
Endpoint-Flexible Coflow Scheduling Across
Geo-Distributed Datacenters

Wenxin Li , Xu Yuan ,Member, IEEE, Keqiu Li, Senior Member, IEEE,

Heng Qi , Xiaobo Zhou , and Renhai Xu

Abstract—Over the last decade, we have witnessed growing data volumes generated and stored across geographically distributed

datacenters. Processing such geo-distributed datasets may suffer from significant slowdown as the underlying network flows have to

go through the inter-datacenter networks with relatively low and highly heterogeneous available link bandwidth. Thus, optimizing the

transmissions of inter-datacenter flows, especially coflows that capture application-level semantics, is important for improving the

communication performance of such geo-distributed applications. However, prior solutions on coflow scheduling have significant

limitations: they schedule coflows with already-fixed endpoints of flows, making them insufficient to optimize the coflow completion time

(CCT). In this article, we focus on the problem of jointly considering endpoint placement and coflow scheduling to minimize the average

CCTof coflows across geo-distributed datacenters. To solve this problem without any prior knowledge of coflow arrivals, we present a

coflow-aware optimization framework called SmartCoflow. In SmartCoflow, we first apply an approximate algorithm to obtain the

endpoint placement and scheduling decisions for a single coflow. Based on the single-coflow solution, we then develop an efficient

online algorithm to handle the dynamically arrived coflows. Through rigorous theoretical analysis, we prove that SmartCoflow has a

non-trivial competitive ratio. We also extend SmartCoflow to incorporate various design choices or requirements of applications and

operators, such as enforcing an inter-datacenter bandwidth usage budget and considering coflow deadline. Through experimental

results from testbed implementation and trace-driven simulations, we demonstrate that SmartCoflow can reduce the average CCT,

lower bandwidth usage, and improve coflow deadline meet rate, when compared to the state-of-the-art scheduling-only method.

Index Terms—Inter-datacenter, coflow scheduling, CCT, deadline, endpoint flexibility

Ç

1 INTRODUCTION

TO ENABLE end-users can access to services with low
latency, large organizations, such as Google, Microsoft,

and Amazon, build many 10s-100s of datacenters all around
the globe [2], [3], [4]. As a result, large volumes of data, e.g.,
end-user sessions logs and server monitoring logs, will be
generated and stored at geographically distributed datacen-
ters. On the other hand, many applications require a global
view of these data to compute exact analytics query results [5]
or to build accurate machine learning models [6]. Instead of
inefficiently aggregating all the data required for the compu-
tation of an application/job to a single datacenter, a recent
trend is to leave data in-place and execute jobs over geo-dis-
tributed datasets directly [5], [7], [8].

A common denominator of these jobs is that they produce a
set of network flows to transfer the intermediate data between
successive computation stages (e.g., map and reduce)—known
as coflows [9]. The coflow abstraction captures the all-of-nothing
communication requirements of data-parallel jobs: all flows
must be finished before a coflow is considered complete. Tradi-
tionally, when a job is running within a single datacenter, all
flows in a coflow are restricted in the intra-datacenter network.
However, in the geo-distributed setting, the flows in a coflow
necessarily have to traverse the inter-datacenter links. The
available bandwidth on those inter-datacenter links is limited
and can vary significantly across different links [5], [6], [10].
Meanwhile, the data volumeof flows in a coflowcould be enor-
mous for a geo-distributed data-parallel job [5], yet a coflow’s
completion time (CCT) can account formore than 50 percent of
job completion time [11], [12]. Moreover, as computation devi-
ces are witnessed to get faster [13], [14], communication is
more likely to become the performance bottleneck for a job.

Therefore, optimizing the CCTs becomes critical to
improve the performance of jobs running across geo-distrib-
uted datacenters. Many existing works [11], [12], [15], [16],
[17], [18] have focused on reducing such CCTs by efficiently
scheduling the network flows within each coflow. Unfortu-
nately, they are insufficient to optimize the CCT of a coflow
as the endpoints of all flows are assumed to be fixed. In
other words, they do not consider the impact of flow end-
points (i.e., destinations) on the CCT. As a result, coflow
scheduling can have little space to take effect for optimizing
the CCTs of coflows.

� W. Li is with the Department of Computer Science and Engineering, Hong
Kong University of Science and Technology, Hong Kong.
E-mail: toliwenxin@gmail.com.

� X. Yuan is with the School of Computing and Informatics, University of
Louisiana at Lafayette, Lafayette, LA 70503. E-mail: xu.yuan@louisiana.edu.

� K. Li, X. Zhou, and R. Xu are with the Tianjin Key Laboratory of
Advanced Networking (TANK), College of Intelligence and Computing,
Tianjin University, Tianjin 300350, China.
E-mail: {keqiu, xiaobo.zhou, xurenhai}@tju.edu.cn.

� H. Qi is with the School of Computer Science and Technology, Dalian
University of Technology, No 2, Linggong Road, Dalian 116023, China.
E-mail: hengqi@dlut.edu.cn.

Manuscript received 20 Oct. 2019; revised 7 Mar. 2020; accepted 25 Apr.
2020. Date of publication 6 May 2020; date of current version 21 May 2020.
(Corresponding author: Keqiu Li.)
Recommended for acceptance by W. Yu.
Digital Object Identifier no. 10.1109/TPDS.2020.2992615

2466 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 10, OCTOBER 2020

1045-9219� 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht_tps://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0001-8507-0339
https://orcid.org/0000-0001-8507-0339
https://orcid.org/0000-0001-8507-0339
https://orcid.org/0000-0001-8507-0339
https://orcid.org/0000-0001-8507-0339
https://orcid.org/0000-0003-3775-3033
https://orcid.org/0000-0003-3775-3033
https://orcid.org/0000-0003-3775-3033
https://orcid.org/0000-0003-3775-3033
https://orcid.org/0000-0003-3775-3033
https://orcid.org/0000-0002-8770-3934
https://orcid.org/0000-0002-8770-3934
https://orcid.org/0000-0002-8770-3934
https://orcid.org/0000-0002-8770-3934
https://orcid.org/0000-0002-8770-3934
https://orcid.org/0000-0002-7772-458X
https://orcid.org/0000-0002-7772-458X
https://orcid.org/0000-0002-7772-458X
https://orcid.org/0000-0002-7772-458X
https://orcid.org/0000-0002-7772-458X
mailto:toliwenxin@gmail.com
mailto:xu.yuan@louisiana.edu
mailto:keqiu@tju.edu.cn
mailto:xiaobo.zhou@tju.edu.cn
mailto:xurenhai@tju.edu.cn
mailto:hengqi@dlut.edu.cn

In fact, coflows do not require the destinations of their
flows to be in specific locations as long as certain constraints
are satisfied. The reason is that the endpoints of flows in a
coflow are closely correlated to the reduce tasks of the corre-
sponding job, while each reduce task can be placed in the
machine of any datacenter that has available computational
resources. In this case, we can flexibly select the endpoints of
flows in a coflow, by changing the locations of reduce tasks.
As an example, Fig. 1 demonstrates that changing the loca-
tions of reduce tasks will lead to different endpoint place-
ment strategies. Needless to say, a better distribution of
endpoints can significantly reduce the data sizes of flows in a
coflow, and thus directly speeds up the completion of
coflows. Hence, there is a pressing need to leverage endpoint
flexibility when scheduling coflows across geo-distributed
datacenters.

In this paper, we focus on the problem of jointly consid-
ering endpoint placement and coflow scheduling to mini-
mize the average CCT of coflows across geo-distributed
datacenters. We first develop the mathematical model and
formulate a mixed integer programming problem to seam-
lessly integrate endpoint placement and coflow scheduling
for optimizing the average CCT of coflows. In this program,
we take into account heterogeneous link bandwidth capaci-
ties, different coflow arrival times, and available computa-
tion resources of datacenters. Since the information about
future coflows is usually unknown in advance, it is chal-
lenging to obtain the optimal solution for this problem.

Therefore, we present SmartCoflow, an online coflow-aware
optimization framework. In SmartCoflow, we first propose an
approximate algorithm to derive the endpoint placement
and scheduling decisions for one single coflow. Based on the
single-coflow solution, we then propose an efficient online
algorithm tominimize the averageCCTwhenmultiple coflows
dynamically arrive at the network. Without requiring the prior
knowledge of coflow arrivals, SmartCoflow has been proved to
guarantee a theoretical upper bound for the averageCCT.

We have also extended SmartCoflow to incorporate two
practical requirements. The first requirement is to save inter-
datacenter bandwidth as the bytes transferred over the inter-
datacenter network have important cost implications [5],
[19]. To this end, we introduce a simple knob to ensure fast
coflow completion and reasonable bandwidth usage. The
second requirement is to guarantee coflow deadline. For this
requirement, we first let the single-coflow solution in Smart-
Coflow be an admission control rule. Once admitted, we then
sort all active coflows based on their deadline and use the
minimum amount of bandwidth to guarantee each coflow’s
deadline.

We proceed to implement SmartCoflow as a real-world
coflow-aware scheduler that enforces our endpoint placement
and scheduling strategies in the Varys coflow scheduling
framework [15], [20]. Finally, to evaluate the performance of
SmartCoflow, we use a small-scale testbed implementation
based on Google’s Cloud Compute Engine, and also conduct
large-scale simulations with a real-world data trace collected
from Facebook. The experimental results demonstrate that
SmartCoflow can reduce the average CCT by up to 28.6 percent,
lower inter-datacenter bandwidth usage nearly by 20 percent,
accommodate 20.3 percent more coflows with deadlines
guaranteed, compared to the state-of-the-art scheduling-only
method [15].

The main contributions of this paper are as follows:

� We study the problem of jointly considering end-
point placement and coflow scheduling to minimize
the average CCT of coflows across geo-distributed
datacenters. We develop the mathematical model
and formulate a mixed integer programming to char-
acterize the intertwined relationship between end-
point placement and coflow scheduling to reveal
their impact on the average CCT of coflows.

� We present a new coflow-aware optimization frame-
work, SmartCoflow, to solve the studied problem. In
SmartCoflow, we develop fast and efficient online
algorithms to derive the endpoint placement and
scheduling decisions for coflows that dynamically
arrive at the network.

� We conduct rigorous theoretical analysis to demon-
strate that SmartCoflow can achieve a good competi-
tive ratio in minimizing the average CCT of coflows.
We also extend SmartCoflow to make our solution be
mindful of inter-datacenter bandwidth usage as well
as coflow deadline.

� We conduct a small-scale testbed implementation
and extensive trace-driven simulations to evaluate
the performance of SmartCoflow, in terms of reducing
average CCT of coflows, lowering inter-datacenter
bandwidth usage and guaranteeing coflow deadline.

The rest of this paper is organized as follows. In Section 2,
we show some background and describe our problem for this
paper. In Section 3, we develop the systemmodel and present
our problem formulation. We show an overview of SmartCo-
flow in Section 4 and the algorithm details in Section 5. We
present the extension of our SmartCoflow framework in
Section 6. The implementation details and experiment results
are presented in Section 7. We discuss the limitations of our
work in Section 8. Section 9 discusses the related work and
Section 10 concludes this paper.

2 BACKGROUND AND PROBLEM STATEMENT

2.1 Background

Modern organizations have a planetary footprint. Data is born
and generated in multiple datacenters, all around the globe.
Examples of such data include user activity logs, server moni-
tor logs, andURL clicks. To process such geo-distributed data,
two types of applications have become increasingly common.
(1) Geo-distributed Data Analytics (GDA) [5], [7], [8] refers to
leave data in-place and execute a job on geo-distributed data

Fig. 1. An illustrating example, where a coflow has one network flow that
transfers 200 units of data from DC-2 to DC-1 when placing the reduce
task on DC-1. On the other hand, if placing the reduce task on DC-2, this
coflow will only need to transfer a 100-unit flow from DC-1 to DC-2.

