The traffic was for-
warded over diverse paths of lengths ranging from 5 hops
(the shortest path) to 13 hops (a path with detours).

B. Switch Flow Rules

For any given switch, FlowTracer requires only 3 con-
stant entries, two of which are flow table entries and one of
which is a group table entry. In contrast, for any given switch,
PathletTracer requires as many switch flow rules as the num-
ber of paths traversing the switch. Since the latter depends on
the layer in which the switch resides, we plot the numbers of
switch flow rules for FlowTracer and PathletTracer for each
layer separately in Fig. 12.

Either for detecting shortest paths only or for detecting non-
shortest paths with detours, the number of switch flow rules
required by PathletTracer is far greater than that required by
FlowTracer. In particular, for the detection of non-shortest
paths, e.g., in the case of failures, the number of switch flow
rules required by PathletTracer grows superlinearly with the
path length. For detecting 7-hop paths, PathletTracer requires
more than one million flow rules on a ToR switch, tens of
thousands of flow rules on an aggregate switch, and thousands
of flow rules on a core switch. It is clear that PathletTracer
cannot scale well to datacenter networks because it is very
sensitive to the number of paths in the network. In contrast,
the number of switch flow rules required by FlowTracer is
small and completely independent of the number of paths.

Because of the small and constant number of flow rules
required, FlowTracer can be implemented in TCAM and thus

Fig. 13. FlowTracer’s demands in terms of packet header space for detecting
trajectories compared to PathletTracer. In particular, for detecting 7-hop paths
in a 48-ary fat-tree topology, FlowTracer requires 24 bits of header space,
while PathletTracer requires 21 bits. However, beyond 7 hops, FlowTracer
requires a constant 24 bits, far less than PathletTracer.

can benefit from TCAM’s fast, parallel lookups. In contrast,
the switch flow rules of PathletTracer cannot be accommo-
dated in TCAM. As an alternative, they must be stored in
SRAM or even DRAM, at the cost of supporting less efficient
lookups.

C. Packet Header Space

Here, we examine the overhead in terms of packet header
space. PathletTracer requires log(P) bits of header space,
where P is the number of paths between any two end hosts.
As shown in Fig. 13, for 7-hop paths, we find that FlowTracer
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Fig. 14. FlowTracer requires significantly fewer data entries at the end hosts
for detecting trajectories than PathletTracer does. In particular, for detecting
7-hop paths in a 48-ary fat-tree topology, FlowTracer requires several orders
of magnitude fewer data entries than PathletTracer, which requires a data file
of approximately 12 GB at each end host.

requires a constant 24-bits of header space, slightly more than
PathletTracer. However, FlowTracer trades this slightly higher
overhead for short paths for a significant improvement in scala-
bility. When the path length is greater than 7 hops, FlowTracer
requires far less packet header space than PathletTracer does
due to the sharp increase in the number of paths, which causes
the size of the path identifiers for PathletTracer to grow rapidly.
Thus, FlowTracer is better suited to large-scale datacenter
networks.

Moreover, its excessive header space overhead can even
make PathletTracer incompatible with current encapsulation.
Current mainstream encapsulation technology, e.g., VLAN,
Q-in-Q, VXLAN or GRE, provides unique identifiers of at
most 24 bits for path tracing. Obviously, this is not sufficient
for PathletTracer, especially with many detours. In contrast,
regardless of the scale of the network topology, the header
space demand of FlowTracer remains constant at 24 bits (dou-
ble VLAN tags, Q-in-Q), which should be compatible with
current encapsulation.

