
2168-7161 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.3040312, IEEE
Transactions on Cloud Computing

1

Efficient Online Scheduling for Coflow-aware
Machine Learning Clusters

Wenxin Li, Sheng Chen, Keqiu Li, Senior Member, IEEE , Heng Qi, Renhai Xu, and Song Zhang

Abstract—Distributed machine learning (DML) is an increasingly important workload. In a DML job, each communication phase can
comprise a coflow, and there are dependencies among its coflows. Thus, efficient coflow scheduling becomes critical for DML jobs.
However, the majority of existing solutions focus on scheduling single-stage coflows with no dependencies. While there are a few studies
schedule dependent coflows of multi-stage jobs, they suffer from either practical or theoretical issues. Motivated by this situation, we
study how to schedule dependent coflows of multiple DML jobs to minimize the total JCT in a shared cluster. We present a formal
mathematical formulation for this problem and prove its NP-hardness. To solve this problem without job size information, we present
an online coflow-aware optimization framework called Parrot. The core idea in Parrot is to infer the job with the shortest remaining
processing time (SRPT) each time and dynamically control the inferred job’s bandwidth based on how confident it is an SRPT job while
being mindful of not starving any other job. Specifically, in the design of Parrot, we present a least per-coflow attained service (LPCAS)
policy to infer the SRPT job. We further propose a dynamic job weight assignment mechanism and a linear program (LP) based weighted
bandwidth scaling strategy for sharing bandwidth among DML jobs. We have proved that Parrot algorithm has a non-trivial competitive
ratio. The results from large-scale trace-driven simulations further demonstrate that our Parrot can reduce the total JCT by up to 58.4%,
compared to the state-of-the-art Aalo solution.

Index Terms—Distributed Machine Learning; Coflow Scheduling; Multi-Stage Job; Dependent Coflows

F

1 INTRODUCTION

R Ecently, machine learning (ML) has shown a remark-
able success in not only the computing industry but

also the fields such as health care and education, and is
deriving many key products [1–4]. To train large models
on increasingly large data sets with acceptable training
time, distributed ML training has become a standard
practice. Therefore, IT giants such as Google, Microsoft
and Facebook have begun to use large clusters consisting
of hundreds to thousands of servers to run distributed
ML (DML) jobs [3–5].

Intuitively, DML jobs have been generally considered
to be computation-intensive. Fortunately, the GPU speed
has been increased by 35× over the last few years [6],
and many other hardware accelerators are getting faster
either [7]. Such fast GPUs and accelerators can have high
computational throughput and can process more data
batches per time unit, leading to more data flow transfers

This work was supported partly by the National Key R&D Program of
China under Grant 2019YFB2102404; the NSFC under Grants 61772112;
the Science Innovation Foundation of Dalian under Grant 2019J12GX037.
(Corresponding author: Keqiu Li)

• W. Li is with the Department of Computer Science and Engineering, Hong
Kong University of Science and Technology, Hong Kong 999077. Email:
toliwenxin@gmail.com.

• S. Chen, K. Li, R. Xu and S. Zhang are with the Tianjin Key Laboratory
of Advanced Networking (TANK), College of Intelligence and Computing,
Tianjin University, No 135, Yaguan Road, Tianjin 300350, China. E-mail:
{chensheng, keqiu, xurenhai, zhang song}@tju.edu.cn.

• H. Qi is with the School of Computer Science and Technology, Dalian
University of Technology, No 2, Linggong Road, Dalian 116023, China.
E-mail: hengqi@dlut.edu.cn.

in the network [8]. These flow transfers can account
for a significant portion (as high as 90%) of the total
job training time [8–10], even in high-speed networks.
More precisely, as revealed by [8], when training the
VGG19-22K model on a 16-server cluster with 40GbE
Ethernet and one Titan X GPU per server, the parameter
updates will bottleneck the network; it may even be
slower than single machine when increasing the number
of servers to a sufficiently large value (i.e., 32). So, the
performance bottleneck of a DML job is witnessed to be
shifted from computation to communication. There are
some recent proposals (e.g., [8, 11–13]) that make efforts
to improve DML communication performance. Neverthe-
less, they are only applicable to single job scenario and
are insufficient to improve job performance in a shared
cluster with hundreds to thousands of DML jobs running
simultaneously [14, 15]. How to share the network efficiently
among multiple DML jobs remains an open research topic.

Coflow scheduling can help for such network sharing,
as DML jobs typically will generate coflows (see Sec-
tion 2 for details). However, the conventional wisdom
of scheduling coflows to optimize coflow completion
time (CCT) (e.g., [16–25]) does not necessarily lead to
shorter job completion time (JCT). The crux is that DML
jobs are inherently multi-stage, and their coflows have
dependencies. For instance, in an iteration of a DML
job, the coflow in the parameter pull phase depends on
that in the parameter push phase. Meanwhile, the push-
phase coflow, in turn, depends on the pull-phase coflow
of the previous iteration. Such dependency relationship
represents that a coflow cannot start until its dependent



2168-7161 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.3040312, IEEE
Transactions on Cloud Computing

2

one has finished.
Unfortunately, very little work has been done to con-

sider such dependent coflows:

• Aalo [20] is the state-of-the-art, yet the only heuris-
tic solution. It treats all coflows in the same job
as a single entity and uses the least attained ser-
vice strategy to perform inter-entity scheduling.
Coflows in each entity are prioritized based on
their dependency order. Nonetheless, Aalo cannot
provide an upper bound on the total JCT of a given
set of DML jobs.

• There is also one theoretical solution [26] aiming
at scheduling dependent coflows to minimize total
weighted JCT. Whereas, it needs to solve a linear
program (LP), which is a large-scale yet compli-
cated problem with vast jobs in large networks.
Besides, it cannot be used in online cases as all job
statistics are required to be known in advance to
solve the relevant LP.

In this paper, we focus on the problem of scheduling
dependent coflows of DML jobs to minimize the total JCT.
To solve this problem, we present an online coflow-aware
scheduler Parrot. The core idea in Parrot is to infer the
job with the shortest remaining processing time (SRPT)
each time and dynamically increase the bandwidth of the
inferred job based on how confident it is an SRPT job
while being mindful of starvation-free.

For inferring the SRPT job, Parrot leverages a least per-
coflow attained service (LPCAS) heuristic, which seamlessly
combines the information of bytes sent and number of
completed coflows for a job. Such information is readily
available, and more information will make the inferred
job more confident.

For considering the starvation-free need and the in-
evitable mis-inference, Parrot strives to prevent the in-
ferred SRPT job from monopolizing the network. More
specifically, it decides an occupancy ratio of link capacity
that the inferred job can use. This ratio increases with
the growth of the amount of inference information. To
obey this ratio in competition, Parrot assigns the inferred
SRPT job a well-designed weight and makes all other job
weight to be 1. With these weights, Parrot rescales the
individual flow bandwidths of each active coflow in each
job from a LP-based single-coflow optimization. This LP
is small in scale and has an analytic solution. Since each
job has a weight of at least one at any time, Parrot will
not starve any job for an arbitrarily long period.

We have conducted rigorous theoretical analysis to
prove that Parrot has a non-trivial competitive ratio in
minimizing the total JCT for any given set of DML jobs.
We have also conducted large-scale simulations based on
a realistic workload from Microsoft [27] to demonstrate
that Parrot can reduce the total JCT by up to 58.4%,
compared to the state-of-the-art Aalo solution.

In summary, the main highlights of this paper include:

• We study the problem of scheduling the depen-
dent coflows of multiple DML jobs to minimize

the total JCT in machine learning clusters. We
develop the mathematical model and present a
formal formulation for this problem. We also prove
that this problem is NP-hard.

• We present a novel online coflow-aware sched-
uler, Parrot, to solve the problem above. In Par-
rot, we propose a LPCAS heuristic for inferring
the SRPT job. We also develop a dynamic job
weight assignment as well as a LP-based weighted
bandwidth scaling mechanism to share network
capacity among all concurrent jobs.

• We conduct rigorous theoretical analysis to
demonstrate that Parrot can guarantee an upper
bound of the total JCT for any given set of DML
jobs. We conduct extensive trace-driven simula-
tions to evaluate the performance of Parrot, in
terms of reducing total JCT.

The rest of this paper is organized as follows. In Sec-
tion 2, we show some background, describe our problem
and present the key ideas for this paper. In Section 3,
we develop the mathematical model and present our
problem formulation. We show an overview of Parrot
in Section 4. We show the design details of Parrot in
Section 5. The simulation details and results are presented
in Section 6. We discuss current limitations of Parrot and
relevant future research in Section 7. Section 8 discusses
the related work and Section 9 concludes this paper.

2 BACKGROUND, PROBLEM STATEMENT AND KEY
IDEAS

2.1 Distributed Machine Learning
An ML algorithm is to iteratively optimize its model
(usually a set of parameters) until it converges to describe
or interpret the input data [28]. Since the input data is
usually enormous, processing all input data on a single
machine can suffer from significant slowdowns. Hence,
distributed ML becomes the most common strategy to
speed up data processing. Meanwhile, the most favored
paradigm for DML is data parallelism [12, 28–33], where
the input data is distributed among multiple worker
machines. Each machine will then work on its data and
periodically communicate with each other to synchronize
the parameter updates from other machines.

To efficiently synchronize and manage model param-
eters between worker machines, the parameter server (PS)
[12] architecture has been widely adopted in many ML
systems including TensorFlow [30], Caffe [34] and MXNet
[35]. Fig. 1 shows an overview of such parameter server
architecture. In this architecture, each worker stores a
replica of the global ML model and the training data is
partitioned among all the workers. The ML training pro-
cess carries out in an iterative fashion, and each iteration
contains four phases: (1), each worker trains indepen-
dently on its own data to decide what changes should be
made to get closer to the optimal model parameters. (2),
each worker pushes its updates to the relevant PS. (3), the
PSs aggregate the updates from all workers, and apply



2168-7161 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.3040312, IEEE
Transactions on Cloud Computing

3

Fig. 1. An overview of the parameter server architecture.

them to the parameters. (4), the updated parameters will
be pulled back by the workers, with which they can start
the next iteration.

2.2 Dependent Coflows in DML
The parameter exchange phases described above (i.e.,
push phase (2) and pull phase (4)) typically follow the
BSP model, where there is a strict barrier at the end
of each phase. For instance, the phase (3) cannot start
until the phase (2) finishes, i.e., all the workers have
successfully pushed their updates to the PSs; Or, in a
certain iteration, the workers cannot proceed to phase (1)
before the phase (4) in the previous iteration finishes. It
should be noted that there are indeed other synchroniza-
tion models, i.e., stale synchronous parallel (SSP) [36] and
total synchronous parallel (TAP) [37]. However, BSP is
the most commonly used one in production [14, 30].

With explicit barriers, the flows in each parameter
exchange phase can comprise a coflow semantically [38].
Each coflow cannot be considered to be completed until
all its flow transfers have finished. Given that a DML job
typically has numerous iterations, and each iteration con-
tains two parameter exchange phases, multiple coflows
will be generated. Further, the coflows belonging to the
same DML job have dependencies. For example, the
coflow in the phase (4) depends on that in the phase (2).
In the presence of the explicit barrier in BSP, there exists
only one type of coflow dependencies—Starts-After1, as
defined in the following:
Definition 1 (Starts-After Dependency). If a coflow C1

depends on another one C2, i.e., C2 7→ C1, then C1 cannot
start until C2 has finished.