LI ETAL.: ENDPOINT-FLEXIBLE COFLOW SCHEDULING ACROSS GEO-DISTRIBUTED DATACENTERS 2467

directly with popular data analytic frameworks such as Map-
Reduce [21] and Spark [22], [23]. For example, an operator
would like to submit a job to query the geo-distributed user
logs to get the top-10 URLs by the number of clicks. (2) Geo-
distributedMachine Learning (GDML) [6], [24] refers tomachine
learning jobs that run over the geo-distributed data to build
accurate models and leverage WANs to communicate
between datacenters. For example, an image classification sys-
tem would use pictures located at different datacenters as its
input data to keep improving its classification using the pic-
tures generated continuously all over theworld.

In many GDA and GDML jobs, large volumes of interme-
diate data need to be transferred across the inter-datacenter
networks. Existing studies [9], [15], [26] have demonstrated
that the intermediate data transfers of GDA jobs can be mod-
eled as coflows. On the other hand, GDML jobs can generate
coflows aswell.More specifically, in a GDML job, theworkers
need to iteratively push (pull) parameter updates to (from) the
parameter servers to refine the ML model. If Bulk Synchro-
nous Parallel (BSP) is in use, the flows in each parameter push
or pull phase can be treated as a coflow, because there is a
strict barrier at the end of each phase. And, the progress of
each parameter exchange phase is determined by the collec-
tive behavior of its flow transfers rather than individual ones.
Note that there are indeed other synchronization models, i.e.,
stale synchronous parallel (SSP) [27] and total synchronous
parallel (TAP) [28]. However, BSP is themost commonly used
one in production [29].

The flow volume in a coflow could be enormous, account-
ing for 55 percent of the input data size on average in produc-
tion analytics jobs [5], despite local aggregation of the map
outputs for associative reduce operations [30]. Whereas inter-
datacenter networks have a different network model as com-
pared to traditional datacenter networks. In many recent

coflow studies [15], [16], [17], [18], [26], [31], datacenter net-
works are usually abstracted as a big switch, where only the
ingress and egress links at the end-hosts are considered as the
bottleneck. Nevertheless, it is no longer valid for inter-
datacenter networks, as the available inter-datacenter link
bandwidth is significantly lower than the edge capacity [5], [6],
[10]. So, optimizing theCCTs of coflows is critical for enhancing
the performance of application-level jobs, especially when
coflows need to go through the inter-datacenter networks.

2.2 Problem Statement

As mentioned in the previous section, the reduce task place-
ment is closely related to the CCT of a coflow. Hence, we are
motivated to combine the reduce task placement and coflow
scheduling to minimize the average CCT of coflows across
geo-distributed datacenters. More specifically, we study the
problem of where to place the reduce tasks1 to derive a better
endpoint distribution for the flows in each coflow, when to
start these flows, and at what rate to serve them on the inter-
datacenter links, tominimize the average CCT of coflows.

For a better intuition of our problem, we use a motivating
example with two coflows and two geo-distributed datacen-
ters; detailed settings for this example are shown in Fig. 2. As
a reference point, the optimal average CCT for this example is
55s. Fig. 3 first illustrates a scheduling-only scheme. Such
scheme only focuses on coflow scheduling without consider-
ing the optimization of reduce task placement, implying that
the endpoints of each flow might be placed improperly. In
this context, coflow scheduling could have little space tomini-
mize the average CCT. Fig. 3a shows a possible case of reduce
task placement with the naive equal spreading method [25],
which assigns an equal number of reduce tasks to each data-
center. In such a case, coflow A has two flows: one transfers
half of the data A1, i.e., 200 Mb, from DC-1 to DC-2 while
another one transfers half of the data A2, i.e., 100 Mb, from
DC-2 toDC-1. Coflow B has only one flow that needs to trans-
fer all the data B2 from DC-2 to DC-1. When these two
coflows meet at the inter-datacenter links, the optimal solu-
tion [15] is to schedule coflow B after coflow A, as shown in
Fig. 3b. TheCCTs of coflows A and B, achieved by the schedul-
ing-only scheme, are 100s and 300s, respectively. Hence, the
average CCT is 200s, which has a 145s gap to the optimal
value 55s. The key reason for such large CCT is that these two
coflows are congested on the link from DC-2 toDC-1.

Surprisingly, if placing the reduce task tB1 on DC-2

while keeping the locations of tA1 and tA2 (Fig. 4a), the

Fig. 2. An example with two coflows (i.e., A and B) and two datacenters
(i.e., DC-1 and DC-2). For coflow A, there are two pieces of intermediate
data (i.e., A1¼400Mb and A2¼200Mb) and two reduce tasks (i.e., tA1
and tA2). For coflow B, there is only one reduce task (tB1), and the
intermediate data on these two datacenters are B1¼100Mb and
B2¼200Mb. The bandwidth capacity of link from DC-1 to DC-2 is
10Mbps, while the link from DC-1 to DC-2 has 1Mbps bandwidth capac-
ity. Both DC-1 to DC-2 have 2 computing slots that are available for
accommodating the reduce tasks.

Fig. 3. Scheduling-only scheme, where reduce tasks are equally spread
across datacenters for each coflow (as shown in (a)), leading to the opti-
mal coflow scheduling results shown in (b). With this scheme, the aver-
age CCT is 200s.

Fig. 4. The optimal scheme, where reduce task placement and schedul-
ing are jointly considered. The average CCT is reduced to 55s, com-
pared to the above scheduling-only scheme.

1. Since the reduce task is directly correlated with the endpoints of
flows in a coflow, we will use reduce task and endpoint interchange-
ably hereafter.

2468 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 10, OCTOBER 2020

data sizes of flows can be significantly reduced, i.e., the data
size of the flow in coflow B is reduced to 100 Mb. Moreover,
coflow B can smartly avoid the bottleneck link from DC-2 to
DC-1. In this case, the CCTs of coflows A and B are 100s
and 10s respectively, and the average CCT is minimized
(Fig. 4b). The implies that both reduce task placement and
scheduling must be jointly considered to minimize the aver-
age CCT.

The above example looks straightforward with simple set-
tings. But the general problem of jointly considering reduce
task placement and scheduling to minimize the average CCT
of coflows can be difficult due to the following two challenges.
First, the placement of reduce tasks will determine the flow
size on each inter-datacenter link, which thus directly impacts
the scheduling decisions, implying that reduce task placement
and scheduling are deeply intertwinedwith each other. In this
case, how to obtain the optimal solution is a challenge. Second,
the arrival pattern of coflow is usually unknown in advance
and is difficult to be accurately predicted. In most practical
scenarios, we can only get the information about the coflows
that have arrived at the inter-datacenter network. So, how can
we guarantee that the current task placement and scheduling
decisions will not harm the CCTs of future coflows? This
makes another challenge to obtain the optimal solution.

3 MODEL AND PROBLEM FORMULATION

In this section, we describe the system model and present
the problem formulation, with important notations used
throughout this paper being listed in Table 1.

3.1 System Model

In our model, we make the following assumptions. First, we
assume each reduce task processes the same amount of
intermediate data. Thus, the intermediate data on each data-
center should be distributed to other datacenters propor-
tionally to the fractions of reduce tasks that are placed on
them. This assumption is similar to that in [5]. Second, we
also assume that all reduce tasks have the same resource

demand (i.e., one computational slot), which is also a com-
mon assumption in literature [10], [32].

Under the assumptions above, we consider a network
with multiple geo-distributed datacenters denoted as N ¼
f1; . . . ; Ng. In this network, there are a set of inter-datacen-
ter links, which are denoted as E. For each link li;j 2 E
between datacenters i 2 N and j 2 N , we denote Ci;j as its
bandwidth capacity. Suppose that there are a set of coflows in
the network, which is denoted asK ¼ f1; . . . ;Kg. Each coflow
k 2 K arrives at the inter-datacenter network at time tk. The
information associated with each coflow k is assumed to be
known as soon as this coflow arrives,2 which includes the
amount of intermediate data on each datacenter (i.e.,
Dk

i ; 8i 2 N) and the number of reduce tasks (i.e., Rk) to be
launched on available computing slots in datacenters. We use
Ui to denote the capacity of available computing slots in data-
center i 2 N .

Reduce Task Placement Constraints. To indicate the reduce
task placement, we denote Ikp;i as whether the pth reduce
task associated with coflow k 2 K is placed on datacenter
i 2 N . Then, we have

Ikp;i 2 f0; 1g; 8i 2 N ; 8k 2 K; 8p 2 f1; . . . ; Rkg: (1)

Since each reduce task can be processed by only one data-
center, i.e., 8i 2 N , there is only one Ikp;i ¼ 1, and thus we
have the following constraint:

XN
i¼1

Ikp;i ¼ 1; 8k 2 K; 8p 2 f1; . . . ; Rkg: (2)

Coflow Scheduling Constraints. To indicate the coflow
scheduling, we denote Bk

i;jðxÞ as the amount of bandwidth
allocated to coflow k for supporting the data transmission
between datacenters i and j at time x (x � 0). Note that
Bk

i;jðxÞ can be zero for some x’s, implying that the network
flow between datacenters i and j is waiting for transmission
or there is no such flow, for coflow k.

We denote Tk as the CCT of coflow k. Since all flows in a
coflow k must finish transmitting their data between the
arrival time tk and the completion time Tk, we have

Dk
i

PRk
p¼1 I

k
p;j

Rk
�
XtkþTk

x¼tk

Bk
i;jðxÞ; 8lij 2 E; k 2 K; (3)

where Dk
i

PRk

p¼1
Ik
p;j

Rk
can calculate the data size of the flow

traversing link lij [5]. Constraint (3) means that Tk is deter-

mined by when the last flow of coflow k finishes.
Capacity Constraints.When performing reduce task place-

ment and coflow scheduling, both the capacities of compu-
tational resource and link bandwidth should be satisfied.
Specifically, we have the following two constraints:

TABLE 1
Important Notations Used Throughout This Article

Symbol Definition

N the set of geo-distributed datacenters
E the set of inter-datacenter links
Ui the amount of available computing slots in

datacenter i 2 N
Ci;j the bandwidth capacity of inter-datacenter link lij 2 E
K the set of coflows
tk the arrival time of coflow k 2 K
Tk the completion time of coflow k 2 K
Dk

i the amount of intermediate data associated with k
stored on i

Rk the number of reduce tasks associated with k (each
task is
denoted by p)

Ikp;i a binary variable indicating whether the task p
associated
with k is assigned to i

Bk
i;jðxÞ the amount of bandwidth allocated to coflow k’s flow

from i to j, at time x

2. This assumption is reasonable because many recent studies (e.g.,
[11], [12], [15], [31]) assume that they know all the information about a
coflow. Besides, the information associated with a coflow is readily
available in data-parallel frameworks. For instance, in Spark, the inter-
mediate data can be obtained through the MapOutputTracker [10],
and the number of reduce tasks can also be known through the Task-

Set in Spark DAG scheduler [23].

LI ETAL.: ENDPOINT-FLEXIBLE COFLOW SCHEDULING ACROSS GEO-DISTRIBUTED DATACENTERS 2469

XK
k¼1

XRk

p¼1

Ikp;i � Ui; i 2 N ; (4)

XK
k¼1

Bk
i;jðxÞ � Ci;j; 8lij 2 E; 8x � 0: (5)

Constraint (4) means that the total number of reduce tasks
assigned to i should not exceed Ui, which is the total number
of available computing slots in datacenter i 2 N . Meanwhile,
constraint (5) ensures that the summation of bandwidth allo-
cated to all flows on a link lij should not exceed the link band-
width capacityCi;j.

