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Abstract—Owing to powerful programmability, software defined
networking (SDN) is well aligned with the requirements of NFV
datacenters. Although the mainstream SDN frameworks can
effectively respond to the requests of control plane, the load
distribution among controllers is not balanced due to the request
dynamics and request diversity. The existing solutions balance the
load of control plane by migrating switches between controllers.
However, these solutions are based on the binding between switches
and controllers, so they are difficult to adapt to the dynamic and
diverse requests. In this paper, we propose a new framework to
decouple the binding. The new framework performs modular
management for request queues. A complete request queue is
provided for each type of request between each switch controller
pair, so that the assignment between requests is independent of each
other. Based on the proposed framework, we transform the request
assignment problem into a variant of the scheduling problem in a
Stochastic Processing Network (SPN), and propose a Maximum
Pressure Policy (MPP) which can provide runtime guarantees on
request throughput and response latency. To fit with the constraints
inherent to large-scale deployment, we propose a distributed
version of MPP, named DMPP. DMPP runs in local state on each
switch and performs scheduling logic for batch requests. We
implement a protosystem of our solution and evaluate it on the
settings representing real-world scenarios. The results show that
our solution can provide guarantees on request throughput and
response latency, and significantly outperforms state-of-the-art
solutions through amore efficient resource usage

Index Terms—Control plane, datacenter, software defined net-
working, stochastic processing networks.

I. INTRODUCTION

SOFTWARE-DEFINED networking (SDN) [1] has rapidly

grown in the datacenters of network function virtualization

(NFV), in particular with the deployment of service function

chains [2]–[5]. According to the IETF specifications [6], a typi-

cal SDN based service function chain architecture consists of

the components grouped into two planes, the control plane and

data plane. The SDN control plane is built in software as appli-

cations running on top of multiple controllers, whereas general

purpose switches constitute the SDN data plane. The control

plane is responsible for adjusting the service function paths as a

result of their status requests (i.e., overloaded, active, inactive,

failed, etc.). Both the planes communicate with each other via a

standardized protocol such as OpenFlow [7]. Architecturally

seen, SDN decouples the control plane from data plane and

enables the traffic steering across service functions in a

dynamic and flexible manner [8]–[10].

Although the requests to the control plane can be responded

via some up-to-date SDN frameworks such as ONOS [11] and

OpenDaylight [12], the load distribution among controllers

unfortunately appears imbalance, due to the following factors.

Request dynamics: Spatially, switches in the different

layers of topology experience significantly different flow

arrival rates [13]. Temporally, the aggregate traffic usually

peaks in daytime and falls at night [14]. Traffic variability

also exists in shorter time scales even the aggregate traffic

remains the same [15]. For these reasons, the arrival rate of

requests is dynamic. However, the existing SDN frameworks

assign requests by statically assigning controllers to switches.

These frameworks make each controller handle requests from

the same amount of switches. Consequently, the controllers

differ in the amount of received requests per unit time and

some of them inevitably become hot spots.

Request diversity: There are many types of requests in the con-

trol plane [16]. For example, some requests involve flow status,

while others involve port status. Different request types result in

different processing time on the controller. Even if the same type

of requests belong to different service chains, the processing time

on the controller is different [5]. For these reasons, the processing

time of requests is diverse. However, the existing SDN frame-

works are based on the binding between switches and controllers,

so that the assignment between requests is dependent of each

other, which further incurs load imbalance among controllers.

The load imbalance will eventually reduce the performance

of control plane, such as the throughput of request and the

latency of response [17], [18].

The existing solutions balance the load of control plane by

migrating switches between controllers [16], [18], [19]. Firstly,

Manuscript received July 23, 2020; revised November 6, 2020; accepted
December 23, 2020. Date of publication December 30, 2020; date of current
version March 17, 2021. This work was supported in part by the National Key
R&D Program of China under Grant 2019YFB2102404, in part by the NSFC
under Grants 61772112, 62072069, 61672379, in part by the Science Innova-
tion Foundation of Dalian under Grant 2019J12GX037. Recommended for
acceptance by Dr. Xiaoming Fu. (Corresponding author: Heng Qi.)