Definition 2 (Chain Job). Considering the iterative nature,
each DML job can be viewed as a chain, where each coflow
has only one (or zero if it is the first coflow) preface coflow
and one subsequent coflow. In other words, multiple coflows
will not depend on the same one, and a coflow will not
simultaneously depend on more than one coflows.

2.3 Problem Statement
It has been widely accepted in literature [17, 20–23, 25]
that the cluster network can be abstracted as a non-
blocking switch interconnecting all machines, given the

1. In contrary to Starts-After, Starts-Before is another type of coflow
dependencies, representing that a coflow cannot finish until its depen-
dent one has finished. However, Starts-Before is common for pipeline
jobs rather than DML jobs, and hence is not the focus of this paper.

recent advances in full bisection bandwidth topologies
[39, 40]. As shown in Fig. 2(a), each ingress port of
the switch receives data from the outgoing link of the
connected machine, while each egress port pushes data
to the incoming link of the connected machine.

Given multiple DML jobs that contain numerous de-
pendent coflows, we study the problem of how to assign
the bandwidth on the outgoing/incoming links of each physical
machine to each flow in each coflow at each time, so as to
minimize the total JCT of DML jobs. However, this problem
is inherently challenging due to: 1) it is NP-hard, which
we will show in Section 3; 2) jobs can dynamically arrive,
with the job size information being unknown.

2.4 The Design Rationales

We now present a walk through the design rationales:
Inferring the SRPT job is a must. SRPT is the most
commonly used scheduling policy, which schedules flow
with the feast bytes to transmit. It has been shown to
provide near-optimal average flow completion time [41–
43]. Taking a step further, researchers have generalized
SRPT to the case of coflows and have also achieved near-
optimal performance [17, 25]. We believe that SRPT can
also be generalized to the case of DML jobs to reduce
the average JCT. The reason is that one can view each
DML job as a “super-coflow” that consists of a chain of
“micro-coflows”. One key step for applying SRPT is to
find the job with the smallest amount of time remaining
until completion each time when a coflow completes, or
a new coflow from a new job is added.
Bytes sent and coflows completed are useful informa-
tion. Finding the SRPT job relies on accurate job size
information. While the size of each coflow can be known
once it arrives, it is hard to obtain the job size because
of the unknown number of iterations (or coflows) caused
by non-smooth loss curves and non-deterministic termi-
nation in practice [27]. Fortunately, we can readily acquire
the already known information for each job, such as bytes
sent and coflows completed. With this information, we
infer an SRPT job by seamlessly combing the following
two rules: 1) the job with the smallest bytes sent is
more likely to have the least remaining data, which is
in line with the basic assumption in LAS (Least Attained
Service) [44]; 2) the more coflows have been completed,
the fewer coflows will remain for a job.
More information leads to higher confidence for job
inference. In the initial state, no information can be used
to infer the SRPT job, and we, therefore, have no idea
about which job has the shortest remaining progress. As
time goes by, the bytes sent and coflows completed from
all the jobs increase, we will gain more information and
thus will have higher confidence to say the inferred job
indeed has the shortest remaining time.
The inferred job must not monopolize link bandwidth.
It is unavoidable in practice to misidentify a job as the
SRPT one. Such errors may negatively impact the total
JCT if the misidentified job exclusively occupies the link
bandwidth. To mitigate such impact, we should never



2168-7161 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.3040312, IEEE
Transactions on Cloud Computing

4

(a) Example settings (b) A scheme with minimum CCT (c) A scheme with minimum JCT (d) Our approach

Fig. 2. Allocation of ingress port capacities using different schemes for the jobs in Fig. 2(a). (b) When using a scheme that purely optimizes CCT, the
incurred total JCT will be 44. (c) The optimal scheme towards minimizing JCT will incur a total JCT of 38, which is hard to be obtained in practice.
(d) On the premise that job size is unknown a prior, our approach can make the average JCT to be 40.89.

allow the inferred SRPT job to monopolize the network.
Meanwhile, doing this is also for avoiding starvation.
It depends on how confident it is an SRPT job. In
the initial state, we treat all jobs fairly and assign the
bandwidth at competing links evenly among them. When
more information can be used, the inferred job will gain
more confidence, and we believe it deserves more band-
width. So, we increase the bandwidth for the inferred
SRPT job as the amount of inference information grows,
but will not exceed a predefined upper bound to avoid it
monopolize the network.

2.5 A Motivating Example
For a better intuition of our problem and the design
rationales, we use a motivating example in Fig. 2(a),
where there are 2 simultaneously arrived jobs (i.e., J1
and J2) and 2 machines. Job J1 has 2 coflows C1 and C2
with the dependency that C2 cannot start until C1 has
finished. J2 also has 2 coflows (i.e., C3 and C4) and C4
cannot start until the completion of C3. C1 has 4 flows
transferring 3/3/2/2 units of data; C2 has 4 flows with
sizes of 6/6/5/5; C3 has 4 flows with each having 1
unit of data; C4 has 4 flows having sizes of 4/4/3/3.
The virtual input queues at the ingress ports are used
for convenience to illustrate the sources and destinations.
For example, at the first virtual queue of machine 1, a
flow of C1 transfers 3 units of data to machine 2. Each
ingress/outgoing port can accept one unit of data each
time.

As shown in Fig. 2(b), a scheme that minimizes CCT,
i.e., Varys [17], will prefer the shortest coflow each time
and execute the 4 coflows in the order of (C3, C1, C4, C2).
The resulting total CCT is 2 + 8 + 16 + 28 = 54, while the
corresponding total JCT is 16 + 28 = 44. As shown in Fig.
2(c), if we schedule coflows in the order of (C3, C4, C1,
C2), the total CCT will be increased to 2+10+16+28 = 56,
while the total JCT can be reduced to 10 + 28 = 38. The
result in Fig. 2(c) looks great, which, however, is hard to
be achieved as it relies on accurate job size information.
By contrast, our approach considers unknown job size
but uses the already known information such as bytes
sent and coflows completed. Also, our approach assumes
the coflow size is known once it is valid for scheduling.
As shown in Fig. 2(d), at t = 0, no job-level information
is available and the two jobs (J1 and J2) have the same
weight (e.g., 1). Then, when the two jobs meet on the

same link, our approach uses these weights to scale the
flow bandwidths of their coflows from corresponding
LP-based solutions. For example, the LP solution for C1
allocates 1 unit of bandwidth to its flow on P1 and 2/3 to
the flow on P2. When sharing with C3, C1 will then get
1 ∗ 1

1+1 = 0.5 units of bandwidth on P1 and 2
3 ∗

1
1+1 = 1

3
on P2. Then, at t = 4, J2 will be inferred as the SRPT
job because its bytes sent is the same with J1 while it
has one completed coflow. Hence, J2 will be assigned
more bandwidth than J1. In this example, we consider
an SRPT job cannot use up to 90% of the capacity on
bottleneck link. In this case, J2 and J1 can transfer 0.9
and 0.1 units of data, respectively, on P1, until t = 12.89
at which J2 completes. After that, J1 monopolizes the
network until completion. As a result, the total JCT is
12.89 + 28 = 40.89. This result can practically be obtained
yet has a significantly lower JCT than that in Fig. 2(b).

3 MODELING AND PROBLEM FORMULATION

In this section, we develop the mathematical model to
study the problem of scheduling dependent coflows of
DML jobs to minimize the total JCT.

3.1 Notations

We consider an ML cluster with a set of servers denoted
by N = {1, 2, . . . , N}. We denote UEi and U Ii as the
outgoing and incoming link capacities for server i ∈ N ,
respectively. The cluster is shared by a set of DML jobs
denoted as J = {1, 2, . . . ,M}, with the job m ∈ J
arriving at time τm. We consider that the parameter
servers and workers are already fixed for each job, and
multiple coflows will be submitted as iteratively training
keeps going. We denote the set of coflows from all jobs
as C, with the set of coflows in job m being Cm. We
use k′ ≺ k (k, k′ ∈ Cm) to represent that the coflow k
cannot start until the completion of k′, i.e., k depends on
k′. Each coflow has multiple flows that are used for the
parameter exchange between the servers. We consider
that the coflows in different iterations of a job may not
necessarily have the same size. The reason is that the
workers may update only part of the parameters in each
iteration due to the training policy such as dropout [45]
or some gradient filters like [11]. So, without loss of
generality, we represent the flow volume from server i to
j in coflow k of job m as Vm,k,i,j ; the corresponding flow



2168-7161 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.3040312, IEEE
Transactions on Cloud Computing

5

TABLE 1
Important notations used throughout this paper.

Symbols Definition
N the set of servers in the ML cluster
UE
i the egress link bandwidth capacity of server i ∈ N

UI
i the ingress link bandwidth capacity of server i ∈ N
J the set of DML jobs
τm the release time of job m ∈ J
C the set of coflows from all jobs in J
Cm the set of coflows belonging to the job m ∈ J
fm,k,i,j the flow from i to j in coflow k ∈ Cm
Vm,k,i,j the data volume of flow fm,k,i,j

bm,k,i,j(t) the amount of bandwidth allocated to fm,k,i,j at t
Tm the job completion time of m ∈ J
Tm,k the coflow completion time of k ∈ Cm
Γm,k the effective coflow completion time of k ∈ Cm

is denoted as fm,k,i,j . We denote Tm as the JCT of job
m and use Tm,k to represent the CCT of coflow k ∈ Cm.
Important notations used throughout this paper are listed
in Table 1. It should be noted that we focus on the
network scheduling for DML jobs, thus the computation
time during job training is ignored in the mathematical
analysis.

3.2 Mathematical Model

Scheduling decisions: To indicate the decision variable,
we denote bm,k,i,j(t) as the amount of bandwidth al-
located to coflow k in job m for supporting its data
transmission between server i and j at time t. It is a
positive value, as shown in the following:

bm,k,i,j(t) ≥ 0,∀m ∈ J ,∀k ∈ Cm,∀i, j ∈ N ,∀t. (1)

Guaranteeing the completion of data transmission: All
flows must finish their data transmissions between their
release time and the completion time of their parent job.
Thus, we have the following two constraints:∫ Tm

τm

bm,k,i,j(t)dt = Vm,k,i,j ,∀m ∈ J ,∀k ∈ Cm,∀i, j ∈ N

(2)∫ τm

0

bm,k,i,j(t)dt = 0,∀m ∈ J ,∀k ∈ Cm,∀i, j ∈ N (3)

Eq. (2) enforces that each flow fm,k,i,j should be transmit-
ted within [τm, Tm], while Eq. (3) means that each flow
cannot transmit any data until the job it belongs to has
been released.
Coflow dependency constraints: The coflows belonging
to the same DML job has dependency that a coflow
cannot start until its dependent coflow has finished. This
can be translated into the following constraint:∫ Tm,k′

τm

bm,k,i,j(t)dt = 0,∀m ∈ J ,∀k′ ≺ k ∈ Cm,∀i, j ∈ N

(4)
This constraint essentially means that if the coflow k ∈
Cm cannot start any data transmission before all of its
dependent coflows have finished.