D. Decoding Entries

For path reconstruction, both FlowTracer and PathletTracer
need to store a certain number of data entries at the end hosts.
Here, we quantify the numbers of data entries required for
both schemes. Theoretically, FlowTracer needs to store only
the entire set of network links at the end hosts. In contrast,
PathletTracer requires the end hosts to store a large size code-
book, in which each data entry is a code assigned to a unique
path. For a fair comparison, we assume that every individual
end host in PathletTracer stores an equal-sized subset of the
codebook that is relevant only to that end host. As shown in
Fig. 14, PathletTracer needs to store a considerable number of
data entries, especially in the case of many detours. For tracing
7-hop paths, PathletTracer requires more than 109 data entries
at each end host, which translates into a data file of approx-
imately 12 GB in size (under the assumption that each data
entry is approximately 12 bytes). Because FlowTracer needs
to store only the set of links, it requires far fewer data entries
per host.

Fig. 15. FlowTracer achieves a significantly lower average latency than
PathletTracer does for trajectory detection. In particular, for detecting 7-hop
paths in a 48-ary fat-tree topology, FlowTracer requires only approximately
100 ms, while PathletTracer requires approximately 1000 ms.

In practice, these data entries for decoding or tracing paths
should be stored in memory for acceleration. However, for
PathletTracer, it is unlikely that such a large block file (perhaps
as large as 12 GB) can be completely pushed into memory.
Note that the data entries should reside in the memory and
that the capacity of fast memory is very tight.

E. Detection Latency

Finally, we evaluate the performance in terms of detec-
tion latency. Theoretically, the total latency consists of two
time contributions: (1) the transmission time and (2) the
path reconstruction time. Since current SDN-enabled switches
can provide a high bisection bandwidth [39] and OpenFlow
pipeline rate [40], [41], the transmission time (on the order
of μs) can be ignored. However, the time needed for path
reconstruction cannot be overlooked. On the one hand, while
FlowTracer requires less query response time (with few decod-
ing entries), it requires multiple queries (i.e., the receiver needs
to receive multiple packets with sampled link information).
On the other hand, while PathletTracer requires only a single
query (i.e., the receiver needs to receive only a single packet
with the complete path information), its query response time
is longer (with a vast number of decoding entries).

In Fig. 15, we plot the average time needed to recon-
struct a 7-hop path. FlowTracer is overwhelmingly superior to
PathletTracer in terms of the average detection latency, with
a significant gap of approximately a factor of 10. It is clear
that FlowTracer can detect trajectories quickly in large-scale
datacenter networks, even though it is a probabilistic method.
The average number of packets required for trajectory detec-
tion is shown in Fig. 16. We find that the number of required
packets is distributed around the upper bound of expectation
as analyzed in Section IV-A.

Although FlowTracer requires multiple packets to capture
a flow trajectory instead of only a single packet, FlowTracer
still wins in practice in terms of the reconstruction time. We
can obtain the following insights from the results: (1) the
query response time takes up the largest portion of the path
reconstruction time, (2) FlowTracer trades the need for a few
extra packets for a significant decrease in the query response
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Fig. 16. FlowTracer’s demand in terms of the number of packets required
for path reconstruction, which is approximately as expected.

time, and (3) the availability of a high bisection bandwidth
weakens the influence of these extra packets. In other words,
FlowTracer has the advantage of speed simply because of its
reliance on probabilistic sampling. Because of the probabilis-
tic sampling approach, FlowTracer requires fewer decoding
entries, enabling faster path reconstruction.

VII. RELATED WORK

The challenging research topic of trajectory detection has
strong implications for troubleshooting, eliminating configu-
ration conflicts, avoiding routing errors, and detecting policy
inconsistencies [42], [43] in large-scale SDN-enabled data-
center networks. A series of previous works have addressed
this problem. They can be divided into two categories:
control plane solutions [10]–[12] and data plane solu-
tions [13]–[15], [44].

Control plane techniques: Unlike data plane solutions, con-
trol plane solutions always rely on after-the-fact analysis
conducted at a non-data plane and incur considerable overhead
in the form of out-of-band data collection. They also tend to
perform worse than data plane solutions. SDN traceroute [10]
collects the switch’s packet-in message at each hop and recon-
structs the trajectory at the controller. VeriFlow [11] analyzes
the configurations pushed to network devices to infer forward-
ing paths. NetSight [12] forces all switches to send postcards
when traffic passes through them and introduces a history
plane for trajectory reconstruction. In contrast, FlowTracer
traces traffic trajectories directly on the data plane without
reliance on the controller.