3.2 Problem Formulation

We now formulate the problem of jointly considering
reduce task placement and coflow scheduling to minimize
the average CCT of coflows across geo-distributed datacen-
ters, as shown in the following problem P1:

Minimize
fIk

p;i
g;fBk

i;j
ðxÞg

1

K

XK
k¼1

Tk

Subject to: Eqs. ð1Þ; ð2Þ; ð3Þ; ð4Þ; ð5Þ;
(6)

where the objective function (6) represents the minimum of
the average CCT across all coflows. In problem P1, the reduce
task placement (i.e., Ikp;i) and scheduling (i.e.,Bk

i;jðxÞ) decisions
of current coflows will impact that of future coflows. To solve
P1, onemay design an offline optimal algorithm, which, how-

ever, encounters two challenges. First, Problem P1 is anmixed

integer programming which is NP-hard (as shown in the fol-

lowing Theorem 1), making it very hard to obtain the optimal

solution. Second, The offline algorithm inevitably relies on a

prior knowledge of the intermediate data (i.e., Dk
i) and the

number of reduce tasks (i.e., Rk) for future coflows. Such

knowledge can only be known at the arrival of a coflow, yet is
difficult to be predicted accurately. Thus, an online algorithm

is desired to solve problem P1more efficiently and handle the

dynamically arrived coflows. In the following, we present

SmartCoflow to address the challenges of problem P1.

Theorem 1. Problem P1 is NP-hard.

Proof. We will prove this theorem by demonstrating that the
problem P1 can generalize somewell-knownNP-hard prob-
lems.On the one hand, when there is only one datacenter, i.e.,
N ¼ 1, all reduce tasks can only be placed in this datacenter.
In such a case, it is easy to see that one can reduce the non-
preemptive Single-Machine Scheduling Problem (denoted
as SMSP for brevity) with release dates to our problem P1.
The implication is that P1 is at least as hard as the SMSP
problem. Since SMSP has been proved to beNP-hard [33],P1
is NP-hard as well. On the other hand, the well-known NP-
hard Coflow Scheduling Problem (CSP) [15] of minimizing
the average CCT is a special case of our problem P1. More
specifically, if the reduce task placements are fixed (i.e., Ikp;i is
known), then P1 is equivalent to a CSP instance where there
areN machines andK coflows with each coflow having the
traffic matrix DDk ¼ ½di;j�N�N (di;j ¼ Dk

i

PRk
p¼1 I

k
p;j=Rk). Since

the special case of P1 is NP-hard, the general form of P1 is
even harder. tu

4 SMARTCOFLOW IN A NUTSHELL

SmartCoflow is an online coflow-aware optimization frame-
work that optimizes the average CCT of coflows over the
inter-datacenter networks by coordinating reduce task place-
ment and coflow scheduling. In this section,we present a brief
overview of SmartCoflow to help the reader follow the analysis
and design of our scheduling algorithmdetails.

4.1 Desirable Properties

We first show the desired properties of SmartCoflow:

� Practicality: SmartCoflow is necessarily an online sys-
tem, which means that it must quickly decide the
reduce task placement and scheduling decisions for
a coflow once the coflow arrives. Hence, the SmartCo-
flow algorithms must run in real-time with low time
complexity.

� Performance guarantee: SmartCoflow must be able to
provide theoretical performance guarantees, such
that the average CCT of coflows can be bounded
with an upper bound.

� Flexibility: We expect SmartCoflow to be a flexible
design, which means that it can easily be extended to
incorporate various optimization goals, such as meet-
ing coflow deadlines and reducing inter-datacenter
bandwidth usage.

4.2 Design Overview

Fig. 5 shows an overview of SmartCoflow optimization frame-
work. In particular, once a coflow arrives at the network, we
will formulate an integer linear programming (ILP) problem.
Given the ILP for a certain coflow, SmartCoflowwill then apply
a randomized approximate algorithm to solve it for deriving
the reduce task placement and scheduling decisions for this
coflow. This algorithm first relaxes the ILP into linear pro-
gramming (LP). It then uses a randomized rounding tech-
nique to enforce the optimal solution of the LP to be a feasible
one of the original ILP.

Based on the single-coflow solution, SmartCoflow rescales
the bandwidth allocated to all existing coflows while keeping
the reduce task placement unchanged. The rationale is that
avoiding frequent reduce task placement will make SmartCo-
flow more efficient and more implementable in practical
scenarios. Besides, when rescaling bandwidth, SmartCoflow
attempts to assignmore bandwidth to large coflowswhile giv-
ing relatively less bandwidth to small coflows.

5 ALGORITHM DETAILS

In this section, we first present a randomized approximate
algorithm to minimize the CCT by focusing on one single
coflow, and then extend this algorithm to handle the online
multi-coflow scenarios.

Fig. 5. The overview of SmartCoflow optimization framework.

2470 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 10, OCTOBER 2020

5.1 Minimizing Single Coflow Completion Time

If there is only one single coflow in the network, the prob-
lem can be formulated as following (denoted as P2):

Minimize
fIp;ig

T (7)

Subject to: Ip;i 2 f0; 1g; 8i 2 N ; 8p 2 f1; . . . ; Rg; (8)

XN
i¼1

Ip;i ¼ 1; 8p 2 f1; . . . ; Rg; (9)

XR
p¼1

Ip;i � Ui; i 2 N ; (10)

Bi;j � Ci;j; 8lij 2 E; (11)

Bi;jT ¼ Di

PR
p¼1 Ip;j

R
; 8lij 2 E; (12)

where T is the CCT of this coflow. Parameters R and Di are
the number of reduce tasks and the amount of intermediate
data on datacenter i, respectively. Ip;i and Bi;j are the reduce
task placement and scheduling decisions, respectively. Note
that in our mathematical model (in Section 3), the band-
width is a function of time, but it is a constant value in prob-
lem P2. This implies that if a flow traverses link lij, the
bandwidth usage should be equal to Bi;j for transmission or
zero if this flow finishes. In such a case, Bi;j can be calcu-
lated directly by fixing Ip;i, as shown in Eq. (12).

Theorem 2. Problem P2 is NP-hard.

Proof. By taking an in-depth analysis of the structure of
problem P2, we find that it only contains the decision var-
iable Ip;i and can be re-organized as the following equiva-
lent problem:

Maximize
fIp;ig

�maxli;j
Di

RCi;j

XR
p¼1

Ip;j S.t.: Eqs. ð8Þ; ð9Þ; ð10Þ:

This problem can be interpreted as a Generalized Assign-
ment Problem (GAP) in the followingway. The datacenters
and the reduce tasks can be viewed as agents and tasks,
respectively. Each task has a cost of 1. Each agent j has a
budget of Uj. Any task can be assigned to any agent, incur-
ring some cost and profit. The sum of the costs of tasks
assigned to each agent cannot exceed the corresponding
budget. The profit of assigning task p to agent j can be
defined as <p;j ¼ maxfijli;j2Eg �Di=ðRCi;jÞ, the profit of
task p can then be computed as maxj<p;j. It is required to
find an assignment in which all agents do not exceed their
budget, and the total profit of all tasks is maximized. Since
the GAP) has proven to be NP-hard [34], our problem P2 is
alsoNP-hard. tu
To solve problem P2, we first relax Ip;i into a continuous

variable and accordingly obtain an LP, as shown in the fol-
lowing problem P3:

Minimize
fIp;ig

T

Subject to: 0 � Ip;i � 1; i 2 N ; 8p 2 f1; . . . ; Rg;
Eqs. ð9Þ; ð10Þ; ð11Þ; ð12Þ;

(13)

which can be solved efficiently with standard linear pro-
gramming solvers, such as Breeze [35]. Since Ip;i is relaxed
into continuous variable, the solution of P3 may not give a
feasible solution for the ILP P2. To find a feasible solution,
we then propose to use another technique—rounding.

Algorithm 1.Minimize Single Coflow CCT

Input: Coflow information: ffDig; R}
Output: A feasible solution for this coflow
1: Calculate the optimal solution ðI;B; T Þ of problem P3.
2: for p ¼ 1; 2; . . . ; R do
3: Sample an iwith probability Ip;i from f1; 2; . . .Ng.
4: If Ui ¼ 0, repeat step 1. Otherwise, set Ip;i ¼ 1 and update

Ui ¼ Ui � 1.
5: end for
6: Find a smallest real number � � 1 to make ffIp;ig; fBi;j

� gg
become a feasible solution to problem P2.

7: return ffIp;ig; fBi;j

� gg

The whole procedure tominimize the single coflowCCT is
summarized in Algorithm 1. Our Algorithm starts from the
optimal solution of LP P3 (Step 1). Then, in the for loop (Step
2-5), it chooses a datacenter for each reduce task indepen-
dently. Specifically, it samples a datacenter i for each reduce
task p with probability Ip;i. Finally, it rescales the bandwidth
to make sure the solution is feasible (Step 6). To verify that
Algorithm 1 can approach a CCT that is near to the optimal
one of the ILP P2, we first give a lower bound of the minimum
CCT of the coflow. Then, we provide an upper bound of the
CCT achieved byAlgorithm 1.

Theorem 3 (Lower bound of the optimal CCT of P2).
Define TP2 and TP3 as the optimal CCTs for problems P2 and
P3, respectively. Then, we have TP3 � TP2.

Proof. We mainly focus on proving that P3 is a relaxation of
P2 because such relaxation directly leads to TP3 � TP2. The
relaxation means that: for any feasible solution S :¼
ffIp;ig; fBi;jgg of P2, there always exists a feasible solution
of P3 to make the objective value in P3 equal to TS (the CCT
under solution S). To prove it, we define a solution of P3 as
follows: (1) set T ¼ TS ; (2) for each p, set Ip;i ¼ 1, and

Ip;i0 ¼ 0 for all i0 6¼ i; (3) for each lij, setBi;j ¼
Di

PR

p¼1
Ip;j

RT .

Since S is a feasible solution of P2, it is obvious thatPR
p¼1 Ip;i � Ui. Therefore, it remains only one constraint

(11) to be verified. With the definition of completion time,
we have

PT
0 Bi;jðxÞ � Di

PR
p¼1 Ip;j=R, which implies that

Bi;j ¼ Di

PR
p¼1 Ip;j=RT �PT

0 Bi;jðxÞ=T . Again, by the fact

that S is a feasible solution, we have
PT

0 Bi;jðxÞ � TCi;j.

Then, we get Bi;j �
PT

0 Bi;jðxÞ=T � Ci;j. This implies the

relaxation, and thus the theorem is proved. tu
Theorem 4 (Upper bound of the CCT achieved by Algo-
rithm 1). Algorithm 1 achieves a CCT that is at most 2 ln 4M
times the optimal CCT with probability at least 34, whereM ¼ jEj

LI ETAL.: ENDPOINT-FLEXIBLE COFLOW SCHEDULING ACROSS GEO-DISTRIBUTED DATACENTERS 2471

is the total number of inter-datacenter links in E. More specifi-
cally, Algorithm 1 guarantees its competitive ratio r for problem
P2 to satisfy thatPrðr > 2 ln 4MÞ � 1=4.

Proof. For each lij 2 E, define

rij ¼
Bi;j

Ci;j
¼

Di
RT

PR
p¼1 1ðIp;i ¼ 1Þ

Ci;j
;

where 1ðIp;i ¼ 1Þ is an indicator variable that is 1 if Ip;i ¼ 1
and 0 otherwise. Combining Theorem 3, the competitive
ratio of Algorithm 1 can be calculated as r ¼ maxlij rij.
Since Prðr > 2 ln 4MÞ �Plij2E Prðrij > 2 ln 4MÞ, we fix

lij and focus on the proof of Prðrij > 2 ln 4MÞ � 1
4M. Let

xp :¼ Di
RT 1ðIp;i ¼ 1Þ be a random variable, and define x :¼PR

p¼1 xp. These random variables have the following prop-
erties: 1) all xp’s are independent; 2) xp is either 0 or

Di
RT, and

Prðxp¼ Di
RTÞ¼Ip;i; 3) EðxÞ ¼ Di

PR

p¼1
Ip;i

RT � Ci;j, by Eqs. (11)

and (12); 4) If Prðxp¼ Di
RTÞ > 0 then Di

RT � Ci;j, by Eqs. (10),

(11), and (12).
Let u � 2e be a real number, and we now focus on the

proof of Prðx > Ci;juÞ � expð� u
2Þ. To this end, let a > 0

be a fixed parameter. By using Markov’s inequality, we
have

Prðx > Ci;juÞ ¼ Prðax > aCi;juÞ
¼ PrðexpðaxÞ > expðaCi;juÞÞ
� expð�aCi;juÞ � EðexpðaxÞÞ

¼ expð�aCi;juÞ
YR
p¼1

EðexpðaxpÞÞ:

(14)

Now, we analyze EðexpðaxpÞÞ. Using the definition of
mathematical expectation, we have

EðexpðaxpÞÞ ¼ ð1� Ip;iÞ þ Ip;iexpðaDi=RT Þ
¼ 1þ Ip;iðexpðaDi=RT Þ � 1Þ
� expðIp;iðexpðaDi=RT Þ � 1ÞÞ;

where the last inequality is derived from the fact that
1þ a � expðaÞ for a > 0. With the above formula, we
have

YR
p¼1

EðexpðaxpÞÞ � exp
XR
p¼1

Ip;iðexpðaDi=RT Þ � 1Þ
 !