Capacity constraints: When scheduling coflows, both the
ingress and egress link capacities of each server must be
satisfied. Thus, we have∑

m∈J

∑
k∈Cm

∑
j∈N

bm,k,i,j(t) ≤ UEi ,∀i ∈ N ,∀t (5)∑
m∈J

∑
k∈Cm

∑
i∈N

bm,k,i,j(t) ≤ U Ij ,∀j ∈ N ,∀t (6)

Eq. (5) indicates that the total amount of data transmitted
on the outgoing link of server i must not exceed the
link capacity UEi at any time t, while, similarly, Eq. (6)
specifies that each incoming link transmits at most U Ii
amount of data each time.

3.3 Problem Formulation
Before presenting the problem formulation, we give two
definitions that will be used in the rest of this paper.
Definition 3 (Valid Coflow). A coflow is valid if it has arrived

at the network, and it has no dependent coflows, or all of its
dependent cofows have finished.

Definition 4 (Effective CCT). The effective CCT of a coflow
is defined as the time between it being valid for scheduling
and being completed.

Given definitions above, we denote Γm,k as the effec-
tive CCT of the coflow k in job m (i.e., k ∈ Cm). Recall that
each DML job can be viewed as a chain of dependent
coflows. As such, the JCT of a job can be computed by
adding up its arrival time and the total effective CCTs of
its all coflows

Tm = τm +
∑
k∈Cm

Γm,k,∀m ∈ J (7)

Similarly, the CCT of coflow k ∈ Cm can be calculated by
adding up its arrival time, the total effective CCTs of its
preface coflows, and its own effective CCT
Tm,k = τm + Γm,k +

∑
k′≺k∈cm

Γm,k′ ,∀m ∈ J ,∀k ∈ Cm (8)

We now formulate the problem of scheduling the
dependent coflows of multiple DML jobs to minimize the
total JCT, as shown in the following formulation O1:

min
bm,k,i,j(t)

∑
m∈J

Tm

Subject to: Eqs. (1)(2)(3)(4)(5)(6)
(9)

The problem O1 is inherently hard to be resolved, due
to the following two challenges:

First, it is NP-hard, as shown in the following theorem.
Theorem 1. The problem O1 is NP-hard.

Proof: As the problem of minimizing the total CCT
of coflows, denoted P, has been proved to be NP-hard in
[17]. Therefore, we will prove this theorem by reducing
O1 to P. Specifically, given any instance of P, we construct
a corresponding instance of O1 as follows: consider a
problem P with K coflows where the k-th coflow’s arrival
time is ak. We construct K jobs with each job having
one coflow only. Each job’s arrival time is just that of
the coflow in it. Since the given instance of P is NP-hard,
the constructed instance of O1 is NP-hard as well.

Second, solving O1 relies on job arrival information
and job size information, neither of which, is available in
practice. Hence, an online solution is called for.



2168-7161 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.3040312, IEEE
Transactions on Cloud Computing

6

Fig. 3. The overview of Parrot optimization framework.

4 DESIGN OVERVIEW OF Parrot

In response to the challenges of solving the original
optimization O1, we present an efficient online coflow-
aware scheduler called Parrot. In this section, we first
list the realistic assumptions and desirable properties of
Parrot. Then, we show an overview of Parrot.

4.1 Desirable properties

Parrot schedules the dependent coflows of DML jobs un-
der the following realistic assumptions and constraints:

• Online job arrival: The DML jobs are submitted
in an online fashion. For each job, the placements
of PSs and workers are given but unknown prior
to its arrival. Parrot only deals with the scheduling
of the intermediate coflows for submitted jobs.

• Unknown job size information: While we assume
that the coflow size information can be known
once a coflow becomes valid for scheduling, the
job size information is typically unknown because
the number of iterations for a job is unknown.

• Only one active coflow per job: At any time, for
any given DML job, there is only one coflow that
is active to transmit data in the network, since the
DML job is a chain of dependent coflows.

Parrot has the following three goals:

• Practicality: Parrot is necessarily an online coflow-
aware optimization framework. Each time when
observing a scheduling event, i.e., a new job ar-
rives or an existing job has finished a coflow,
Parrot must quickly decide the coflow scheduling
decision. Therefore, the Parrot algorithms must run
in real-time with low time complexity.

• Upper-bound guarantee: Parrot’s algorithms must
be able to provide a non-trivial competitive ratio
when solving the problem O1 for any given set of
DML jobs, such that the total JCT can be guaran-
teed with an upper bound.

• Starvation-free & Work-conserving: Parrot must
not starve any job for an arbitrarily long period,
meaning that there is barely any sign of waiting
in any job. In addition, we require Parrot to be
work-conserving to fully utilize link capacity and
to minimize JCT.

Our Parrot is suitable to traditional distributed train-
ing scenarios [12] where the communication and compu-
tation perform sequentially and each job can only have
one active coflow at a time. On the other hand, we note
that the known WFBP [8] (wait-free backward propa-
gation) is supported in existing ML frameworks (e.g.,
TensorFlow, PyTorch), which may allow some commu-
nication with computation. However, the communication
stall may still exist because existing ML frameworks (e.g.,
TensorFlow, PyTorch) typically adopt a global barrier
between adjacent iterations. In such a case, we can view
the flows in each iteration as a coflow and accordingly
our Parrot can still work.

4.2 Parrot in a nutshell
Parrot makes a scheduling decision whenever an existing
coflow completes, or a coflow becomes valid. Fig. 3
presents an overview of our Parrot scheduler. At a high-
level, Parrot infers the SRPT job first, and then performs
bandwidth allocation among all concurrent jobs includ-
ing the inferred job.

SRPT job inference: At the heart of the job inference
component is a least per-coflow attained service heuristic,
which integrates the per-job information of bytes sent and
the number of coflows completed. With this heuristic,
each time the job with least per-coflow attained service
will be inferred as the SRPT one.

Bandwidth allocation: It first decides each job’s
weight and then allocates link bandwidth among con-
current jobs according to these weights. To compute
job weights, Parrot first determines the ratio of network
capacity that the inferred SRPT job can occupy when it
encounters competitors, based on how much information
can be used in job inference component. To obey this
occupancy ratio, it then assigns all non-SRPT jobs a
weight of 1 and carefully computes the weight for the in-
ferred SRPT job. Rather than sharing network bandwidth
among concurrent jobs directly according to computed
job weights, we formulate a relevant LP to minimize the
effective CCT for each active coflow first. Then, we scale
coflow bandwidth in its LP solution according to its par-
ent job weight. Scaling bandwidth from the LP makes a
chance to provide a theoretical guarantee for minimizing
the total JCT. Note that though a LP is formulated, it is
small in scale2, and we do not need to solve it explicitly,
because it has an analytic solution3.

5 ALGORITHM DESIGN

5.1 Inferring the SRPT Job
When multiple jobs coexist in the network, Parrot seeks
to infer which job could have the shortest remaining
processing time, such that we can allocate it relatively

2. As compared to the LP in [26] that minimizes the total weighted
JCT of all jobs with each job having multiple dependent coflows, our
LP is per-coflow problem that minimizes the CCT of single coflow.

3. There is no need to use a solver (e.g., MOSEK) or design an
algorithm to derive the LP solution. We can calculate its solution
through Eqs. (26)(27) directly.



2168-7161 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.3040312, IEEE
Transactions on Cloud Computing

7

more bandwidth to minimize the JCT. To infer the SRPT
job, we leverage the already known per-job information,
i.e., bytes sent and coflows completed. As centralized
architecture has shown a great success in many large-
scale infrastructure developments [21, 46], we consider
that there is a central controller in the cluster to gather
such per-job information from all end-hosts, and our
Parrot scheduler can actually run within this controller.

To ease the presentation, we denote Sm and Zm as the
bytes sent and the number of coflows completed till now
for job m, respectively. To mimic the SRPT, we propose a
Least Per-coflow Attained Service (LPCAS) heuristic, which
relies on the following definition:
Definition 5 (Per-coflow Attained Service (PAS)). We

denote Am as the per-coflow attained service of job m,
which is calculated as its bytes sent divided by the number
of completed coflows, i.e., Am = Sm/Zm.

With the definition above, we infer m = arg minmAm
as the SRPT job. We can easily check that selecting the job
with least per-coflow attained service matches the design
rationales mentioned in Section 2. First, the smaller the
bytes sent Sm for a job m, the less the per-coflow attained
service and hence the higher probability m will have to
be the SRPT job. Second, the job having more completed
coflows (i.e., Zm is larger) has less per-coflow attained
service, and will be more likely to be identified to remain
fewer unfinished coflows. Note that PAS may not directly
reflect the remaining processing time of a job. However,
it could be a good indicator for inferring which job is
more likely to be the SRPT one, especially when DML
job duration exhibits a heavy-tailed distribution [27].
And, the idea of using already attained service to mimic
SRPT has also been widely adopted in many information-
agnostic scenarios, e.g., [47], [27], [20].

5.2 Allocating Bandwidth among Jobs

After the SRPT job has been inferred, the next step is to
allocate bandwidth to it as well as to other remaining
jobs. To this end, we assign each job a weight and then
take advantage of a LP-based single-coflow solution to
scale the flow bandwidths of each active coflow based on
its parent job’s weight.

5.2.1 Dynamic job weight assignment
The inferred job may not turn out to be the SRPT one.
Thus, it should not fully occupy the network. Meanwhile,
we should give relatively more bandwidth to the inferred
job if we have enough confidence to say it is indeed an
SRPT job. Therefore, we are motivated to assign each job
a weight. The job weights are dynamically changed, such
that the amount of bandwidth allocated to the inferred
job can be increased based on how confident it is an SRPT
job. We consider that the more the total bytes have been
sent by all jobs, the higher confidence the inferred job will
have. Details are as follows:

We first determine an occupancy ratio of the network
that the inferred SRPT job can use. We denote JΩ as the

Fair share

Fast increase

Smooth & no fluctuation

O
c
c
u

p
a

n
c
y
 r

a
ti
o

 !

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Total bytes sent by all jobs
1,000

2,000
3,000

4,000
5,000

6,000
7,000

8,000
9,000

10,000

Fig. 4. An example of the occupancy ratio θ when θmax = 0.9 and there
are 5 concurrent jobs (i.e., |JΩ| = 5).

set of concurrent jobs. Define the total bytes have been
sent by all job in JΩ as SJΩ . Then, we can calculate the
occupancy ratio for the inferred SRPT job as

θ ← min{θmax, (
1

|JΩ|
)1/(log(SJΩ

+1)+1)} (10)

where θmax is the maximum occupancy ratio. Fig. 4
shows an example of θ under varying total bytes sent,
with θmax and |JΩ| being 0.9 and 5 respectively. We
can observe that the dynamics of θ have the following
properties: (i) When there exists no information to infer
the SRPT job, i.e., SJΩ = 0, we have θ = 1/|JΩ| = 0.2,
which means that the inferred SRPT job will fairly share
the link bandwidth with others. (ii) Once we have some
information to infer which job might be the SRPT one, we
should allow it to quickly occupy the majority of network
capacity to minimize the JCT. (iii) Finally, the occupancy
rate θ can be maintained at the maximum value θmax with
no fluctuation.