Junxiao Wang, Heng Qi, Keqiu Li, and Yuxin Wang are with the School of
Computer Science and Technology, Dalian University of Technology, Dalian,
Liaoning 116024, P.R. China (e-mail: wangjunxiao.dalian@gmail.com;
hengqi@dlut.edu.cn; keqiu@dlut.edu.cn; wyx@dlut.edu.cn).

Wenxin Li is with the Department of Computer Science and Engineering,
Hong Kong University of Science and Technology, Hong Kong, Hong Kong
(e-mail: toliwenxin@gmail.com).

Steve Uhlig is with the School of Electronic Engineering and Computer Sci-
ence, Queen Mary University of London, London E1 4FZ, U.K. (e-mail: steve.
uhlig@qmul.ac.uk).

Digital Object Identifier 10.1109/TNSE.2020.3048188

680 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 8, NO. 1, JANUARY-MARCH 2021

2327-4697� 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0001-7320-5902
https://orcid.org/0000-0001-7320-5902
https://orcid.org/0000-0001-7320-5902
https://orcid.org/0000-0001-7320-5902
https://orcid.org/0000-0001-7320-5902
https://orcid.org/0000-0002-8770-3934
https://orcid.org/0000-0002-8770-3934
https://orcid.org/0000-0002-8770-3934
https://orcid.org/0000-0002-8770-3934
https://orcid.org/0000-0002-8770-3934
https://orcid.org/0000-0001-8507-0339
https://orcid.org/0000-0001-8507-0339
https://orcid.org/0000-0001-8507-0339
https://orcid.org/0000-0001-8507-0339
https://orcid.org/0000-0001-8507-0339
https://orcid.org/0000-0003-1758-3030
https://orcid.org/0000-0003-1758-3030
https://orcid.org/0000-0003-1758-3030
https://orcid.org/0000-0003-1758-3030
https://orcid.org/0000-0003-1758-3030
https://orcid.org/0000-0001-6251-6836
https://orcid.org/0000-0001-6251-6836
https://orcid.org/0000-0001-6251-6836
https://orcid.org/0000-0001-6251-6836
https://orcid.org/0000-0001-6251-6836
https://orcid.org/0000-0002-5133-3978
https://orcid.org/0000-0002-5133-3978
https://orcid.org/0000-0002-5133-3978
https://orcid.org/0000-0002-5133-3978
https://orcid.org/0000-0002-5133-3978
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:


these solutions cannot adapt to the dynamic arrival rate of

requests because they rely on the heavy message exchanges,

such as 6 round-trip message exchanges per migration in [17].

They must make the migration frequency low enough to limit

overhead, so they cannot cope with real-time changes in request

arrival rate. Secondly, these solutions cannot adapt to the

diverse processing time of requests because they are based on

the binding between switches and controllers. They must assign

all requests of the switch to one controller, and part of requests

are therefore forced to inappropriate controllers.

In this paper, we propose a new framework to decouple the

binding. The new framework performs modular management

for request queues. A complete request queue is provided for

each type of request between each switch controller pair, so

that the assignment between requests is independent of each

other. Based on the proposed framework, we can achieve

dynamic request assignment by selecting an appropriate

request queue for the requests arriving in real-time.

Then, we study an online decision-making problem, that is,

how to select an appropriate request queue for requests arriv-

ing in real time. We show that this problem is a variant of the

scheduling problem in a stochastic processing network (SPN)

[20] which has similar properties. By transforming this prob-

lem into an SPN one, we apply the results of the SPN problem

and propose the maximum pressure policy (MPP), which

shows the asymptotically optimal request throughput. MPP is

also asymptotically optimal for minimizing a cost function of

buffer occupancy levels, hence MPP provides approximate

guarantees on response latency. The time complexity of MPP

is bounded by a linear term on the number of switches and

makes MPP applicable in NFV datacenters.