:

For all p, we choose a to satisfy expðaDi=RT Þ �
1þ 1

2auDi=RT . We will show the existence and give the
value of such an a later. Combining the property of a

and the fact that EðxÞ � Ci;j, we have

YR
p¼1

EðexpðaxpÞÞ � exp
XR
p¼1

1

2
Ip;iauDi=RT

 !
� exp

1

2
Ci;jau

� �
:

Substituting the above inequality to Eq. (14), we obtain

Prðx>Ci;juÞ�exp
1

2
Ci;jau�aCi;ju

� �
¼exp að� 1

2
Ci;ju

� �
:

(15)

We now define a :¼ lnu2
Ci;j

, to verify that expðaDi=RT Þ �
1þ 1

2auDi=RT . Using the fact that for a � 1, 0 � b � 1,

ab � 1þ ab. Then, we have

expðaDi=RT Þ ¼ exp
Di
RT

Ci;j
ln

u

2

 !
¼ u

2

� �Di
RT
Ci;j

� 1þ
Di
RT

Ci;j
� u
2
� 1þ 1

2
au

Di

RT
:

Substituting a to (15), we get

Prðx > Ci;juÞ � exp � u

2
ln

u

2

� �
� exp � u

2

� �
:

This implies the following inequality

Prðr > uÞ �
X
li;j2E

Prðrij > uÞ ¼
X
li;j2E

Prðx > Ci;juÞ

�
X
li;j2E

exp � u

2

� �
¼ Mexp � u

2

� �
:

Choosing u ¼ 2 ln 4M, the theorem can then be proved.tu

5.2 Handling Multiple Coflows

Taking advantage of Algorithm 1, we treat the single-coflow
solution as a black box, and design a competitive algorithm
to minimize the average CCT of multiple coflows. The key
idea is that when a new coflow arrives, we first invoke the
Algorithm 1 to calculate the reduce task placement and the
bandwidth allocation for this new coflow. Then, we rescale
the bandwidths of all existing flows including the flows in
this new coflow, with the purpose of deriving a feasible
solution for each coflow and fully utilizing the link capacity.
The algorithm is shown in Algorithm 2, which is competi-
tive with a non-trivial ratio for problem P1.

Algorithm 2 works in a laissez-fair manner, i.e., it will be
invoked whenever a new coflow arrives or an existing coflow
finishes (Step 1). To avoid frequent reduce task placement, it
invokes Algorithm 1 only for the newly arrived coflows, and
stores the computed solution ffIkp;ig; fBk

i;jgg for each coflow k
(Step 2). These solutions may be infeasible due to the band-
width contention of concurrent coflows. Hence, it scales
down each coflow’s bandwidth with a weight factor �k (Step
3-6). Such weighted sharing policy inherently guarantees fair-
ness among concurrent coflows: large coflows will get more
bandwidth, while small coflows will get relatively less band-
width. Finally, it scales all flow’s bandwidth by a same largest
possible factor, to utilize the residual bandwidth (Step 7).

Our algorithm requires very little overhead since it only
makes new scheduling decisions on coflow arrival or depar-
ture. Moreover, our algorithm has a low time complexity. Its
dominant operation lies in scaling all coflows’ bandwidths
from their relevant single-coflow solutions derived by Algo-
rithm 1. Algorithm 1’s dominate overhead is LP calculation
and hence its the time complexity is OðLPðOðRmaxNÞ;
OðN2ÞÞÞ, whereRmax ¼ maxkRk andLP ðx; yÞ is the time com-
plexity of solving an LP with x variables and y constraints. In
conclusion, Algorithm 2 can run in OðKÞ �OðLPðOðRmaxNÞ;
OðN2ÞÞÞ. The following theorem further demonstrates the effi-
ciency ofAlgorithm 2 in solving the original problem P1.

2472 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 10, OCTOBER 2020

Algorithm 2.MinimizeAverage CCT ofMultiple Coflows

Input: Coflow information ffDk
i g; Rkg; 8k 2 K

Output: Feasible solutions for all k 2 K
1: while receiving a new coflow or a feedback indicating the

completion of an existing coflow do
2: Add this new coflow to JV or remove the completed coflow

from JV. Here, JV stores the set of coflows that are not com-
pleted till current time.

3: for each coflow k in JV do

4: Define �k :¼
ffiffiffiffiffiffi
Tk
P3

pP
k02JV

ffiffiffiffiffiffi
Tk0
P3

p , whereTk
P3 is the optimal objective

of the LPP3 for coflow k.

5: Update the solution of k as Sk:¼ffIkp;ig; f�kB
k
i;jgg, where

ffIkp;ig; fBk
i;jgg is the solution computed by Algorithm 1

when coflow k arrived.
6: end for
7: Find a largest factor to scale the bandwidths of all flows in

J V to pursue work conversing property.
8: end while

Theorem 5. Algorithm 2 is Kr-competitive for the original
problem P1, where r is the competitive ratio of Algorithm 1.

Proof. Define TP1 as the optimal value of problem P1, and let
Tk
P2, T

k
P3 denote the optimal CCTs of coflow k for problem

P2 andP3, respectively. It is clear that each coflow k contrib-
utes to the average CCT with no less than its minimum
completion time Tk

P2 when it occupies the network exclu-
sively. Given the result of Theorem 3, we have TP1 �
1
K

PK
k¼1 T

k
P2 � 1

K

PK
k¼1 T

k
P3. Therefore, we only need to com-

pare the performance of our algorithm to 1
K

PK
k¼1 T

k
P3. Spe-

cifically, let Talg denote the average CCT achieved by
Algorithm 2, and we focus on the proof of Talg �
r
PK

k¼1 T
k
P3 � Kr� TP1 in the rest proof process.

Suppose that there exists an optimization problem for
some subset JV of f1; . . . ; Kg

Minimize
X
k2JV

Tk
P3

xk
Subject to:

X
k2JV

xk � 1;

where xk is non-negative value. By leveraging the
Cauchy-Schwarz inequality, we have

X
k2JV

Tk
P3

xk
�

X
k2JV

Tk
P3

xk

0
@

1
A �

X
k2JV

xk

0
@

1
A �

X
k2JV

ffiffiffiffiffiffiffiffi
Tk
P3

q0
@

1
A

2

:

When xk ¼
ffiffiffiffiffiffiffiffi
Tk
P3

q
=
P

k2JV

ffiffiffiffiffiffiffiffi
Tk
P3

q
; 8k 2 JV, the above

optimization problem can be optimally solved. This implies

that for each k in each iteration ofAlgorithm2, theweighted

factors �k’s (8k 2 JV) are optimally picked. In other words,
the �k’s have least impact on the average CCT when

rescaling the bandwidth of each coflow. Define �
ðKÞ
k :¼ffiffiffiffiffiffiffiffi

Tk
P3

q
=
PK

k¼1

ffiffiffiffiffiffiffiffi
Tk
P3

q
and let Tk

alg denote the CCT of coflow k

achieved by the Algorithm 1. Since JV might be a subset of

f1; . . . ;Kg, we have the following inequality for any k

�k �
ffiffiffiffiffiffiffiffi
Tk
P3

q
PK

k¼1

ffiffiffiffiffiffiffiffi
Tk
P3

q ¼ �
ðKÞ
k :

Combining Algorithm 1, the CCT of each coflow is at
most

Tk
alg

�k
� Tk

alg

�
ðKÞ
k

� r
Tk
P3

�
ðKÞ
k

¼ r

ffiffiffiffiffiffiffiffi
Tk
P3

q XK
k¼1

ffiffiffiffiffiffiffiffi
Tk
P3

q
:

Again applying the Cauchy-Schwarz inequality, we
have

Talg ¼ 1

K

XK
k¼1

Tk
alg

�k
� 1

K

XK
k¼1

Tk
alg

�
ðKÞ
k

� r

K

XK
k¼1

ffiffiffiffiffiffiffiffi
Tk
P3

q !2

� r
XK
k¼1

Tk
P3 � KrTP1:

Thus, proved. tu
Remarks. Such good theoretical performance lies in the scal-

ing factor �k chosen for each coflow. First, �k is proportional
to the square root of Tk

P3, ensuring fairness among coflows:
the coflows with large minimum possible completion time
will get more bandwidth, while those with small comple-
tion timewill get relatively less bandwidth. Second, as indi-
cated in the proof process of the above theorem, �k is
computed with respect to the optimal average CCT of all
concurrent coflows. In other words, there exists no coflow
that can unilaterally improve its scaling factor without
incurring a negative impact on the performance of other
coflows.

One may further notice that our algorithm computes
endpoint placements for each coflow only once when the
coflow arrives at the network. The reasons are two-fold. First,
computing endpoint placement decisions frequently can bring
substantial overheads to our scheduler. Second, changing the
endpoint (reduce task) placement in the runtime is a hard task
and remains largely unexplored in existing data-parallel com-
puting frameworks.

Algorithm 3. Guaranteeing Coflow Deadline

Input: Coflow information ffDk
i g; Rk; tk;Gkg; 8k 2 K

Output: Feasible solutions for all k 2 K
1: while receiving a new coflow or a feedback indicating the

completion of an existing coflow do
2: If this is a new coflow, invoke Algorithm 1 to compute

ffIkp;ig; T k
alg1gg for it and add this coflow to JV if it can be

admitted; Otherwise, remove the completed coflow from
JV.

3: Sort coflows in JV with shortest-ðGk � tkÞ-first policy.
4: For each coflow k in JV, allocate ðDk

i

PRk

p¼1
Ik
p;j

Rk
Þ=ðGk � tkÞ

amount of bandwidth to its flow on link lij.

5: Find a largest factor to scale the bandwidths of all flows
in J V to pursue work conversing property.

6: end while

LI ETAL.: ENDPOINT-FLEXIBLE COFLOW SCHEDULING ACROSS GEO-DISTRIBUTED DATACENTERS 2473

6 EXTENDED MODELS

Our optimization framework can be flexibly extended to
incorporate various design choices and practical require-
ments for applications or datacenter operators. In particular,
we mainly consider two extended models: one is done by
enforcing a bandwidth usage budget and the other one by
considering coflow deadline.

6.1 Enforcing Bandwidth Usage Budget

It has been widely accepted that inter-datacenter WAN band-
width is an expensive and scarce resource. It not only brings
the operational cost for datacenter providers [5], [6], [19], but
also incurs WAN usage cost for the third-party tenants that
run their services on public clouds such as AWS and Azure
[36]. Purely reducing WAN usage can arbitrarily increase
the CCT, while solely minimizing the CCT could result in
increased WAN bandwidth usage. Actually, most datacenter
operators and third-party tenants want to improve their serv-
ices’ or jobs’ performance as much as possible, with a given
budget [5]. So, we aremotivated to enforce aWANbandwidth
usage budget in our SmartCoflow framework, so as to enable a
flexible balance choice between the speedup of coflows and
WANusage.