Given θ, we now assign each job a weight. Specifically,
we set the weight for the inferred SRPT job to

Wmax =
θ

1− θ
(|JΩ| − 1) (11)

Meanwhile, we let all other jobs in JΩ to have the same
weight of Wmin = 1. As such, when the jobs in JΩ

competes a bottleneck link with weighted fair sharing in
use, the ratio of the link bandwidth that the inferred job
can occupy is exactly

θ
1−θ (|JΩ|−1)

θ
1−θ (|JΩ|−1)+(|JΩ|−1)∗1 = θ.

5.2.2 LP-based weighted bandwidth scaling

Intuitively, after job weights are determined, a straight-
forward way for network sharing is to assign bandwidth
in proportional to each job’s weight. However, it may be
far away from the optimum. Hence, we seek to minimize
the effective CCT of each active coflow and then scale its
flow bandwidths based on the weight of its parent job.
Single coflow optimization: Whenever a coflow becomes
valid, we will formulate a relevant LP for it by assuming



2168-7161 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.3040312, IEEE
Transactions on Cloud Computing

8

it monopolizes the network. The details for the LP are
shown in the following problem O2:

min
{bm,k,i,j(t)}

Γm,k (12)

s.t:
∫ Γm,k

0

bm,k,i,j(t)dt = Vm,k,i,j ,∀i ∈ N ,∀j ∈ N (13)∑
j∈N

bm,k,i,j(t) ≤ UEi ,∀i ∈ N ,∀t (14)∑
i∈N

bm,k,i,j(t) ≤ U Ij ,∀j ∈ N ,∀t (15)

The objective in O2 is clearly to minimize the effective
CCT. Eq. (13) enforces all data transmissions of the coflow
must be completed within [0,Γm,k]. Eq. (14) and Eq.
(15) are bandwidth capacity constraints on egress/ingress
link of each server, respectively. The integration in O2
can be eliminated without incurring any performance
degradation, as shown in the following:
Theorem 2. Suppose that b̃m,k,i,j and Γ̃m,k are the optimal

solution to the following problem O3:
min

{bm,k,i,j}
Γm,k (16)

s.t: Γm,kbm,k,i,j = Vm,k,i,j ,∀i ∈ N ,∀j ∈ N (17)∑
j∈N

bm,k,i,j ≤ UEi ,∀i ∈ N (18)∑
i∈N

bm,k,i,j ≤ U Ij ,∀j ∈ N (19)

Then, bm,k,i,j(t) =

{
b̃m,k,i,j , t ∈ (0, Γ̃m,k]

0, t ∈ (Γ̃m,k,∞]
and

Γm,k = Γ̃m,k are the solutions to achieve the optimal
objective of O2. Note here that the bm,k,i,j in O3 can
be viewed as the time-averaged bandwidth allocated to the
i→ j flow of coflow k ∈ Cm.

Proof of Theorem 2: Consider that b∗m,k,i,j(t) and
Γ∗m,k are the optimal solution of O2. We set

bm,k,i,j =

∫ Γ∗m,k
0

b∗m,k,i,j(t)dt

Γ∗m,k
(20)

Then, it is obvious that

bm,k,i,jΓ
∗
m,k =

∫ Γ∗m,k

0

b∗m,k,i,j(t)dt = Vm,k,i,j (21)

By integrating both sides of Eq. (14) from 0 to Γ∗m,k, we
yield ∫ Γ∗m,k

0

∑
j∈N

b∗m,k,i,j(t)dt ≤ UEi Γ∗m,k (22)

By swapping the order between the integration and sum-
mations, we have∫ Γ∗m,k

0

∑
j∈N

b∗m,k,i,j(t)dt =
∑
j∈N

∫ Γ∗m,k

0

b∗m,k,i,j(t)dt

=
∑
j∈N

bm,k,i,jΓ
∗
m,k ≤ UEi Γ∗m,k

(23)

By eliminating Γ∗m,k from both sides, we get Eq. (18). We
can infer Eq. (19) in the similar way.

Above discussions shows that bm,k,i,j and Γ∗m,k is a
feasible solution to O3. Hence, we have

Γ∗m,k ≥ Γ̃m,k (24)

In addition, we can easily verify that the settings in
Theorem 1 are also feasible solutions to problem O2.
Therefore, we have

Γ̃m,k ≥ Γ∗m,k (25)

Accordingly, we have Γ̃m,k = Γ∗m,k.
Theorem 1 shows that we can solve O3 instead of O2

to calculate the bandwidth allocation of each individual
flow to minimize the effective CCT of a coflow when send
all flows in a constant rate.

We can easily check that the problem O3 is a LP.
Though LP is efficient to be solved with standard solvers
like MOSEK, we do not need to solve it explicitly. The
reason is that we can directly derive its analytic solution,
as shown in the following:

Γ̃m,k= max

{
max
i

∑
j∈N Vm,k,i,j

UEi
,max

j

∑
i∈N Vm,k,i,j

U Ij

}

(26)

bm,k,i,j =
Vm,k,i,j

Γ̃m,k
,∀i ∈ N ,∀j ∈ N (27)

Handling multiple jobs with multiple coflows: The
last step is to rescale the bandwidth of the LP analytic
solution for each coflow in each job according to the job
weights. We denote CΩ as the set of active coflows in
current time from all jobs in JΩ. Recall that each job can
only have one active coflow. Hence, |CΩ| = |JΩ|. We set
the weight of a coflow to that of its parent job and scale
its individual flows’ bandwidth based on the portion of
its weight in the sum of all coflow weights. To be specific,
we denote {Γ(O3)

` , b
(O3)
`,i,j } as the LP solution for coflow

` ∈ CΩ. Then, we scale the bandwidth of coflow ` with
b`,i,j ← b

(O3)
`,i,j ·

W`∑
`′∈CΩ∗

W`′
. W` is the weight of coflow `,

which can be inherited from its parent job.

5.3 Analysis
The whole scheduling procedure of Parrot is summarized
in Algorithm 1. It works in a laissez-fair manner. In other
words, it will be invoked whenever observing a coflow
becoming valid for scheduling or an existing coflow be-
ing completed (Step 1). According to the observed events,
it updates CΩ and JΩ, respectively (Step 2). Step 3 infers
the SRPT job using the least per-coflow attained service
heuristic described above. The job weight assignment
is shown in Steps 4-6. Steps 7-9 depict the weighted
bandwidth scaling process. Step 10 scales all the flow
bandwidths by the same largest possible factor, to make
use of the rest of the bandwidth.

We now analyze the theoretical performance achieved
by Algorithm 1. In our analysis, we first derive the
lower bound of the optimal JCT first and then compute
the upper bound achieved by Algorithm 1 based on
this lower bound. It should be noted that such kind of
analysis method has been widely adopted in existing net-
work scheduling literature [24, 26]. However, our anal-
ysis integrates some unique properties: 1) The number
of concurrent coflows is no more than the number of



2168-7161 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.3040312, IEEE
Transactions on Cloud Computing

9

Algorithm 1 Parrot Scheduling Algorithm
1: while observing a coflow from either newly arrived

or currently active job becoming valid or an existing
coflow being completed do

2: Update the set of concurrent jobs JΩ and the set of
active coflows CΩ respectively.

3: Sort all the coflows in CΩ non-increasingly accord-
ing to the per-coflow attained service of their par-
ent jobs; CΩ∗ ← CΩ. Similarly, sort all jobs with
LPCAS; JΩ∗ ← JΩ. Identify the first job in JΩ∗

as the SRPT one.
4: Update the occupancy ratio θ based on Eq. (10).
5: Update Wmax based on Eq. (11).
6: Set the weight of the inferred SRPT job to Wmax

and all others to Wmin = 1. Also, set the weights of
all coflows in CΩ∗ as those of their parent jobs.

7: for each coflow ` in CΩ∗ do
8: b`,i,j ← b

(O3)
`,i,j ·

W`∑
`′∈CΩ∗

W`′
,∀i,∀j, where

{Γ(O3)
` , b

(O3)
`,i,j } is the optimum of O3 for `.

9: end for
10: Find a largest factor to scale the bandwidths of all

flows in CΩ∗ to pursue work conversing property.
11: end while

DML jobs; 2) At any time, there is only one DML job
having a high weight and the remaining jobs’ weights
are all 1. Note that the analysis is not tight, and the
competitive ratio derived in our paper depends on the
number of jobs (i.e., M ). For instance, in private clusters
used for scientific research, the number of training jobs
in a cluster can be well controlled, meaning that M may
have an upper-bound. In this case, the competitive ratio
is bounded. Whereas in production clusters, users may
submit a large number of jobs. As such, M could be
unbounded, resulting in an unbounded competitive ratio.
Despite the weak analysis, the experiments in Sec. 6 show
that our algorithm actually has superior performance.
One may further wonder if the job mis-inference gap
can be leveraged to make the analysis more tight, which,
however, encounters the following challenges. First, it
is hard to know if a job is mis-inferred as an SRPT job
without prior knowledge of job size. Second, it is hard to
quantify the mis-inference gap. Third, the impact of the
mis-inference gap on the total JCT is unknown. Given
the factors above, we leave this point to future work. The
theoretical analysis is shown in the following theorems.

Theorem 3 (Lower Bound of Optimal JCT). Let T (O1) de-
note the total JCT under the optimal solution of O1. Then,
its lower bound is T (O1) ≥

∑
m∈J (τm +

∑
k∈Cm Γ

(O3)
m,k ).

Proof: It is obvious that each job contributes to the
total JCT with no less than its minimum completion time
when it monopolizes the network. We denote Γ

(O3)
m,k as

the optimal effective CCT of coflow k ∈ Cm for O3. The
minimum JCT of job m when it monopolizes the network
can then be calculated as τm +

∑
k∈Cm Γ

(O3)
m,k . When there

are multiple jobs, each job’s JCT must be larger than its

minimum one. Therefore, we have T (O1) ≥
∑
m∈J (τm +∑

k∈Cm Γ
(O3)
m,k ). Thus, proved.

Theorem 4 (Upper Bound the Competitive Ratio). The
total JCT achieved by Algorithm 1 is given by T (ALG) ≤

M
1−θmaxT

(O1), where M is the number of jobs and θmax is
the maximum occupancy ratio of network bandwidth that
the inferred SRPT job can use.