Despite those benefits, MPP still faces practical constraints

inherent to large-scale deployment. MPP is a strategy that exe-

cutes a scheduling for each request, and it needs the global

state information to make decisions. On the one hand, with the

expansion of the network scale, the cost of obtaining network-

wide state information is increasing. On the other hand, even

if the logic of each scheduling is very lightweight, scheduling

for each request still brings excessive runtime overhead to the

switch, which will cause the switch to overload. To deal with

these constraints, we propose the distributed maximum pres-

sure policy (DMPP). DMPP runs in local state on each switch

and performs scheduling logic for batch requests.

Based on the settings representing real-world scenarios, we

evaluate the performance of our solution, using a protosystem we

implement as testbed, whose source code is available at https://

github.com/wangjunxiao/AgileScheduler. Experimental results

show that the performance of DMPP is close to that of MPP, and

DMPP requires much less resources when assigning requests, so

the resource utilization of DMPP is higher. In terms of request

throughput, response latency, etc., compared with state-of-the-art

solutions based on switch migration like [16], [18], the perfor-

mance of our solution is significantly better than them.

In summary, we make the following contributions:

1) We design a new framework of request assignment that

is performed between SDN controllers and switches

in NFV datacenters. Compared with the existing

frameworks based on switch migration, the new frame-

work can better adapt to the request dynamics and

request diversity.

2) Based on the new framework, we transform the request

assignment problem into a variant of the scheduling

problem in a Stochastic Processing Network (SPN), and

propose a Maximum Pressure Policy (MPP) which can

provide runtime guarantees on request throughput and

response latency. To fit with the constraints inherent to

large-scale deployment, we propose a distributed ver-

sion of MPP, named DMPP. DMPP runs in local state

on each switch and performs scheduling logic for batch

requests.

3) We implement a protosystem of our solution and evalu-

ate it on the settings representing real-world scenarios.

The results show that our solution can provide guaran-

tees on request throughput and response latency, and

significantly outperforms state-of-the-art solutions

through a more efficient resource usage.

The remainder of this paper is organized as follows.

Section II introduces the history of request assignment in the

control plane and the new framework we propose. In

Section III, we model the request assignment problem, and

show that the problem is a variant of the scheduling problem

in a stochastic processing network. In Section IV, we intro-

duce the maximum pressure policy, and show its runtime

guarantees on request throughput and response latency. In

Section V, we explore practical constraints inherent to large-

scale deployment, and introduce the distributed maximum

pressure policy. In Section VI, we evaluate and analyze our

solution. Section VII summarizes related work, and we con-

clude the paper in Section VIII.

II. FRAMEWORK OF REQUEST ASSIGNMENT

A. Background

The emergence of SDN architecture decouples the data

plane and control plane of the underlying network. However,

with the expansion of datacenter scale and the increase of traf-

fic, researchers have to rethink the scalability of SDN architec-

ture, especially the scalability of SDN control plane [22]–[24].

If we look back at the history of SDN control plane scalability,

we can find that this history is divided into three stages.

In the first stage, all control plane requests are processed by a

single controller. At this time, the concept of request assign-

ment has not yet appeared. Since the computing resources of

this single controller such as CPU and memory are limited, and

as the scale of the data plane expands, this single controller will

have to handle more requests, which will lead to performance

bottlenecks. NOX [21], as the representative framework of this

stage, can serve only 30 K flow requests per second with a

response time less than 10 ms. Although network operators

continue to improve the performance of a single controller, it is

still not enough to meet the increasing demand.