As a baseline for the budget, we start with the bandwidth
consumption fCi;j; 8lijg of the original SmartCoflow frame-
work that optimizes for average CCT of coflows. We set the
WAN bandwidth usage budget to be fs � Ci;jg, 0 < s � 1.
s ¼ 1 implies noWAN usage budget, while lower values of s
imply tighter budget and slower completion of coflows. To be
more specific, by enforcing the budget within the original
problemP1, we yield an extended optimization problem P4:

Minimize
fIk

p;i
g;fBk

i;j
ðxÞg

1

K

XK
k¼1

Tk (16)

S.t.:
XK
k¼1

Bk
i;jðxÞ � sCi;j; 8lij 2 E; 8x � 0:

Eqs. ð1Þ; ð2Þ; ð3Þ; ð4Þ:
(17)

We can see that the only difference between P4 and P1 lies
in the bandwidth constraint. To solve P4, the only thing we
need to do is to scale down the bandwidth capacity of all
links with an identical ratio s and then use the unmodified
Algorithms 1 and 2.

6.2 Considering Deadlines for Coflows

Driven by mission-critical analytics jobs [37], [38] and the fact
that inter-datacenter transfers typically require to be completed
within certain time periods [39], [40], [41], inter-datacenter
coflowsmay be generated with deadlines [9], [15], e.g., all indi-
vidual flows in a coflowshould be completedwithin a common
deadline. It is important to guarantee a coflow’s completion
within the deadline; otherwise, the coflowwill become useless,
thus hurting the user experience. To guarantee coflow dead-
line, the SmartCoflow algorithms need some changes. Specifi-
cally, we first design an admission control algorithm based on
Algorithm 1, and then replace Algorithm 2 with a new one to
allocate the minimum bandwidth to each coflow to make all
flows finish exactly at the deadline.

To ease the presentation, let Gk denote the deadline of
coflow k 2 K. To guarantee deadlines in online fashion, we
introduce admission control. Specifically, once a coflow k
arrives, we formulate an ILP (P2) for it and solve this ILP
with Algorithm 1. Then, we get the reduce task placement
decisions and the hypothetical CCT Tk

alg1 for this coflow k.
Though Algorithm 1 is not optimal with respect to the ILP
P2, it is carried out by assuming that each arriving coflow
monopolizes the network. Hence, Tk

alg1 could be viewed as
the minimum time for coflow k required to finish its data
transfers. As such, we admit a coflow k if, and only if its
minimum CCT Tk

alg1 � Gk � tk (tk is the arrival time of k).
We now design a new Algorithm 3 to perform bandwidth

allocation. It is different fromAlgorithm2 in Steps 2-5. Specifi-
cally, Algorithm 3 starts by admitting a new coflow or remov-
ing existing completed coflow to get the set of coflows that
have arrived but not completed until now. Then, it sorts
coflows in ascending order of Gk � tk and seeks to allocate the
minimum bandwidth to every coflow to guarantee its dead-
line. Finally, it scales all flow’s bandwidth as Algorithm 2 did
to pursuework conserving property.

7 PERFORMANCE EVALUATION

In this section, we evaluate SmartCoflow using both a small-
scale testbed implementation and large-scale simulations.

Comparing Solutions. We compare the following schemes
with SmartCoflow throughout our experiments.

� Varys-only: schedules all coflows with the Shortest-
Effective-Bottleneck-First (SEBF) coflow scheduler in
Varys [15], with already-fixed endpoints of flows for
each coflow. This scheme corresponds to a scheduling-
only scheme that ignores the reduce task placement.

� Iridium+Varys: assigns the reduce tasks for each coflow
with the reduce task placement method in Iridium [5],
and then schedules all flows using Varys SEBF sched-
uler [15]. This scheme considers the reduce task place-
ment and coflow scheduling independently, rather
than jointly.

Performance Metrics. We define CCT2�CCT1
CCT2

as the perfor-
mance improvement of scheme 1 compared to scheme 2,
where CCT1 and CCT2 are the average CCTs achieved by
scheme 1 and scheme 2, respectively.

7.1 Small-Scale Testbed Implementation

We implement our SmartCoflow scheduler based on an open-
source framework—Varys [15], [20]. The Varys framework can
not only provide a simple API to data-parallel jobs for coflow
submission, but also provide a global view of the network and
coflow information. Upon receiving a new coflowor an update
indicating the completion of an existing coflow, SmartCoflow
invokes Algorithm 2 to calculate the reduce task placement
and scheduling decisions, based on the information of new
coflow and the updated information of existing coflows. We
use the simplexmethod implemented in theBreeze optimiza-
tion library [35] to solve the relaxed LP problem P3 involved in
SmartCoflow algorithms. To enforce the calculated reduce task
placement decisions, we have implemented two new Scala

classes: CoflowSender and CoflowReceiver. We launch a
CoflowSender thread at each sender node of a coflow, by

2474 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 10, OCTOBER 2020

specifying the coflow id and the number of flows. Then, for
each source-destination pair of a coflow, we launch a Coflow-

Receiver thread at the destination node to fetch the corre-
sponding intermediate data. On the other hand, we enforce the
calculated scheduling decisions (i.e.,Bk

i;jðtÞ) to the application-
layer bandwidth allocation through updating the rate limit to
the ThrottledInputStream (java I/O objective) provided
by the Varys framework.

We build a testbed with 6 compute instances in the us-

central1-c zone on the Google’s Cloud Compute Engine
to emulate an inter-datacenter network, where each instance
is an n1-standard-2 with 2 vCPUs and 7.5 GB memory.
We use each instance to emulate a datacenter. To control the
link bandwidth that would exist in the inter-datacenter net-
works, we leverage Linux Traffic Control to limit the link
bandwidth between any two compute instances. Fig. 6
shows the detailed bandwidth constrained on each link
which is randomly chosen from 100 to 1,000 Mbps. Even
though each compute instance we launched is not as large
as a commodity datacenter, we believe that this testbed can
faithfully emulate the bandwidth bottlenecks in the inter-
datacenter networks.

In our experiment, we inject 10 coflows into the network
to evaluate the performance of SmartCoflow. For each
coflow, the amount of associated intermediate data stored
on each datacenter is randomly chosen from 100 to 1,000
MB, as shown in Table 2. The number of reduce tasks associ-
ated with each coflow is listed in Table 3. Based on the

above-mentioned experimental setup, we calculate the deci-
sions on reduce task placements. Note that for the Varys-
only scheme, we use the locality policy to place the reduce
tasks of each coflow, which means that the number of
reduce tasks placed on each datacenter is proportional to
the intermediate data on it. In fact, such locality policy is
commonly adopted in data-parallel frameworks such as
Spark [23]. The calculated reduce task placement strategies
under different schemes are illustrated in Table 4.

Fig. 7 first presents the CCTs achieved by Varys-only,
Iridium+Varys and SmartCoflow schemes, respectively. It is
clear that SmartCoflow can save 64:0�52:0

64:0 ¼ 18:75% of the aver-
age CCT compared to the Varys-only scheme, and it also
can reduce the average CCT by 58:3�52:0

58:3 ¼ 10:81% compared
to the Iridium+Varys scheme. We further observe that
SmartCoflow can reduce the tail CCT, compared to both
Varys-only and Iridium+Varys schemes. The reason for
these results is that SmartCoflow can smartly avoid the bot-
tleneck links when transferring the flows, reducing the
overall CCTs and improving the link bandwidth utilization
as well.

To clearly illustrate the underlying reason for such
improvement, we next plot the schedule orders achieved by
three different schemes in Fig. 8. The scheduling order
under the Varys-only scheme is C7 ! C8 ! C10 ! C5 !
C3 ! C9 ! C2 ! C4 ! C6 ! C1. While for Iridium+Varys
scheme, the scheduling order is C5 ! C9 ! C8 ! C6 !
C10 ! C1 ! C3 ! C2 ! C7 ! C4. The reason for such dif-
ferent scheduling order is that different schemes use differ-
ent reduce task placement strategies, making the bottleneck
flows (i.e., the largest flow in a coflow [15]) of different

Fig. 6. The emulated testbed on Google’s cloud compute engine.

TABLE 2
Intermediate Data Associated With Each Coflow

Instances Intermediate data associated with each coflow (MB)

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Instance-1 900 1000 100 900 100 700 800 300 300 900
Instance-2 100 1000 400 1000 700 300 200 700 600 1000
Instance-3 100 100 1000 700 0 1000 500 700 200 600
Instance-4 600 1000 800 800 300 0 400 100 800 100
Instance-5 100 1000 1000 800 0 400 700 100 200 100
Instance-6 300 500 700 400 100 400 700 500 500 200

TABLE 3
The Number of Reduce Tasks Associated With Each Coflow

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Num. of reduce tasks 11 4 10 3 12 5 3 4 8 6

TABLE 4
Reduce Task Placement for Three Different Schemes

Coflow
Varys-only Iridium+Varys SmartCoflow

Instance Indexes Instance Indexes Instance Indexes

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

C1 4 0 4 3 0 0 2 2 0 0 5 2 0 2 0 1 8 0
C2 1 1 0 1 1 0 2 0 0 1 0 1 1 0 0 3 0 0
C3 0 0 3 2 3 2 2 1 2 0 3 2 1 0 5 0 0 4
C4 1 1 0 1 0 0 1 0 0 1 0 1 0 0 1 1 0 1
C5 1 7 0 3 0 1 4 0 3 4 0 1 4 0 3 4 0 1
C6 2 0 2 0 1 0 0 3 0 0 1 1 0 3 0 0 2 0
C7 1 0 0 0 1 1 1 0 0 0 1 1 1 1 0 0 1 0
C8 0 2 2 0 0 0 0 2 0 0 0 2 0 3 1 0 0 0
C9 1 2 0 3 0 2 2 0 1 2 0 3 2 0 0 3 0 3
C10 2 3 1 0 0 0 2 3 0 0 0 1 3 1 0 0 0 2

Fig. 7. The CCT of each coflow achieved by Varys-only, Iridium+Varys
and SmartCoflow schemes, respectively.

LI ETAL.: ENDPOINT-FLEXIBLE COFLOW SCHEDULING ACROSS GEO-DISTRIBUTED DATACENTERS 2475

coflows to appear at different links. In contrast, SmartCoflow
can obtain a better reduce task placement strategy, and
schedule the 10 coflows with an order of C5 ! C9 ! C8 !
C6! C7! C1! C10 ! C2! C3! C4, resulting in signif-
icant reduction in the average CCT (as shown in Fig. 7). An
interesting observation is that almost all links (except the
links 2-6 and 5-6) have been utilized for coflow transmission
under SmartCoflow, indicating that SmartCoflow is capable of
improving the link bandwidth utilization. To show this
point more clearly, we plot the average link bandwidth uti-
lization over time for different methods in Fig. 9. As we can
see, SmartCoflow can improve link bandwidth utilization
substantially in the beginning 40s, and maintain comparable
bandwidth utilization after 40s, compared to Varys-only
and Iridium+Varys solutions.

To demonstrate the efficiency of SmartCoflow, we further
evaluate its scalability. In particular, we record the time it
takes to solve the relevant LP problem P3. Fig. 10 plots the
computation time SmartCoflow taken to resolve the relevant

LP under different number of variables. In this figure, each
point is averaged over ten runs. Though the computation
time grows as the number of variables increases, we can
observe that SmartCoflow is still efficient: it takes about 0.4
seconds to return the LP result for 72 variables and 1 second
for 252 variables. This computation time is relatively small,
as the CCT of a coflow can reach hundreds of seconds across
the geo-distributed datacenters. This implies that our Smart-
Coflow is scalable as its dominant overhead lies in the LP,
which can be solved with standard LP solvers. One can fur-
ther reduce the overhead of solving the LP by using com-
mercial solvers (e.g., MOSEK [42] and CPLEX [43]) that take
less than one second to return results for problems with
thousands of variables.

7.2 Large-Scale Trace-Driven Simulation

We develop a flow-level simulator based on an open-source
framework CoflowSim [44], to further exploit the advantages
of our proposed solution when applying to large-scale net-
work with a large number of concurrent coflows. To reduce
the simulation complexity, CoflowSim accounts for both the
flow arrival and departure events, rather than packet sending
and receiving events. Also, it updates the rate and remaining
volume of each flow when an event initiates. To solve the LP
problem P3 in SmartCoflow, we embed the API provided by
Breeze into our simulator.