Proof: We denote T
(ALG)
m as the JCT of m under

Algorithm 1, which can be calculated by

T (ALG)
m = τm +

∑
k∈Cm

Γ
(ALG)
m,k (28)

where Γ
(ALG)
m,k is the effective CCT of coflow k ∈ Cm

achieved by Algorithm 1. Let Cm,kΩ∗ denote the set of all
active coflows when the coflow k ∈ Cm is scheduled.
Since Algorithm 1 scales the flow bandwidths of each
active coflow based on its weight, we have

Γ
(ALG)
m,k = Γ

(O3)
m,k /

Wm,k∑
`′∈Cm,k

Ω∗
W`′

(29)

where Γ
(O3)
m,k is the optimal effective CCT of k ∈ Cm for

problem O3 and Wm,k is the relevant weight. Combining
Eq. (28) and Eq. (29), we have

T (ALG) =
∑
m∈J

T (ALG)
m

=
∑
m∈J

τm +
∑
m∈J

∑
k∈Cm

Γ
(O3)
m,k /

Wm,k∑
`′∈Cm,k

Ω∗
W`′

(30)

We define T
(ALG)
1 =

∑
m∈J τm and T

(ALG)
2 =∑

m∈J
∑
k∈Cm Γ

(O3)
m,k /

Wm,k∑
`′∈Cm,k

Ω∗
W`′

. In the following, we

focus on deriving an upper bound of T (ALG)
2 . Because

each coflow’s weight is at least Wmin, we yield

T
(ALG)
2 ≤

(∑
m∈J

∑
k∈Cm

Γ
(O3)
m,k

Wmin

)( ∑
`′∈Cm,k

Ω∗

W`′

)
(31)

Let CmaxΩ∗ denote the largest set of active coflows across
the entire scheduling time. Clearly, it has more elements
than Cm,kΩ∗ . In addition, given that there is only one Wmax

for any set of active coflows, we can get

T
(ALG)
2 ≤

(∑
m∈J

∑
k∈Cm

Γ
(O3)
m,k

Wmin

)(
Wmax+(|CmaxΩ∗ |−1)Wmin

)
(32)

Substituting Wmin = 1 and Wmax = θ
1−θ (|JΩ| − 1) into

the above inequality, then using the fact that each job has
only one active coflow at any time, we obtain

T
(ALG)
2 ≤

(
θ

1− θ
(|CΩ|−1)+(|CmaxΩ∗ |−1)

) ∑
m∈J

∑
k∈Cm

Γ
(O3)
m,k

(33)
Since |CmaxΩ∗ | ≥ |CΩ| and θ ≤ θmax, we yield

T
(ALG)
2 ≤ 1

1− θmax
(|CmaxΩ∗ | − 1)

∑
m∈J

∑
k∈Cm

Γ
(O3)
m,k

≤ 1

1− θmax
M
∑
m∈J

∑
k∈Cm

Γ
(O3)
m,k

(34)



2168-7161 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.3040312, IEEE
Transactions on Cloud Computing

10

The last inequality is derived by using |CmaxΩ∗ | ≤ M .
Combining the result in Theorem 3 and using the fact

M
1−θmax ≥ 1 , we can get

T (ALG) = T
(ALG)
1 + T

(ALG)
2

≤
∑
m∈J

τm +
M

1− θmax

∑
m∈J

∑
k∈Cm

Γ
(O3)
m,k

≤ M

1− θmax

(∑
m∈J

τm +
∑
m∈J

∑
k∈Cm

Γ
(O3)
m,k

)
≤ M

1− θmax
T (O1)

(35)

Remarks: We now discuss how our Parrot algorithm
can achieve the design goals listed in Section 4. First,
our algorithm requires very little overhead since it only
makes a scheduling decision when a coflow completes
or a coflow becomes valid. Further, the decision making
process is lightweight, as its dominate overhead lies in
sorting jobs or coflows and can have a time complexity
of O(|JΩ| log(|JΩ|)). Second, Theorem 4 demonstrates that
our algorithm can provide a theoretical guarantee for
minimizing the total JCT. Third, we can observe that
any job can get some bandwidth at any time, there will
never exist a sign of waiting in any job. Thus, starvation-
free can be ensured. The last line of Algorithm 1 corre-
sponds to a speed-up operation which scales up the flow
bandwidths with a factor to completely utilize the link
capacity. This essentially means that our algorithm can
purse work-conserving property.

6 PERFORMANCE EVALUATION

In this section, we perform extensive simulations with
realistic workload generated from the production DML
cluster to evaluate our Parrot scheduler. We compare the
following schemes with Parrot:

• Least-Bytes-Sent-First (Aalo): each time schedules
the job with least bytes sent and distributes resid-
ual bandwidth between remaining jobs to pursue
the work-conserving property. This scheme is con-
ceptually equivalent to Aalo [20].

• Aalo without work-conserving (Aalo-wo-WC): is
a variant of Aalo, which disables work conserving
when using Aalo, and hence underutilized link
capacities will not be allocated to other jobs.

• Least-Completed-Coflow-First (LCCF): schedules
the job that has the least number of completed
coflows each time. Also, it will assign underuti-
lized link capacities to the remaining jobs for
achieving work-conserving.

• LCCF without work-conserving (LCCF-wo-WC):
makes no attempt to fully utilize the residual link
capacities after the job with the least number of
completed coflows has been scheduled.

• Parrot without work-conserving (Parrot-wo-WC):
shares all processes with Parrot except the work-
conserving. More specifically, it disables Step 10
when running Algorithm 1.

• Lower Bound (LB): The lower bound of a job’s
JCT is calculated by assuming it to monopolize
network, i.e., the sum of effective CCTs of all its
child coflows. The lower bound on total JCT can
then be computed directly.

6.1 Simulation setup

Network: We simulate an ML cluster consisting of 128
servers. We mainly consider two network scenarios,
where the ingress/egress link capacities of all servers are
set to 10Gbps and 40Gbps, respectively.

Workloads: We use Microsoft job trace [27] which has
60 ML jobs. For each job, the trace contains its arrival
time, number of desired GPUs, number of iterations, ML
model name, and duration. We scale up the number of
GPUs for each job by two times. For each job, all the
required GPUs serve for workers, and we construct an
equal number of PSs and workers. Each GPU serves for
one worker only, and each PS or worker can only be
placed on one server. Note that we do not use GPUs
for PSs because PSs simply aggregate parameter updates
from all workers and typically do not need GPUs. We
then randomly place each job’s PSs and workers in the
simulated ML cluster. We generate traffic between PSs
and workers for each push/pull phase of a job by fol-
lowing the all-to-all traffic pattern. To fit job durations,
we let the jobs with longer per iteration duration to have
larger coflow length. To be particular, we set the largest
coflow length among all jobs to 1000MB and then make
the coflow length of each job to be proportional to its
per iteration duration. After the length of a coflow has
been determined, its individual flow sizes are randomly
selected within its length. The results from Fig. 5 to Fig. 8
are based on this 60-job workload.

We further generate 100 jobs based on the above
characteristics. Specifically, we randomly sample 1 job
from the 60-job workload by 100 times and hence get 100
jobs. We keep all job information while enforcing their
arrivals to follow a Poisson process. We vary the average
inter-job arrival interval µ from 100ms to 1000ms, so as to
evaluate the impact of network load on Parrot. The results
from Fig. 9 are based on this 100-job workload.

Simulator: We evaluate Parrot with an event-based
flow-level simulator by performing a replay of the above
workloads. Our simulator preserves dependencies be-
tween coflows and assumes perfect computation opti-
mization: a coflow can start immediately after its depen-
dent coflow finishes. Our simulator makes scheduling
decisions only when observing a coflow becoming newly
valid or being completed. We denote the observing inter-
val as η. We will vary η from 1ms to 100ms to evaluate its
impact on Parrot.

Parameter settings: Unless otherwise specified, we set
the observing interval η to 10ms, the maximum occu-
pancy ratio of the inferred SRPT job θmax to 0.9.



2168-7161 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.3040312, IEEE
Transactions on Cloud Computing

11

0.33
0.69

2.54

1.66

2.69

7.94

8.89

0.08 0.22
0.52

0.26 0.55

1.42

2.01

10G

40G

T
o
ta

l 
J
C

T
 (
!

1
0

6
m

s
)

0

2

4

6

8

10

LowerBound Parrot Parrot-wo-WC Aalo Aalo-wo-WC LCCF LCCF-wo-WC

Fig. 5. Total JCTs achieved by various schemes
under both 10G and 40G networks.

Lower Bound

Parrot

Parrot-wo-WC

Aalo

Aalo-wo-WC

LCCF

LCCF-wo-WC

C
D

F

0

0.2

0.4

0.6

0.8

1.0

JCT (ms)
104 105

(a) 10G

Lower Bound

Parrot

Parrot-wo-WC

Aalo

Aalo-wo-WC

LCCF

LCCF-wo-WC

C
D

F

0

0.2

0.4

0.6

0.8

1.0

JCT (ms)
104 105

(b) 40G

Fig. 6. CDFs of JCTs achieved by different schemes in both (a) 10G and (b) 40G networks. The
X-axes are in logarithmic scale.

Lower Bound

Parrot

Parrot-wo-WC

Aalo

Aalo-wo-WC

LCCF

LCCF-wo-WC

T
o
ta

l 
J
C

T

0

2!106

4!106

6!106

8!106

10!106

12!106

Scheduling-event observing interval "(ms)

0 50 100

2!106

4!106

6!106

8!106

0 10

(a) 10G

LowerBound

Parrot

Parrot-wo-WC

Aalo

Aalo-wo-WC

LCCF

LCCF-wo-WC

to
ta

l 
J
C

T
 (

m
s
)

0

1!106

2!106

3!106

4!106

5!106

6!106

Scheduling-event observing interval "(ms)

0 50 100

0

5!105

10!105

15!105

20!105

0 10

(b) 40G

Fig. 7. Total JCTs achieved by different schemes under varying scheduling-event observing
interval η in both (a) 10G and (b) 40G networks.

(b) 40G

(a) 10G

T
o
ta

l 
J
C

T
 (
!

1
0

6
m

s
)

0.16

0.18

0.20

0.22

T
o
ta

l 
J
C

T
 (
!

1
0

6
m

s
)

0.67

0.68

0.69

Maximum occupancy ratio "max

0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

Fig. 8. Total JCT achieved by Parrot under varying
maximum occupancy ratio θmax in both 10G and
40G networks.

6.2 Simulation results

Performance on JCTs: Fig.5 first depicts the total JCTs ob-
tained by different schemes with 10G and 40G networks.
From this figure, we have the following observations.
First, Parrot is closest to the Lower Bound, with the total
JCT being up to 2.75× its lower bound, compared to
other schemes. Second, across the 10G and 40G networks,
Parrot can reduce the total JCT by up to 58.4% and 91.3%,
compared to Aalo and LCCF, respectively. These results
directly verify the efficiency of Parrot. Third, when work-
conserving is disabled, each scheme incurs a relatively
high total JCT. The reason is straightforward because
some bandwidth will be wasted when disabling work-
conserving. Fourth, the reduction in total JCT achieved
by Parrot in the 40G network is less than that in the 10G
network. The underlying reason is that the 40G network
is not as congested as 10G one given the same workload,
thus reducing the optimization space that Parrot can take
effect for minimizing total JCT. Fifth, LCCF performs
worse than Aalo because the job with the least bytes sent
is more likely to be a short job, as compared to that with
the least number of completed coflows.