Data plane techniques Carrying information to be used
for tracing in the packet header space is an idea that has
been used in [45], [46]. X-Trace [45] is a tracing frame-
work designed to reconstruct an Internet service’s task tree by
propagating task ID metadata across layers and applications.
FlowTags [46] adds tags to outgoing packets for systematic
policy enforcement on switches and middleboxes.

In comparison with out-of-band techniques, in-band solu-
tions typically work better at the data plane and significantly
reduce the data collection overhead at the cost of support-
ing a narrower range of analysis. A tiny packet program
(TPP) interface was introduced in [13] that enables end
hosts to collect the packet histories recorded by each switch.

The interface provides more visibility of network behav-
iors, similar to out-of-band techniques, but is not compatible
with existing standard SDN frameworks, e.g., OpenFlow.
OpenFlow-compatible solutions such as PathletTracer [14] and
PathQuery [15] attempt to imprint each packet of a flow
with compressed path information and consequently require
a large number of switch flow rules and considerable packet
header space because of the vast number of paths in a large-
scale datacenter network and the complex matching operations
conducted in switches.

CherryPick [17] is similar to FlowTracer in that it allows
tracers at the end hosts to be aware of the underlying
network topology. Although its objective is identical to that of
FlowTracer (to reduce resource consumption), it is designed
from a completely different perspective. It attempts to iden-
tify distinct trajectories in a datacenter network based on two
fixed links tagged per packet. Compared to FlowTracer, it has
the advantage of being able to detect the paths of mice flows
precisely. However, mice flows often have little impact on
performance [19], and a limitation of this approach is criti-
cal: the limited information (two fixed links) carried by each
packet often cannot reveal the complete trajectory when many
detours are involved. As a matter of fact, large flows with
many detours in a network typically lead to severe issues.
Therefore, it is essential for a solution to be able to reconstruct
the complete trajectories in this case. PathDump [44] extends
CherryPick, and enables network debugging functionality by
leveraging detected paths at end hosts. However, PathDump
traces trajectories by using the idea presented in CherryPick,
which still cannot avoid the above limitation. In addition to
being unable to trace long paths, CherryPick and its extension
PathDump cannot adapt to the asymmetric topology. In con-
trast, the general path reconstruction method of FlowTracer is
not limited by the topology type.

In summary, previous works that have addressed trajec-
tory detection have not yet provided an efficient solution. In
contrast, FlowTracer is compatible with OpenFlow and can
significantly reduce the overhead in terms of switch flow rules
and packet header space. Most importantly, FlowTracer is able
to reveal the trajectories in the case of severe issues involving
many detours.

SDN-enabled programmable data plane: Recent advances in
data plane programmability [40], [41], [47], [48] make it easy
to enable numerous network troubleshooting functionalities,
including trajectory tracing. FlowTracer permits the efficient
implementation of a path tracing functionality on top of these
flexible platforms. Therefore, our method is complementary to
them.

VIII. CONCLUSION

We present FlowTracer, an efficient trajectory detection
technology for large-scale SDN-enabled datacenter networks,
which uses link sampling to decrease the overhead in terms
of the number of switch entries and the amount of packet
header space required. To this end, we first introduce a
method of probabilistic packet tagging that is conducted in
OpenFlow-enabled switches with very few switch flow rules
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and limited packet header space by means of double VLAN
tags. Then, we explore the topological structure of datacenter
networks and propose a method of path reconstruction that
is conducted at end hosts and achieves rapid convergence.
Finally, we evaluate FlowTracer on a 48-ary fat-tree topology.
The results show that FlowTracer works very well for path
tracing even in the case of many detours. Compared to state-of-
the-art techniques, FlowTracer requires far fewer switch flow
rules and less packet header space.
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