Simulation Setup and Data Trace. We simulate a production
inter-datacenter networkwith 40 datacenters, which is a typical
size in today’s inter-datacenter networks [45]. Each datacenter
has a uniform capacity of 100 computing slots. In our 40-data-
center setup, we vary the bandwidth between 100 Mbps to 1
Gbps, hoping to mimic the heterogeneous bandwidths
between different datacenters. Our simulations are conducted
on Hive/MapReduce trace provided by Facebook, which is a
widely adopted trace in coflow issues [15], [16], [46]. The origi-
nal trace is from a 3000-machine 150-rack cluster with 10:1
over-subscription ratio, and contains 526 coflows. We scale
down all coflows to the 40-datacenter inter-datacenter network
in our deployment, with preserving the original coflow’s com-
munication characteristics. Note that the original trace only
provides the whole data size of a coflow to be transferred to
reducers. Therefore,wedistribute the data to eachflow in auni-
form manner, and accordingly obtain the intermediate data
placed on each datacenter.

Simulation Results. Table 5 first presents the average, 95th
percentile and maximum CCTs achieved by three different

Fig. 8. The duration in which each coflow is scheduled on each link,
under the (a) Varys-only, (b) Iridium+Varys, and (c) SmartCoflow
schemes, respectively.

Fig. 9. Average link bandwidth utilization achieved by Varys-only, Iridium
+Varys and SmartCoflow schemes, respectively.

Fig. 10. The computation time of SmartCoflow’s linear program.

2476 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 10, OCTOBER 2020

schemes. We observe that SmartCoflow reduces the average,
95th percentile and maximum CCTs by 111684�79742

111684 ¼28:6%,
47760�29258

47760 ¼38:7%, and 8784344�6733016
8784344 ¼23:4%, respectively,

compared to the Varys-only scheme. Moreover, compared
to the Iridium+Varys scheme, the average, 95th percentile
and maximum CCTs can also be reduced by 109936�79742

109936 ¼
27:5%, 46158�29258

46158 ¼36:7%, and 8827128�6733016
8827128 ¼23:7%, respec-

tively, under our SmartCoflow scheme. One may wonder at
this point that the 95th percentile CCT is even smaller than
the average CCT for each scheme. This is because that some
coflows experience extremely high CCT, while the CCTs of
other coflows are relatively low. The above results directly
confirm that combining reduce task placement and schedul-
ing can significantly reduce the average CCT of coflows.

To understand on amicroscopic level,we also plot the CDF
of CCT for all coflows in Fig. 11. We can clearly find that 33.65
percent of coflows experience a CCT smaller than 8 ms under
SmartCoflow scheduler, while the fractions for Varys-only and
Iridium+Varys are only 18.82 and 20.34 percent. We further
observe that Varys-only and Iridium+Varys schemes perform
a little better than SmartCoflow—only for coflowswhose CCT
are in the range [56,1008] ms. As coflows become larger
(> 1008 ms), SmartCoflow always performs better, as the
curve of SmartCoflow is higher than that of Varys-only and
Iridium+Varys. Note that the curve of SmartCoflowmaintains
a stable value within [8,1008]ms because no coflows experi-
ence a CCTwithin [8,1008]ms.

After we see the improvements of CCTs, we also evaluate
the performance of diferent schemes in terms of the amount
of shuffle data across geo-distributed datacenters for each
coflow. Even though reducing the coflow shuffle data is not
the main goal of our optimization, we find out that it is in the
line with the goal of reducing CCT. Fig. 12 shows the CDF of
coflow shuffle data under three schemes. We can easily check
that SmartCoflow always achieve a smaller size of coflow shuf-
fle data, compared to both the Varys-only and Iridium+Varys
schemes. Specifically, under our SmartCoflow scheme, 40.68

percent of coflows become short (< 5 MB). On the other
hand, the fractions of short coflows under the Varys-only and
Iridium+Varys schemes are both 28.71 percent.

The Effectiveness of WAN Usage Budget Enforcement.
Reducing inter-datacenter WAN bandwidth usage is mean-
ingful to both providers and thirty-party cloud tenants. To
evaluate the impact of different bandwidth usage budgets,
we vary the knob s from 0.1 to 1. Then, we record the aver-
age CCT of coflows achieved by our SmartCoflow solution
under various knobs, as shown in Fig. 13. For comparison,
we fix the knob s to 1 (implying no budget) and plot the
average CCT achieved by Varys-only and Iridium+Varys
solutions under this knob. From Fig. 13, the first observation
is that the average CCT under SmartCoflow increases as s

decreases. This is reasonable because the smaller is the s,
the less bandwidth can be used for coflow scheduling. The
second obvious observation is that with the same knob
s ¼ 1, SmartCoflow achieves lower average CCT than Varys
and Iridium+Varys. The last implicated observation is that
even when SmartCoflow uses 20 percent less bandwidth, it
still achieves a little bit smaller average CCT than Varys and
Iridium+Varys. This verifies that SmartCoflow can smartly
use the bandwidth to ensure fast coflow transmission and
reasonable bandwidth usage.

The Effectiveness of Considering Coflow Deadline. The trace
we used has no coflow-specific deadlines. We introduce
them as existing literature [15] did, by using the minimum
CCT of a coflow in an empty network. Specifically, we let
the deadline of a coflow to be the multiplier of its minimum
CCT and ð1þ Uð0; hÞÞ, where Uð0; hÞ is a uniform random
number ranging from 0 to h. By varying h from 0.1 to 25, we

Fig. 11. The CDFs of CCTs under Varys-only, Iridium+Varys and Smart-
Coflow, respectively. Note that the X-axes are in logarithmic scale.

TABLE 5
The Average CCT, 95th Percentile CCT, and Maximum

CCTAchieved by Three Different Schemes

Metrics Varys-only Iridium+Varys SmartCoflow

Average CCT (ms) 111684 109936 79742
95th percentile CCT (ms) 47760 46158 29258
Maximum CCT (ms) 8784344 8827218 6733016

Fig. 12. The CDFs of coflow shuffle data under Varys-only, Iridium+Varys
andSmartCoflow respectively. The X-axes are in logarithmic scale.

Fig. 13. The average CCTunder different WAN bandwidth usage knobs.
Note that the pink line is an auxiliary line for illustrating the experimental
results more clearly.

LI ETAL.: ENDPOINT-FLEXIBLE COFLOW SCHEDULING ACROSS GEO-DISTRIBUTED DATACENTERS 2477

plot the deadline meet rate achieved by different schemes in
Fig. 14. It is obvious that under all the schemes, the deadline
meet rate increases as h increases. Among all the schemes,
SmartCoflow-w-deadline performs best in meeting coflow
deadline. The reasons are two-fold. On the one hand, it can
reduce the coflow shuffle data significantly by smartly plac-
ing the endpoints of coflows. On the other hand, it uses
Algorithm 1 as an efficient admission control rule, and com-
bines the shortest-deadline-first prioritization and deadline-
associated minimum bandwidth allocation policy. More
precisely, our SmartCoflow-w-deadline can improve the dead-
line meet rate by up to 20.3 and 18.8 percent, compared to
Varys and Iridium+Varys, respectively. One may wonder
that compared to both Varys and Iridium+Varys, the Smart-
Coflow algorithms achieve a decreasing benefit in meeting
the coflow deadline as h increases. The reason is that an
increasing h leads to a longer deadline for each coflow. In
such a case, Varys and Iridium+Varys can meet coflows’
deadlines, leaving less room to SmartCoflow algorithms to
improve coflow deadline meet rate.

8 DISCUSSION

Estimating Intermediate Data Size. Our work assumes prior
information of intermediate data sizes as we believe that to
be reasonable. However, to obtain such information, consid-
erable efforts on modifying applications are required. Such
modification is doable, but not trivial. Without modifying
applications, one possible approach to estimate the interme-
diate data size is to apply the machine learning technique to
learn flow sizes from past system traces [47]. For example,
one can trace information like the data received, read from
disk or memory, CPU usage, and then build a machine
learning model to interpret the traced dataset, and finally
deploy the learned model in either user or kernel space to
estimate flow size. The rationale for such learning is that the
traced activities may have causality, e.g., most datacenter
jobs are repetitive [38].

Handling Coflow Dependencies. So far, we only consider
isolated single-stage coflows. However, GDA jobs with
pipeline dataflows [16], [48] and GDML jobs with numerous
iterations can create multiple coflows with dependencies,
where a coflow cannot start until its dependent one has fin-
ished. A simple approach for considering coflow dependen-
cies is to order coflows first by ancestry and then break ties
using our Algorithm 2. Specifically, one can keep collecting
the set of independent coflows and feeding it to Algorithm 2

for scheduling until all coflows have finished. Instead of
ordering by ancestry, one can also use the Critical-Path
method [49] to acquire a better order, so as to achieve better
performance. We leave it as one direction of future work.

Handling Tiny Coflows. While coflows in production envi-
ronments are mostly large [15], there do exist some tiny
coflows. Due to the inherent scheduling overhead in our
scheduler, our work fails to handle the tiny coflows. One
possible way is to give tiny coflows the highest priorities if
the geo-distributed WAN routers support priority queuing.
Alternatively, one can directly transfer tiny coflows during
the period of calculating scheduling decisions, and the
newly calculated schedules can not be enforced until the
tiny coflows have finished. We leave it as future work.

Coflow Routing. Our scheduler performs well even when
routing is not considered. Existing studies have demon-
strated that integrating coflow routing and scheduling can
achieve better performance [12], [18]. A possible way to
realize such integration could do the following. We add a
new set of decision variables (i.e., vk

i;j) along with relevant
link constraints in the formulation to indicate the path of
the i ! j flow in coflow k, and redesign new algorithms to
derive all the decisions including task placement, routing,
scheduling.

Regulatory and Privacy Constraints. So far, our work consid-
ers that traffic or data can be freely moved between datacen-
ters. However, regulatory and privacy concerns might forbid
the data movement between certain pairs of datacenters [50].
One possible approach is to translate such regulatory and pri-
vacy concerns into the constraints on the placement of reduce
tasks. Then, one can design efficient heuristic to avoid placing
reduce tasks on invalid datacenters.

Incorporating With Data-Parallel Frameworks. Our scheduler
was implemented based on Varys [15], which provides an
API to abstract away the underlying scheduling and commu-
nication mechanisms. So, once the data-parallel frameworks
(e.g., Spark and MapReduce) create VarysClient objects,
our scheduler can be incorporated with those frameworks,
and user jobs can take advantages of our scheduler for their
coflow transmissionswithout anymodifications.

9 RELATED WORK

SmartCoflow contains two parts: reduce task placement and
coflow scheduling. There is a large spectrum of related
work in datacenter networks, along either reduce task place-
ment or scheduling. We only review some closely related
ones here.

Reduce Task Placement in Datacenter Networks. Existingwork
mainly focuses on placing reduce tasks close to their intermedi-
ate data for optimizing the completion times of jobs inside a
data center or across geo-distributed datacenters. Shuffle-
Watcher, improves the locality of shuffle by placing bothmap
and reduce tasks on the same set of racks in a single datacenter
[51]. Iridium [5] and Flutter [10] reduce the job completion
time by placing reduce tasks on or close to datacenters that
have a large amount of intermediate data and relatively high
link bandwidth. Chen et al. propose to achieve max-min fair-
ness among multiple jobs across geo-distributed data centers,
by using the task scheduling method [32]. Regarding the end-
points of network transfers, Sinbad leverages the flexibility in

Fig. 14. The ratio of coflows that meet their deadline when using different
schemes under varying �.