To understand the improvements of Parrot on a micro-
scopic level, we further plot the CDFs of JCT for all jobs
achieved by different schemes under both 10G and 40G
networks in Fig. 6. The higher the CDF curve, the lower
JCT the corresponding scheme can achieve. Clearly, in
both 10G and 40G networks, the CDF curve of our Parrot
is highest among the curves of all schemes excluding
Lower Bound. Specifically, in the 10G network, 78.3%
of jobs experience a JCT smaller than 10 seconds, while
that factions for Aalo and LCCF are 48.3% and 8.3%,
respectively. The results in Fig. 6 has the same trends

as that in Fig. 5, i.e., for each scheme, disabling work-
conserving leads to relatively high JCTs; the performance
advantages of Parrot in 40G network is not as significant
as it is in 10G network, given the same workload.
Impact of scheduling-event observing interval η: So far,
the length of η is set to 10ms. Intuitively, a larger η will
make the scheduler to miss some potential optimization
opportunities. For example, if a coflow is completed in
the middle of a specific observing interval, it can only
be observed at the end of this interval. Afterward, the
scheduling will be invoked. To quantify the impact of η,
we use the same settings as above, but vary the observing
interval η from 1ms to 100ms. Under varying η, Fig. 7
plots the total JCTs achieved by different schemes in both
10G and 40G networks. We can observe that for most
schemes excluding LCCF, the total JCT increases with
the growth of η. This is reasonable because a larger η
makes the system to have less frequency in observing
the scheduling events, resulting in fewer optimization
opportunities for reducing total JCT. One may question
why LCCF’s total JCT does not grow as η increases.
The reason might be that LCCF gives higher priorities
to the jobs that are not shortest or SRPT ones, and hence
larger η provides LCCF fewer opportunities to carry out
such mis-prioritization. One may further wonder why
Parrot performs worse than Aalo when η increases to
50ms/10ms in the 10G/40G network. The underlying
reason is that with a larger η, Parrot cannot quickly
observe a scheduling event, and hence the SRPT job
will be delayed to be scheduled, causing a higher total
JCT. Despite this, as the observing interval is usually
set to 10ms or even sub-millisecond in existing network
systems [21, 48], Parrot can show significant performance
merits over all the other schemes.



2168-7161 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.3040312, IEEE
Transactions on Cloud Computing

12

LowerBound

Parrot

Parrot-wo-WC

Aalo

Aalo-wo-WC

LCCF

LCCF-wo-WC
T
o
ta

l 
J
C

T
 (

m
s
)

0
5
!
1
0

6

1
0
!
1
0

6

1
5
!
1
0

6

Average inter-job arrival interval (ms)
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00

(a) 10G

LowerBound

Parrot

Parrot-wo-WC

Aalo

Aalo-wo-WC

LCCF

LCCF-wo-WC

T
o
ta

l 
J
C

T
 (

m
s
)

0
1
!
1
0

6
2
!
1
0

6
3
!
1
0

6

Average inter-job arrival interval (ms)
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00

(b) 40G

Fig. 9. Total JCTs achieved by various schemes under varying network
load in both 10G and 40G networks.

Impact of maximum occupancy ratio θmax: Recall that
Parrot ensures the inferred SRPT job not to monopolize
the network in case that it is not the SRPT one. Hence,
it configures a value θmax to enforce the ratio of link
bandwidth that the inferred job can use to not exceed
θmax. From Theorem 4, we note that the performance of
Parrot depends on the value of θmax. We vary θmax from
0.55 to 0.95 and keep all the other settings unchanged, so
as to evaluate the impact of θmax. The results are shown
in Fig. 8. We observe that the total JCT with a low value
of θmax (i.e., < 0.75) is smaller than that with a high value
of θmax. These results are approximately aligned with the
implications in Theorem 4 that the larger the θmax, the
looser the upper bound is for the total JCT achieved by
our Parrot. Despite that a larger θmax leads to a looser
upper bound for total JCT, our Parrot can still outperform
Aalo and LCCF under a high θmax = 0.9.
Impact of network load: In this experiment, we use
the 100-job workload described in Sec. 6.1. These jobs
follow Poisson arrival patterns. To construct different
network loads, we control the average inter-job arrival
interval µ. In fact, the network load is closely related to
µ. When all jobs arrived at the same time, i.e., µ = 0,
the network is always full utilized for a long time. When
µ becomes larger and larger, less load will be injected
into the network, and there will be fewer concurrent jobs
sharing the network. We vary the inter-job arrival interval
µ from 100ms to 1000ms and plot the total JCTs achieved
by different schemes under varying µ in both 10G and
40G networks in Fig. 9. We can clearly observe that the
total JCTs of all schemes decreases as the increasing of µ
because a larger µ incurs a lower network load. We can
further observe that Parrot can always achieve the lowest
total JCT among all other schemes in the 10G network,
irrespective of the change of µ. Specifically, compared
to Aalo and LCCF, Parrot can reduce the total JCT by
up to 61.6% and 80.9%, respectively. Under the 40G
network, Aalo achieves nearly the same total JCT with
Parrot. The reason is again that the 40G network enables
Parrot to have fewer optimization opportunities. One can
also observe that each scheme performs worse than its
original scheme if its work-conserving is disabled. This is
because that some bandwidth is inevitable to be wasted
when disabling work-conserving.
Impact of PS number: The above experiments all con-
sider an equal number of PSs and workers for each job.
In this experiment, we make the number of workers and

LowerBound

Parrot

Parrot-wo-WC

Aalo

Aalo-wo-WC

LCCF

LCCF-wo-WC

T
o
ta

l 
J
C

T
 (

m
s
)

0
1
!
1
0

7
2
!
1
0

7
3
!
1
0

7
4
!
1
0

7

Maximum num. of PSs

10 20 30 40 50

(a) 10G

LowerBound

Parrot

Parrot-wo-WC

Aalo

Aalo-wo-WC

LCCF

LCCF-wo-WC

T
o
ta

l 
J
C

T
 (

m
s
)

0
2
!
1
0

6
4
!
1
0

6
6
!
1
0

6
8
!
1
0

61
0
!
1
0

6

Maximum num. of PSs

10 20 30 40 50

(b) 40G

Fig. 10. Total JCTs achieved by various schemes under varying maxi-
mum number of PSs (i.e., ∆) in both 10G and 40G networks.

PSs different for each job. Specifically, we use the 60-job
workload but control the number of PSs not exceeding a
predefined threshold of ∆. In other words, the number of
PSs for each job is randomly chosen in the range [1,∆].
The number of workers for each job is unchanged. We
generate traffic for each job using the similar way as
described in Sec. 6.1. Fig. 10 depict the total JCTs achieved
by different schemes under varying values of ∆ in both
10G and 40G networks. It is clear that Parrot achieves a
lower total JCT than all other schemes across all settings
of ∆ in both 10G and 40G networks, and has a little gap
to the ideal lower bound. More specifically, compared to
Aalo and LCCF 10G (40G) network, Parrot can reduce
the total JCT by up to 51.9% (2.9%) and 73.2% (61.6%),
respectively. Across all settings, the total JCT achieved by
Parrot can be as low as 1.26× it’s lower bound and is at
most 2.6× the lower bound. We can further observe that
the total JCTs achieved by all schemes increase with the
growth of ∆. The reason is that we use the all-to-all pat-
tern to generate traffic between PSs and workers. Hence,
a larger maximum number of PSs could lead to a higher
traffic load in the network given the unchanged number
of workers, thus leaving more space for our Parrot to
take effect for reducing total JCT. These results directly
demonstrate the efficiency of our Parrot in reducing the
total JCT in scenarios with a different number of PSs and
workers per job.

7 DISCUSSION

Considering computation time: So far, our work only
considers communication time for DML jobs. However,
the workers take time to compute parameter updates,
and the PSs also need time to aggregate updates from
all workers. A simple way to consider such computation
time would be to assume it to be a constant. To be
particular, one can use em,k to represent the computation
time associated with the coflow k ∈ Cm. As such, we need
to make three changes to our model. First, the completion
time of each job m ∈ J should be updated as

Tm = τm +
∑
k∈Cm

(em,k + Γm,k) (36)

Second, for every job m’s every coflow k ∈∈ Cm, its CCT
should consider the computation time, as shown in the
following.

Tm,k = τm + em,k + Γm,k +
∑

k′≺k∈cm

(em,k′ + Γm,k′) (37)



2168-7161 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.3040312, IEEE
Transactions on Cloud Computing

13

Third, additional constraints should be introduced to
prevent any coflows from transmitting data during the
computation time. Specifically, ∀m ∈ J ,∀k′ ≺ k ∈
Cm,∀i, j ∈ N , we have the following equality∫ Tm,k′+em,k

Tm,k′

bm,k,i,j(t)dt = 0, (38)

With Eqs. (36)(37)(38), one can get a new model

min
bm,k,i,j(t)

∑
m∈J

Tm s.t. Eqs. (1)(2)(3)(4)(5)(6)(38) (39)

To solve this new model, one can use the unmodified
Algorithm 1. However, this will make Theorem 4 in-
valid, and no guarantee can be provided on the upper
bound of total JCT. The crux is that the number of
concurrent jobs (i.e., |JΩ|) may not be equal to that of
concurrent coflows (i.e., |CΩ|) since some jobs may be in
the computation stage. One possible way would be to
always find the set of concurrent jobs (e.g., |ĴΩ|) that
are in communication stages. Then, one can define the
occupancy ratio θ and the weight Wmax for the inferred
SRPT job with this new set |ĴΩ|. In such a case, we can
still guarantee the total JCT to be no more than M

1−θmax
times the optimum. Specifically, one can update the lower
bound as T (O1) ≥

∑
m∈J (τm +

∑
k∈Cm(em,k + Γ

(O3)
m,k )).

Then, one can define T
(ALG)
3 =

∑
m∈J

∑
k∈Cm em,k.

Since each job has only one active coflow at any time,
|ĴΩ| now equals to |CΩ| and Eqs. (33)(34) still hold.
As such, one can similarly have T (ALG) = T

(ALG)
1 +

T
(ALG)
2 + T

(ALG)
3 ≤

∑
m∈J τm +

∑
m∈J

∑
k∈Cm em,k +

M
1−θmax

∑
m∈J

∑
k∈Cm Γ

(O3)
m,k ≤ M

1−θmax

(∑
m∈J τm +∑

m∈J
∑
k∈Cm(em,k + Γ

(O3)
m,k )

)
≤ M

1−θmaxT
(O1).

Allowing multiple active coflows per job: Our work
assumes that there is only one active coflow per DML job
at any time. However, this assumption would be invalid
in scenarios supporting overlapping communication with
computation [8, 49] because a DML job may have mul-
tiple active coflows. While dealing with multiple active
coflows per job is out of our paper’s scope, a possible
design would be to divide the time into discrete timeslots
and leverage a centralized arbiter to determine which
flows can be transmitted in each timeslot. Specifically, in
each time slot, the arbiter could first employ a two-stage
ordering method to compute an order in which the con-
current flows are scheduled. The first stage is to order the
flows in the job-level, meaning that the flows in higher
priority jobs should be prioritized over those in lower
priority ones. The policy in determining jobs’ priorities
could be shortest-effective-bottleneck-first. The effective
bottleneck of a job can be computed as the longest layer-
wise communication time per iteration. The second stage
is to arrange the flows in the individual flow-level, where
one can let the flow with the latest arrive time have the
highest priority to ensure the forward computation of
the former layer being started earlier. For flows having
similar arrive times, one can prioritize larger flows over
shorter flows to ensure the bottleneck flow in a coflow

can be finished first. With such an order, the arbiter
can process the flows in order, i.e., greedily allocating
a source-destination pair if allocating the pair does not
violate the bandwidth constraint. As such, the maximal
matching can be achieved, meaning that none of the
unallocated flows can be allocated while maintaining the
bandwidth constraints. We leave this as future work.

Predicting job duration: So far, our work predicts the
remaining progress of a job using the already attained
service, which is essentially a heuristic and relies on
heavy-tailed workload distribution to achieve good per-
formance. A promising approach is to use ML technique.
For example, one can use (online) model fitting [50]
to predict the number of iterations required to achieve
convergence for a job and then estimate the remaining
progress by multiplying the observed average iteration
time and the remaining iterations. This approach may
require the DML job to have smooth loss curves. How-
ever, for many poor models during a trial-and-error
exploration, their loss curves are not as smooth as the
curves of the best model ultimately picked at the end
of exploration. So, a more promising approach would be
to learn job size from past system traces. We leave it to
future work.

8 RELATED WORK

There are tons of literature related to Parrot. We only
review the most related ones below.

Coflow-aware network scheduling: Coflow schedul-
ing has been widely used to improve the communication
performance for distributed data-parallel jobs because
coflow abstraction can capture the application-level se-
mantics better than traditional individual flow model.
Existing solutions focus on scheduling coflows from ei-
ther single-stage or multi-stage jobs. Single-stage solu-
tions concentrate on the primary performance metric—
coflow completion time (CCT). They leverage efficient
heuristics or approximation algorithms to minimize the
average CCT [16–21, 24, 25, 51, 52], minimize the total
weighted CCT [53], guarantee CCT within a specific
deadline [17, 54, 55], and ensure fairness among coflows
with respect to CCT [22, 23, 56, 57]. However, optimizing
CCT does not help for multi-stage jobs, because their
coflows have dependencies. Hence, optimizing JCT is
more relevant for multi-stage jobs. To this end, Aalo em-
ploys a heuristic [20], which cannot provide a theoretical
guarantee on the average JCT. Hence, Tian et al. [26]
propose an approximation algorithm, which, however,
relies on complete job information and involves solving
a complicated LP program, making it being impractical.

Network optimizations for DML jobs: There are
some other techniques to optimize the network perfor-
mance for DML jobs. For instance, Hsieh et al. pro-
pose Gaia [11], which only sends significant gradients
to servers in wide-area networks to speed up DML job’s
completion. Similar ideas are adopted in [12] and [13],
which employs various filters to reduce communication
between workers and parameter servers. Zhang et al. [8]



2168-7161 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.3040312, IEEE
Transactions on Cloud Computing

14

present a communication architecture for DML on GPUs,
which explores layered ML model structures to hide the
communication overhead behind backpropagation, and
hence accelerate DML jobs. Taking a step further, Jayara-
jan et al. [58] propose P3, which can overlap communica-
tion with both forward and backward propagation using
priority scheduling in MXNet architecture. Peng et al. use
a similar idea and present ByteScheduler [49], which is
different from P3 as it is a generic communication sched-
uler and can support multiple ML frameworks, including
MXNet, PyTorch, and TensorFlow. Bao et al. further de-
sign PACE [59], which uses preemptive communication
scheduling and tensor fusion to guarantee maximal over-
lapping of communication with computation for DAG-
based DNN training and achieve high bandwidth uti-
lization as well. TicTac [10] proposes finding the best
scheduling order of network transfers through critical
path analysis on the underlying computational graph, so
as to guarantee a near-optimal overlap of communication
and computation, improving the iteration time. While
the works above can improve network performance ef-
ficiently for DML jobs, they mainly focus on accelerating
communication for single job and are orthogonal and
complementary to our work.

There are also some other efforts adopting the idea
of prioritizing the short flows or coflows while avoiding
them monopolize the network. For example, Varys [17]
allocates the least amount of bandwidth to each sched-
uled (and short) coflow, so as to make all the flows in a
coflow to keep the same pace and allow other coexisting
coflows to make progress as well. Sincronia [25] uses an
SRPT-like policy to order all unfinished coflows first and
then sets the priorities of flows to be the order of their
corresponding coflows. As such, flow scheduling and
bandwidth allocation can be done by existing priority-
enabled transport where different priority queues typi-
cally share the link bandwidth in a weighted manner, and
weights are based on the queues’ priorities. OMCoflow
[24] leverages weighted sharing to allow large coflows to
have more bandwidth and small coflows relatively less
bandwidth. The solutions above all require prior knowl-
edge of coflow characteristics like the number of flows
and their sizes. Of course, there also exist information-
agnostic solutions. For example, PIAS [47] and Aalo [20]
use multiple-level feedback queues (MLFQ) and move
flows/coflows gradually from higher-priority queues to
lower-priority queues based on their total bytes sent,
with the aim of prioritizing short flows/coflows over
large ones. Besides, weighted fair queuing is adopted
across queues to avoid starvation. However, the grad-
ual priority demotion mechanism takes time to move
large flows/coflows to low-priority queues, increasing
the risk of allowing short and large flows/coflows to
share the congested link and hence prolonging the short
flows/coflows. By contrast, our Parrot can reduce such
risk. Once a job is identified as an SRPT one, Parrot can
separate it from other jobs by assigning a high weight to
it and maintaining the same and relatively low weight for

the remaining jobs.

9 CONCLUSIONS

In this paper, we study the problem of scheduling de-
pendent coflows of multiple DML jobs to minimize the
total JCT. We formulate the problem and prove its NP-
hardness. We present an online coflow-aware scheduler
called Parrot. Each time, Parrot employs a LPCAS heuris-
tic to infer the SRPT job first. It then allocates the in-
ferred job a relatively large amount of bandwidth while
not starving any other job by proposing a dynamic job
weight assignment mechanism and a LP-based weighted
bandwidth scaling strategy. We have conducted rigorous
theoretical analysis to prove that our Parrot algorithm
can provide a non-trivial competitive in minimizing the
total JCT for any given set of jobs. Extensive simulations
based on realistic workloads demonstrate that Parrot
outperforms the state-of-the-art solution, with the total
JCT being reduced by 58.4%.

REFERENCES
[1] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao,

M. Ranzato, A. Senior, P. Tucker, K. Yang et al., “Large scale
distributed deep networks,” in Proc. of NIPS, 2012.

[2] P. Goyal, P. Dollár, R. Girshick, P. Noordhuis, L. Wesolowski,
A. Kyrola, A. Tulloch, Y. Jia, and K. He, “Accurate, large minibatch
sgd: Training imagenet in 1 hour,” arXiv preprint arXiv:1706.02677,
2017.

[3] K. Hazelwood, S. Bird, D. Brooks, S. Chintala, U. Diril, D. Dzhul-
gakov, M. Fawzy, B. Jia, Y. Jia, A. Kalro et al., “Applied machine
learning at facebook: A datacenter infrastructure perspective,” in
Proc. of IEEE HPCA, 2018.

[4] W. Xiao, R. Bhardwaj, R. Ramjee, M. Sivathanu, N. Kwatra, Z. Han,
P. Patel, X. Peng, H. Zhao, Q. Zhang et al., “Gandiva: Introspective
cluster scheduling for deep learning,” in Proc. of USENIX OSDI,
2018.

[5] X. Jia, S. Song, W. He, Y. Wang, H. Rong, F. Zhou, L. Xie, Z. Guo,
Y. Yang, L. Yu et al., “Highly scalable deep learning training system
with mixed-precision: Training imagenet in four minutes,” arXiv
preprint arXiv:1807.11205, 2018.

[6] L. Luo, J. Nelson, L. Ceze, A. Phanishayee, and A. Krishnamurthy,
“Parameter hub: a rack-scale parameter server for distributed
deep neural network training,” in Proc. of ACM SoCC, 2018.

[7] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Ba-
jwa, S. Bates, S. Bhatia, N. Boden, A. Borchers et al., “In-datacenter
performance analysis of a tensor processing unit,” in Proc. of
ACM/IEEE ISCA, 2017.

[8] H. Zhang, Z. Zheng, S. Xu, W. Dai, Q. Ho, X. Liang, Z. Hu, J. Wei,
P. Xie, and E. P. Xing, “Poseidon: An efficient communication
architecture for distributed deep learning on gpu clusters,” in Proc.
of USENIX ATC, 2017.

[9] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic, “Qsgd:
Communication-efficient sgd via gradient quantization and en-
coding,” in Proc. of NIPS, 2017.

[10] S. H. Hashemi, S. A. Jyothi, and R. H. Campbell, “Tictac: Acceler-
ating distributed deep learning with communication scheduling,”
in Proc. of SysML, 2019.

[11] K. Hsieh, A. Harlap, N. Vijaykumar, D. Konomis, G. R. Ganger,
P. B. Gibbons, and O. Mutlu, “Gaia: Geo-distributed machine
learning approaching lan speeds,” in Proc. of USENIX NSDI, 2017,
pp. 629–647.

[12] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josi-
fovski, J. Long, E. J. Shekita, and B.-Y. Su, “Scaling distributed
machine learning with the parameter server,” in Proc. of USENIX
OSDI, 2014.

[13] M. Li, D. G. Andersen, A. J. Smola, and K. Yu, “Communication
efficient distributed machine learning with the parameter server,”
in Advances in Neural Information Processing Systems, 2014, pp. 19–
27.



2168-7161 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.3040312, IEEE
Transactions on Cloud Computing

15

[14] M. Jeon, S. Venkataraman, J. Qian, A. Phanishayee, W. Xiao, and
F. Yang, “Multi-tenant gpu clusters for deep learning workloads:
Analysis and implications,” Technical report, MSR-TR-2018-13,
Tech. Rep., 2018.

[15] J. Jiang, B. Cui, C. Zhang, and L. Yu, “Heterogeneity-aware dis-
tributed parameter servers,” in Proc. of the 2017 ACM International
Conference on Management of Data. ACM, 2017, pp. 463–478.

[16] M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan, and I. Stoica,
“Managing data transfers in computer clusters with orchestra,”
in Proc. of ACM SIGCOMM, Toronto, Canada, 2011.

[17] M. Chowdhury, Y. Zhong, and I. Stoica, “Efficient coflow schedul-
ing with varys,” in Proc. of ACM SIGCOMM, Chicago, IL, USA,
2014.

[18] Y. Zhao, K. Chen, W. Bai, C. Tian, Y. Geng, Y. Zhang, D. Li, and
S. Wang, “Rapier: Integrating routing and scheduling for coflow-
aware data center networks,” in Proc. of IEEE INFOCOM, HK,
2015.

[19] F. R. Dogar, T. Karagiannis, H. Ballani, and A. Rowstron, “Decen-
tralized task-aware scheduling for data center networks,” in Proc.
of ACM SIGCOMM, 2014.