2478 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 10, OCTOBER 2020

the placement of output data of big data jobs, without consid-
ering other stages (e.g., shuffle stage) in a job [52]. Corral
focuses on joint optimization of input data and task place-
ment, so as to reduce the network contention [53]. However,
the benefits of these techniques are inherently limited because
they do not take into account the network flow scheduling
after the reduce tasks or endpoints have been fixed. CLARI-
NET [8] is the most related recent work that considers net-
work flow scheduling after task placement. Nevertheless, it
focuses on optimizing network flows at the flow-level instead
of the coflow-level, and it considers task placement and flow
scheduling independently rather than jointly.

Network Scheduling in Datacenter Networks. Existing work
can be categorized into two categories: flow-level scheduling
and coflow-level scheduling. Regarding the flow-level sched-
uling, there aremany existing solutions that aim to finish indi-
vidual network flows faster or improve network utilization,
such as pFabric [54], PDQ [55], PASE [56], Aemon [57]. There
are also solutions on providing performance guarantee for
individual flows or even the upper-layer jobs [58], [59], [60],
[61], [62]. Unfortunately, since coflows generalize traditional
point-to-point flows by capturing the multipoint-to-multi-
point aspect of data-parallel communications, flow-level
resource schedulers do not consider the collective behaviors
of flows in a coflow and thus are coflow-agnostic. Regarding
the coflow-level scheduling, Orchestra takes the first step to
consider the collective behaviors of flows when optimizing
flow transfers in data center networks [11]. After that,
Chowdhury et al. explicitly present the concept of coflow to
describe such collective behaviors of flows [9]. Then, many
solutions on coflow-level scheduling have been proposed
with the aim of reducing CCT (e.g., Baraat [63], Varys [15],
Aalo [16], CODA [17], RAPIER [12], OMCoflow [18], Siphon
[64], Sincronia [26]), or achieving fairness (e.g., Li. et al. [65],
Coflex [31], Utopia [66], and NC-DRF [67]). However, since
these coflow-level schedulers consider the endpoints of
coflow transfers to be fixed, there is little space for scheduling
to take effect for optimizing the average CCT. SmartCoflow, on
the other hand, uses reduce task placement technique to place
the endpoints of coflows smartly before scheduling.

10 CONCLUSION

In this paper, we have presented SmartCoflow, a coflow-
aware optimization framework that seeks to integrate end-
point placement and coflow scheduling to minimize the
average CCT of coflows across geo-distributed datacenters.
Starting from an approximate algorithm for minimizing the
CCT of single coflow, SmartCoflow develops a fast and effi-
cient online algorithm to minimize the average CCT of mul-
tiple coflows. We have conducted rigorous theoretical
analysis to show that SmartCoflow can achieve a good com-
petitive ratio in minimizing the average CCT of the coflows,
without prior knowledge of future coflows. Furthermore,
we have also extended SmartCoflow to make our solution be
able to support various design choices and practical require-
ments, such as enforcing an inter-datacenter bandwidth
usage budget and guaranteeing coflow deadline. To the
best of our knowledge, SmartCoflow is the first work that
proposes and proves the position that endpoint placement
and coflow scheduling must be jointly considered for

various optimization goals, i.e., average CCT, meeting
deadlines and saving bandwidth usage. Extensive testbed
experiments and trace-driven simulations have shown con-
vincing evidence that SmartCoflow can reduce the average
CCT, lower inter-datacenter bandwidth usage, and improve
coflow deadline meet rate when compared to the prevailing
methods.

ACKNOWLEDGMENTS

This work was supported in part by the NSFC General Tech-
nology Basic Research Joint Funds under Grant U1836214; in
part by the State Key Program of National Natural Science of
China under Grant 61832013; in part by the Artificial Intelli-
gence Science and Technology Major Project of Tianjin under
Grant 18ZXZNGX00190; in part by theNational KeyR&DPro-
gram of China under Grant 2019QY1302; in part by the NSFC
under Grant 61672379; in part by the National Key R&D Pro-
gram of China under Grant 2019YFB2102404; in part by the
NSFC-Guangdong Joint Funds under Grant U1701263; in part
by the Natural Science Foundation of Tianjin under Grant
18ZXZNGX00040; in part by the National Key R&D Program
of China under Grant 2018YFB1004700; in part by the NSFC
under Grants 61872265 and 61672131; in part by the Key
research and Development Program for Guangdong Province
2019B010136001; in part by the NSFC under Grant 61772112;
and in part by the Science Innovation Foundation of Dalian
under Grant 2019J12GX037. A preliminary version of this arti-
clewas presented in IEEE INFOCOM2018 [1].

REFERENCES

[1] W. Li, X. Yuan, K. Li, H. Qi, and X. Zhou, “Leveraging endpoint
flexibility when scheduling coflows across geo-distributed data-
centers,” in Proc. IEEE INFOCOM, 2018, pp. 873–881.

[2] Google datacenter locations, Accessed: 2020. [Online]. Available:
https://www.google.com/about/datacenters/inside/locations/

[3] Amazon datacenter locations, Accessed: 2020. [Online]. Available:
https://aws.amazon.com/cn/about-aws/global-infrastructure/

[4] Microsoft datacenters, Accessed: 2020. [Online]. Available:
http://www.microsoft.com/en-us/server-cloud/cloud-os/
global-datacenters.aspx

[5] Q. Pu et al., “Low latency geo-distributed data analytics,” in Proc.
ACM Conf. Special Interest Group Data Commun., 2015, pp. 421–434.

[6] K. Hsieh et al., “Gaia: Geo-distributed machine learning approach-
ing LAN speeds,” in Proc. 14th USENIX Conf. Netw. Syst. Des.
Implementation, 2017, pp. 629–647.

[7] C.-C. Hung, L. Golubchik, and M. Yu, “Scheduling jobs across
geo-distributed datacenters,” in Proc. 6th ACM Symp. Cloud Com-
put., 2015, pp. 111–124.

[8] R. Viswanathan, G. Ananthanarayanan, andA. Akella, “CLARINET:
WAN-aware optimization for analytics queries,” in Proc. 12th USE-
NIXConf. Operating Syst.Des. Implementation, 2016, pp. 435–450.

[9] M. Chowdhury and I. Stoica, “Coflow: A networking abstraction
for cluster applications,” in Proc. 11th ACM Workshop Hot Topics
Netw., 2012, pp. 31–36.

[10] Z. Hu, B. Li, and J. Luo, “Flutter: Scheduling tasks closer to data
across geo-distributed datacenters,” in Proc. IEEE INFOCOM,
2016, pp. 1–9.

[11] M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan, and I. Stoica,
“Managing data transfers in computer clusters with orchestra,” in
Proc. ACM SIGCOMMConf., 2011, pp. 98–109.

[12] Y. Zhao et al., “Rapier: Integrating routing and scheduling for
coflow-aware data center networks,” in Proc. IEEE INFOCOM,
2015, pp. 424–432.

[13] L. Luo, J. Nelson, L. Ceze, A. Phanishayee, and A. Krishnamurthy,
“Parameter hub: A rack-scale parameter server for distributed
deep neural network training,” in Proc. ACM Symp. Cloud Comput.,
2018, pp. 41–54.

LI ETAL.: ENDPOINT-FLEXIBLE COFLOW SCHEDULING ACROSS GEO-DISTRIBUTED DATACENTERS 2479

https://www.google.com/about/datacenters/inside/locations/
https://aws.amazon.com/cn/about-aws/global-infrastructure/
http://www.microsoft.com/en-us/server-cloud/cloud-os/global-datacenters.aspx
http://www.microsoft.com/en-us/server-cloud/cloud-os/global-datacenters.aspx

[14] G. Wangt, A. Phanishayee, S. Venkataraman, and I. Stoicat, “Blink:
A fast NVLink-based collective communication library,” in Proc.
Conf. Syst. Mach. Learn., 2018, Accessed: 2020. [Online]. Available:
https://rise.cs.berkeley.edu/wp-content/uploads/2018/01/blink-
2-page-11_50.pdf

[15] M. Chowdhury, Y. Zhong, and I. Stoica, “Efficient coflow scheduling
with Varys,” inProc. ACMConf. SIGCOMM, 2014, pp. 443–454.

[16] M. Chowdhury and I. Stoica, “Efficient coflow scheduling without
prior knowledge,” in Proc. ACM Conf. Special Interest Group Data
Commun., 2015, pp. 393–406.

[17] H. Zhang, L. Chen, B. Yi, K. Chen, M. Chowdhury, and Y. Geng,
“CODA: Toward automatically identifying and scheduling coflows
in the dark,” in Proc. ACMSIGCOMMConf., 2016, pp. 160–173.

[18] Y. Li et al., “Efficient online coflow routing and scheduling,” in
Proc. 17th ACM Int. Symp. Mobile Ad Hoc Netw. Comput., 2016,
pp. 161–170.

[19] A. Vulimiri, C. Curino, P. B. Godfrey, T. Jungblut, J. Padhye, and
G. Varghese, “Global analytics in the face of bandwidth and regu-
latory constraints,” in Proc. 12th USENIX Conf. Netw. Syst. Des.
Implementation, 2015, pp. 323–336.

[20] Varys: Efficient clairvoyant coflow scheduler, Accessed: 2020.
[Online]. Available: https://github.com/coflow/varys

[21] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing
on large clusters,”Commun. ACM, vol. 51, no. 1, pp. 107–113, 2008.

[22] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets,” in Proc. 2nd USENIX
Conf. Hot Topics Cloud Comput., 2010, Art. no. 10.

[23] M. Zaharia et al., “Resilient distributed datasets: A fault-tolerant
abstraction for in-memory cluster computing,” in Proc. 9th USE-
NIX Conf. Netw. Syst. Des. Implementation, 2012, Art. no. 2.

[24] I. Cano, M. Weimer, D. Mahajan, C. Curino, G. M. Fumarola, and A.
Krishnamurthy, “Towards geo-distributed machine learning,” IEEE
Data Eng. Bulletin, vol. 40, no. 4, pp. 41–59, 2017.

[25] S. Venkataraman, A. Panda, G. Ananthanarayanan, M. J. Franklin,
and I. Stoica, “The power of choice in data-aware cluster sched-
uling,” in Proc. 11th USENIX Conf. Operating Syst. Des. Implementa-
tion, 2014, pp. 301–316.

[26] S.Agarwal, S. Rajakrishnan,A.Narayan, R.Agarwal, D. Shmoys, and
A. Vahdat, “Sincronia: Near-optimal network design for coflows,” in
Proc. Conf. ACMSpecial Interest GroupData Commun., 2018, pp. 16–29.

[27] Q. Ho et al., “More effective distributed ML via a stale synchro-
nous parallel parameter server,” in Proc. 26th Int. Conf. Neural Inf.
Process. Syst., 2013, pp. 1223–1231.

[28] B. Recht, C. Re, S. Wright, and F. Niu, “HOGWILD: A lock-free
approach to parallelizing stochastic gradient descent,” in Proc.
24th Int. Conf. Neural Inf. Process. Syst., 2011, pp. 693–701.

[29] M. Jeon, S. Venkataraman, J. Qian, A. Phanishayee, W. Xiao, and
F. Yang, “Multi-tenant GPU clusters for deep learning workloads:
Analysis and implications,” Microsoft Research, Redmond, WA,
USA, Tech. Rep. MSR-TR-2018–13, 2018.

[30] Y. Yu, P. K. Gunda, and M. Isard, “Distributed aggregation for
data-parallel computing: Interfaces and implementations,” in
Proc. ACM SIGOPS 22nd Symp. Operating Syst. Princ., 2009,
pp. 247–260.

[31] W. Wang, S. Ma, B. Li, and B. Li, “Coflex: Navigating the fairness-
efficiency tradeoff for coflow scheduling,” in Proc. IEEE INFO-
COM, 2017, pp. 1–9.

[32] L. Chen, S. Liu, B. Li, and B. Li, “Scheduling jobs across geo-
distributed datacenters with max-min fairness,” in Proc. IEEE
INFOCOM, 2017, pp. 1–9.

[33] J. K. Lenstra, A. R. Kan, and P. Brucker, “Complexity of machine
scheduling problems,” Stud. Integer Program., vol. 1, pp. 343–362, 1977.