[20] M. Chowdhury and I. Stoica, “Efficient coflow scheduling without
prior knowledge,” in Proc. of ACM SIGCOMM, 2015.

[21] H. Zhang, L. Chen, B. Yi, K. Chen, M. Chowdhury, and Y. Geng,
“Coda: Toward automatically identifying and scheduling coflows
in the dark,” in Proc. of ACM SIGCOMM, 2016.

[22] W. Wang, S. Ma, B. Li, and B. Li, “Coflex: Navigating the fairness-
efficiency tradeoff for coflow scheduling,” in Proc. of IEEE INFO-
COM, 2017.

[23] L. Chen, W. Cui, B. Li, and B. Li, “Optimizing coflow completion
times with utility max-min fairness,” in Proc. of IEEE INFOCOM,
2016.

[24] Y. Li, S. H.-C. Jiang, H. Tan, C. Zhang, G. Chen, J. Zhou, and F. Lau,
“Efficient online coflow routing and scheduling,” in Proc. of ACM
MobiHoc, 2016.

[25] S. Agarwal, S. Rajakrishnan, A. Narayan, R. Agarwal, D. Shmoys,
and A. Vahdat, “Sincronia: near-optimal network design for
coflows,” in Proc. of ACM SIGCOMM, 2018.

[26] B. Tian, C. Tian, H. Dai, and B. Wang, “Scheduling coflows of
multi-stage jobs to minimize the total weighted job completion
time,” in Proc. of IEEE INFOCOM, 2018.

[27] J. Gu, M. Chowdhury, K. G. Shin, Y. Zhu, M. Jeon, J. Qian, H. Liu,
and C. Guo, “Tiresias: A gpu cluster manager for distributed deep
learning,” in Proc. of USENIX NSDI, 2019.

[28] E. P. Xing, Q. Ho, W. Dai, J. K. Kim, J. Wei, S. Lee, X. Zheng, P. Xie,
A. Kumar, and Y. Yu, “Petuum: A new platform for distributed
machine learning on big data,” in Proc. of SIGKDD, 2015.

[29] C.-T. Chu, S. K. Kim, Y.-A. Lin, Y. Yu, G. Bradski, K. Olukotun,
and A. Y. Ng, “Map-reduce for machine learning on multicore,” in
Proc. of NIPS, 2007.

[30] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for
large-scale machine learning,” in Proc. of USENIX OSDI, 2016.

[31] T. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman, “Project
adam: Building an efficient and scalable deep learning training
system,” in Proc. of USENIX OSDI, 2014.

[32] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and
J. M. Hellerstein, “Distributed graphlab: a framework for machine
learning and data mining in the cloud,” in Proc. of the VLDB
Endowment, 2012.

[33] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu,
J. Freeman, D. Tsai, M. Amde, S. Owen et al., “Mllib: Machine
learning in apache spark,” in Proc. of CoRR, 2015.

[34] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture
for fast feature embedding,” in Proc. of ACM Multimedia, 2014, pp.
675–678.

[35] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu,
C. Zhang, and Z. Zhang, “Mxnet: A flexible and efficient machine
learning library for heterogeneous distributed systems,” arXiv
preprint arXiv:1512.01274, 2015.

[36] Q. Ho, J. Cipar, H. Cui, S. Lee, J. K. Kim, P. B. Gibbons, G. A.
Gibson, G. Ganger, and E. P. Xing, “More effective distributed ml
via a stale synchronous parallel parameter server,” in Proc, of NIPS,
2013.

[37] B. Recht, C. Re, S. Wright, and F. Niu, “Hogwild: A lock-free
approach to parallelizing stochastic gradient descent,” in Proc, of
NIPS, 2011.

[38] M. Chowdhury and I. Stoica, “Coflow: A networking abstraction
for cluster applications,” in Proc. of ACM Workshop on Hot Topics in
Networks, 2012.

[39] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta, “Vl2: a scalable and flexible
data center network,” in Proc. of ACM SIGCOMM, 2009.

[40] R. Niranjan Mysore, A. Pamboris, N. Farrington, N. Huang,
P. Miri, S. Radhakrishnan, V. Subramanya, and A. Vahdat, “Port-
land: a scalable fault-tolerant layer 2 data center network fabric,”
in Proc. of ACM SIGCOMM, 2009.

[41] B. Montazeri, Y. Li, M. Alizadeh, and J. Ousterhout, “Homa:
A receiver-driven low-latency transport protocol using network
priorities,” in Proc. of ACM SIGCOMM, 2018.

[42] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prab-
hakar, and S. Shenker, “pfabric: Minimal near-optimal datacenter
transport,” in Proc. of ACM SIGCOMM, 2013.

[43] C.-Y. Hong, M. Caesar, and P. Godfrey, “Finishing flows quickly
with preemptive scheduling,” in Proc. of ACM SIGCOMM, 2012.

[44] B. Kalyanasundaram and K. R. Pruhs, “Minimizing flow time
nonclairvoyantly,” Journal of the ACM (JACM), vol. 50, no. 4, pp.
551–567, 2003.

[45] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: a simple way to prevent neural
networks from overfitting,” The journal of machine learning research,
vol. 15, no. 1, pp. 1929–1958, 2014.

[46] C. Guo, L. Yuan, D. Xiang, Y. Dang, R. Huang, D. Maltz, Z. Liu,
V. Wang, B. Pang, H. Chen et al., “Pingmesh: A large-scale system
for data center network latency measurement and analysis,” in
Proc. of ACM SIGCOMM, 2015.

[47] W. Bai, L. Chen, K. Chen, D. Han, C. Tian, and H. Wang,
“Information-agnostic flow scheduling for commodity data cen-
ters,” in Proc. of USENIX NSDI, 2015, pp. 455–468.

[48] L. Chen, J. Lingys, K. Chen, and F. Liu, “Auto: Scaling deep
reinforcement learning for datacenter-scale automatic traffic op-
timization,” in Proc. of ACM SIGCOMM, 2018.

[49] Y. Peng, Y. Zhu, Y. Chen, Y. Bao, B. Yi, C. Lan, C. Wu, and C. Guo,
“A generic communication scheduler for distributed dnn training
acceleration,” in Proc. of ACM SOSP, 2019.

[50] Y. Peng, Y. Bao, Y. Chen, C. Wu, and C. Guo, “Optimus: an efficient
dynamic resource scheduler for deep learning clusters,” in Proc. of
ACM EuroSys, 2018.

[51] W. Li, X. Yuan, K. Li, H. Qi, and X. Zhou, “Leveraging endpoint
flexibility when scheduling coflows across geo-distributed data-
centers,” in Proc. of IEEE INFOCOM, 2018.

[52] W. Li, D. Guo, A. X. Liu, K. Li, H. Qi, S. Guo, A. Munir, and
X. Tao, “Coman: managing bandwidth across computing frame-
works in multiplexed datacenters,” IEEE transactions on parallel and
distributed systems, vol. 29, no. 5, pp. 1013–1029, 2017.

[53] Z. Qiu, C. Stein, and Y. Zhong, “Minimizing the total weighted
completion time of coflows in datacenter networks,” in Proc. of
ACM SPAA, 2015.

[54] S. Ma, J. Jiang, B. Li, and B. Li, “Chronos: Meeting coflow deadlines
in data center networks,” in Proc. of IEEE ICC, 2016.

[55] R. Xu, W. Li, K. Li, X. Zhou, and H. Qi, “Scheduling mix-coflows
in datacenter networks,” IEEE Transactions on Network and Service
Management, 2020.

[56] L. Wang, W. Wang, and B. Li, “Utopia: Near-optimal coflow
scheduling with isolation guarantee,” in Proc. of IEEE INFOCOM,
2018.

[57] L. Wang and W. Wang, “Fair coflow scheduling without prior
knowledge,” in Proc. of IEEE ICDCS, 2018.

[58] A. Jayarajan, J. Wei, G. Gibson, A. Fedorova, and G. Pekhimenko,
“Priority-based parameter propagation for distributed dnn train-
ing,” in Proc. of SysML, 2019.

[59] Y. Bao, Y. Peng, Y. Chen, and C. Wu, “Preemptive all-reduce
scheduling for expediting distributed dnn training,” in Proc. of
IEEE INFOCOM, 2020.



2168-7161 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.3040312, IEEE
Transactions on Cloud Computing

16

Wenxin Li received the B.E. and Ph.D degrees
from the School of Computer Science and Tech-
nology, Dalian University of Technology, in 2012
and 2018 respectively. Currently, he is a post-
doc researcher in Hong Kong University of Sci-
ence and Technology. From May 2014 to May
2015, he was a research assistant in National
University of Defense Technology. From Oct.
2016 to Sept. 2017, he was a visiting student at
the Department of Electrical and Computer Engi-
neering in the University of Toronto. His research

interests include datacenter networks and cloud computing.

Sheng Chen received the bachelor’s and mas-
ter’s degrees from Dalian Maritime University
in 2011 and Dalian University of Technology in
2017, respectively. He is currently pursuing the
Ph.D. degree with the College of Intelligence
and Computing, Tianjin University, China. His
research interests include data center network,
edge computing, wireless sensing, and indoor
localization.

Keqiu Li received the bachelors and masters
degrees from the Department of Applied Math-
ematics at the Dalian University of Technology
in 1994 and 1997, respectively. He received the
Ph.D. degree from the Graduate School of In-
formation Science, Japan Advanced Institute of
Science and Technology in 2005. He also has
two-year postdoctoral experience in the Univer-
sity of Tokyo, Japan. He is currently a professor
in the School of Computer Science and Technol-
ogy, Dalian University of Technology, China. He

has published more than 100 technical papers, such as IEEE TPDS,
ACM TOIT, and ACM TOMCCAP. He is an Associate Editor of IEEE
TPDS and IEEE TC. He is a senior member of IEEE. His research inter-
ests include internet technology, data center networks, cloud computing
and wireless networks.

Heng Qi was a Lecture at the School of Com-
puter Science and Technology, Dalian University
of Technology, China. He got bachelor’s degree
from Hunan University in 2004 and master’s
degree from Dalian University of Technology in
2006. He servered as a software engineer in
GlobalLogic-3CIS from 2006 to 2008. Then he
got his doctorate degree from Dalian University
of Technology in 2012. His research interests in-
clude computer network, multimedia computing,
and mobile cloud computing. He has published

more than 20 technical papers in international journals and conferences,
including ACM Transactions on Multimedia Computing, Communications
and Applications (ACM TOMCCAP) and Pattern Recognition (PR).

Renhai Xu received the B.E. and M.S. degrees
from the School of Computer Science and Tech-
nology, Dalian University of Technology, China,
in 2014 and 2017, respectively. Currently, he
is a second-year PhD student in the School
of Computer Science and Technology, Tianjin
University, China. His research interests include
datacenter networks and cloud computing.

Song Zhang received the bachelor’s and mas-
ter’s degrees from Hunan University in 2015 and
2019, respectively. He is working toward the PhD
degree with the School of Computer Science
and Technology, TianJin University. His current
research interests include data center networks
and cloud computing.