[34] J. K. Karlof, Integer Programming: Theory and Practice. Boca Raton,
FL, USA: CRC Press, 2005.

[35] Breeze: A numerical processing library for scala, Accessed: 2020.
[Online]. Available: http://www.scalanlp.org

[36] EC2 pricing, Accessed: 2020. [Online]. Available: https://aws.
amazon.com/ec2/pricing/

[37] Z. Hu, B. Li, C. Chen, and X. Ke, “FlowTime: Dynamic scheduling
of deadline-aware workflows and ad-hoc jobs,” in Proc. IEEE 38th
Int. Conf. Distrib. Comput. Syst., 2018, pp. 929–938.

[38] S. A. Jyothi et al., “Morpheus: Towards automated SLOs for enter-
prise clusters,” in Proc. 12th USENIX Conf. Operating Syst. Des.
Implementation, 2016, pp. 117–134.

[39] V. Jalaparti, I. Bliznets, S. Kandula, B. Lucier, and I. Menache,
“Dynamic pricing and traffic engineering for timely inter-datacenter
transfers,” inProc. ACMSIGCOMMConf., 2016, pp. 73–86.

[40] H. Zhang et al., “Guaranteeing deadlines for inter-data center trans-
fers,” IEEE/ACMTrans. Netw., vol. 25, no. 1, pp. 579–595, Feb. 2017.

[41] S. Kandula, I. Menache, R. Schwartz, and S. R. Babbula, “Calendaring
for wide area networks,” in Proc. ACM Conf. SIGCOMM, 2014,
pp. 515–526.

[42] E. D. Andersen and K. D. Andersen, “The Mosek interior point
optimizer for linear programming: An implementation of the
homogeneous algorithm,” in High Performance Optimization.
Berlin, Germany: Springer, 2000, pp. 197–232.

[43] IBM ILOG CPLEX optimizer, Accessed: 2020. [Online]. Available:
https://goo.gl/jyvDuV

[44] Flow-level simulator for coflow scheduling used in Varys and
Aalo, Accessed: 2020. [Online]. Available: https://github.com/
coflow/coflowsim

[45] C.-Y. Hong et al., “Achieving high utilization with software-
driven WAN,” in Proc. ACM SIGCOMMConf., 2013, pp. 15–26.

[46] Synthesized data from real-world traces of data-intensive applica-
tions for coflow benchmarking, Accessed: 2020. [Online]. Avail-
able: https://github.com/coflow/coflow-benchmark

[47] V. T1uki�c, S. A. Jyothi, B. Karla�s, M. Owaida, C. Zhang, and A. Singla,
“Is advance knowledge of flow sizes a plausible assumption?” in Proc.
16thUSENIXConf. Netw. Syst. Des. Implementation, 2019, pp. 565–580.

[48] B. Tian, C. Tian, H. Dai, and B. Wang, “Scheduling coflows of
multi-stage jobs to minimize the total weighted job completion
time,” in Proc. IEEE INFOCOM, 2018, pp. 864–872.

[49] J. E. Kelley Jr, “Critical-path planning and scheduling: Mathemati-
cal basis,”Operations Res., vol. 9, no. 3, pp. 296–320, 1961.

[50] P. Mohan, A. Thakurta, E. Shi, D. Song, and D. Culler, “GUPT: Pri-
vacy preserving data analysis made easy,” in Proc. ACM SIGMOD
Int. Conf. Manage. Data, 2012, pp. 349–360.

[51] F. Ahmad, S. T. Chakradhar, A. Raghunathan, and T. Vijaykumar,
“ShuffleWatcher: Shuffle-aware scheduling in multi-tenant Map-
Reduce clusters,” in Proc. USENIX Conf. USENIX Annu. Tech.
Conf., 2014, pp. 1–12.

[52] M. Chowdhury, S. Kandula, and I. Stoica, “Leveraging endpoint
flexibility in data-intensive clusters,” in Proc. ACM SIGCOMM
Conf., 2013, pp. 231–242.

[53] V. Jalaparti, P. Bodik, I. Menache, S. Rao, K. Makarychev, and
M. Caesar, “Network-aware scheduling for data-parallel jobs:
Plan when you can,” in Proc. ACM Conf. Special Interest Group Data
Commun., 2015, pp. 407–420.

[54] M. Alizadeh et al., “pFabric: Minimal near-optimal datacenter
transport,” in Proc. ACM SIGCOMM Conf., 2013, pp. 435–446.

[55] C.-Y. Hong, M. Caesar, and P. Godfrey, “Finishing flows quickly
with preemptive scheduling,” in Proc. ACM SIGCOMM Conf. Appl.
Technol. Archit. Protocols Comput. Commun., 2012, pp. 127–138.

[56] A. Munir, G. Baig, S. M. Irteza, I. A. Qazi, A. X. Liu, and
F. R. Dogar, “Friends, not foes: Synthesizing existing transport
strategies for data center networks,” in Proc. ACM Conf. SIG-
COMM, 2014, pp. 491–502.

[57] T. Wang, H. Xu, and F. Liu, “Aemon: Information-agnostic mix-
flow scheduling in data center networks,” in Proc. ACM 1st Asia-
Pacific Workshop Netw., 2017, pp. 106–112.

[58] J. Guo, F. Liu, J. C. Lui, and H. Jin, “Fair network bandwidth allo-
cation in IaaS datacenters via a cooperative game approach,”
IEEE/ACM Trans. Netw., vol. 24, no. 2, pp. 873–886, Apr. 2016.

[59] J. Guo, F. Liu, T. Wang, and J. C. Lui, “Pricing intra-datacenter
networks with over-committed bandwidth guarantee,” in Proc.
USENIX Conf. Usenix Annu. Tech. Conf., 2017, pp. 69–81.

[60] T. Wang, F. Liu, and H. Xu, “An efficient online algorithm for
dynamic SDN controller assignment in data center networks,”
IEEE/ACM Trans. Netw., vol. 25, no. 5, pp. 2788–2801, Oct. 2017.

[61] X. Yi, F. Liu, Z. Li, and H. Jin, “Flexible instance: Meeting dead-
lines of delay tolerant jobs in the cloud with dynamic pricing,” in
Proc. IEEE 36th Int. Conf. Distrib. Comput. Syst., 2016, pp. 415–424.

[62] F. Liu, J. Guo, X. Huang, and J. C. Lui, “eBA: Efficient bandwidth
guarantee under traffic variability in datacenters,” IEEE/ACM
Trans. Netw., vol. 25, no. 1, pp. 506–519, Feb. 2017.

[63] F. R. Dogar, T. Karagiannis, H. Ballani, and A. Rowstron,
“Decentralized task-aware scheduling for data center networks,”
in Proc. ACM Conf. SIGCOMM, 2014, pp. 431–442.

[64] S. Liu, L. Chen, and B. Li, “Siphon: Expediting inter-datacenter
coflows in wide-area data analytics,” in Proc. USENIX Conf. Usenix
Annu. Tech. Conf., 2018, pp. 507–518.

[65] L. Chen, W. Cui, B. Li, and B. Li, “Optimizing coflow completion
times with utility max-min fairness,” in Proc. IEEE INFOCOM, 2016,
pp. 1–9.

2480 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 10, OCTOBER 2020

https://rise.cs.berkeley.edu/wp-content/uploads/2018/01/blink-2-page-11_50.pdf
https://rise.cs.berkeley.edu/wp-content/uploads/2018/01/blink-2-page-11_50.pdf
https://github.com/coflow/varys
http://www.scalanlp.org
https://aws.amazon.com/ec2/pricing/
https://aws.amazon.com/ec2/pricing/
https://goo.gl/jyvDuV
https://github.com/coflow/coflowsim
https://github.com/coflow/coflowsim
https://github.com/coflow/coflow-benchmark

[66] L. Wang, W. Wang, and B. Li, “Utopia: Near-optimal coflow
scheduling with isolation guarantee,” in Proc. IEEE INFOCOM,
2018, pp. 891–899.

[67] L. Wang and W. Wang, “Fair coflow scheduling without prior
knowledge,” in Proc. IEEE 38th Int. Conf. Distrib. Comput. Syst., 2018,
pp. 22–32.

Wenxin Li received the BE and PhD degrees from
the School of Computer Science and Technology,
Dalian University of Technology, Dalian, China, in
2012 and 2018, respectively. Currently, he is a post-
doc researcher with the Hong Kong University of
Science and Technology. From 2014–2015, he was
a research assistant with the National University of
Defense Technology. From October 2016 to Sep-
tember 2017, he was a visiting student with the
Department of Electrical and Computer Engineer-
ing, University of Toronto. His research interests
include datacenter networks and cloud computing.

Xu Yuan (Member, IEEE) received the BS degree
from Nankai University, Tianjin, China, in 2009, and
the PhD degree from Virginia Tech, Blacksburg,
Virginia, in 2016. From 2016 to 2017, he was a post-
doctoral fellow with the University of Toronto,
Canada. He is currently an assistant professor with
the University of Louisiana at Lafayette, Louisiana.
His research interest focuses on cloud computing
security, algorithm design and optimization for
spectrum sharing, coexistence, and cognitive radio
networks.

Keqiu Li (SeniorMember, IEEE) received the bach-
elor’s andmaster’s degrees from theDepartment of
Applied Mathematics, Dalian University of Technol-
ogy, Dalian, China, in 1994 and 1997, respectively,
and the PhD degree from the Graduate School of
Information Science, Japan Advanced Institute of
Science and Technology, Nomi, Japan, in 2005. He
also has two-year postdoctoral experience with the
University of Tokyo, Japan. He was a professor with
the School of Computer Science and Technology,
Dalian University of Technology, from 2007 to 2016.

After that, he joined Tianjin University, where he is currently the director of
the College of Intelligence and Computing. He has publishedmore than 100
technical papers, such as the IEEE Transactions on Parallel and Distributed
Systems, ACM Transactions on Internet Technology, and ACM Transac-
tions on Multimedia Computing, Communications, and Applications. He
was an associate editor of the IEEETransactions onParallel andDistributed
Systems and the IEEE Transactions on Computers. His research interests
include internet technology, data center networks, cloud computing, and
wireless networks.

Heng Qi received the bachelor’s degree from
Hunan University, Changsha, China, in 2004, and
themaster’s anddoctorate degrees from theDalian
University of Technology, Dalian, China, in 2006
and 2012. Hewasa lecturewith theSchool of Com-
puter Science and Technology, Dalian University of
Technology, China. He servered as a software engi-
neer in GlobalLogic-3CIS from 2006 to 2008. His
research interests include computer network,multi-
media computing, and mobile cloud computing. He
has published more than 20 technical papers in

international journals and conferences, including the ACMTransactions on
Multimedia Computing, Communications and Applications (ACM TOMC-
CAP) and thePatternRecognition (PR).

Xiaobo Zhou recieved the BSc degree in elec-
tronic information science and technology from the
University of Science and Technology of China
(USTC), Hefei, China, in 2007, the ME degree in
computer application technology from the Gradu-
ate University of Chinese Academy of Science
(GUCAS), Beijing, China, in 2010, and the PhD
degree from the School of Information Science,
Japan Advanced Institute of Science and Technol-
ogy (JAIST), Ishikawa, Japan, in 2013. He is cur-
rently an associate professor with the School of

Computer Science and Technology, Tianjin University. Prior to that, he was
a researcher with Centre for Wireless Communications, University of Oulu,
Finland from 2014 to 2015. His research interests include joint source-
channel coding, cooperative wireless communications, network informa-
tion theory, cloud computing, and software defined networking.

Renhai Xu received the BE and MS degrees from
the School of Computer Science and Technology,
Dalian University of Technology, Dalian, China, in
2014 and 2017, respectively. Currently, he is work-
ing toward the PhD degree in the School of Com-
puter Science and Technology, Tianjin University,
Tianjin, China. His research interests include data-
center networks and cloud computing.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

LI ETAL.: ENDPOINT-FLEXIBLE COFLOW SCHEDULING ACROSS GEO-DISTRIBUTED DATACENTERS 2481

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