In the second stage, control plane requests can be handled by

multiple controllers. The advantages of distributed controllers

include load distribution and avoiding single controller
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failures. The concept of request assignment has appeared, how-

ever, the request assignment at this time is static. Take the

mainstream framework ONOS [11] at this stage as an example,

it statically lets each controller manage the same number of

switches, ignoring that the request arrival rate is dynamically

changing in space and time dimensions. Due to unbalanced

load among controllers, this static request assignment leads to

very poor request throughput and response latency.

In the third stage, control plane requests can not only be

handled by multiple controllers, but can also be dynami-

cally assigned among controllers. Dixit et al. [17] first

design a switch migration protocol to make dynamic

request assignment technically feasible. Then, based on the

protocol, many solutions for dynamic request assignment

such as [16], [18], [19] are come up with. However, these

solutions are coarse-grained. They rely on heavy informa-

tion exchanges, so they must make the frequency of migra-

tion slow enough to limit overhead. They are based on the

binding between switches and controllers, causing the

assignment between requests to depend on each other. Due

to these reasons, they therefore fail to use the resources of

control plane effectively.

B. Motivation

Throughout history, the existing frameworks mainly assign

requests based on the granularity of switches, which makes

request assignment inefficient. Bearing above point in mind,

we propose a new framework, the framework is no longer

based on the granularity of switches, but based on the granu-

larity of requests. In this new framework, we propose to

decouple the binding between switches and controllers, so that

the assignment between requests is independent of each other.

In other words, every request on a switch will be handled by a

suitable but not necessarily the same controller. We compare

the differences between our framework and the existing

frameworks in Table I.

We are motivated to design such a new framework to assign

the requests of control plane. We also expect the new frame-

work can bring the historical progression of request assign-

ment to a next stage, where the assignment is no longer based

on the granularity of switches but rather based on the more

efficient granularity of requests. We overall design the new

framework keeping in mind three goals below:

1) Flexible: The diverse requests to the control plane

should be assigned in a flexible manner to decouple

the binding between switches and controllers. Even for

the same switch, assignment between requests should

be independent of each other. The request assignment

with flexibility will achieve a better resource usage.

2) Agile: The process of request assignment should be

agile to quickly react to the dynamic request arrival.

Facing with request arrival rates that may be sudden

and skewed on space and time scales, the request

assignment with agility will be more likely to make the

ideal decision.

3) Scalable: Request assignment should adapt to large-

scale deployment. The logic and overhead of each

assignment should be light enough to accommodate the

growth of the deployment scale.

C. Modular Request Queue Management

The overview of our request assignment framework is illus-

trated in Fig. 1. The framework manages the request assign-

ment process modularly through the middleware composed of

SBSwitchmodule and NBSwitchmodule. When the switch

needs to upload a request to the control plane, the framework

will first send the request to the SBSwitch module, then the

SBSwitch module will send the request to the corresponding

NBSwitch module, and finally the NBSwitch module will

send the request to the corresponding controller for processing.

Being both the ingress and egress of requests, SBSwitch

module and NBSwitch module are responsible not only for

uploading requests to controllers, but also for returning

responses back to switches. Each switch uses one SBSwitch

module and multiple NBSwitchmodules to assign requests to

controllers.

1) South Bound Switch Module: i.e., SBSwitch module,

attached to physical switches by one-to-one mapping. Thus,

the total amount of SBSwitch modules depends on how

many switches the data plane contains. For every SBSwitch

module, the amount of request queues it has depends on how

many services the control plane can provide with. Upon a

receipt of a request, SBSwitch module categorizes the

request according to its service type, pushes it into correspon-

dent request queue (of this SBSwitch module), and then

decides which controller to send it to.

2) North Bound Switch Module: i.e., NBSwitch module,

attached to controllers by n-to-one mapping. n is equal to the

number of switches in the data plane. Each NBSwitch mod-

ule is attached to a controller. For every NBSwitch module,

the amount of request queues it has depends on how many

services the attached controller can provide with. According

to the predefined mapping between the two layers of request

queues, the request from the request queue of the SBSwitch

module will be sent to the corresponding request queue of the

NBSwitch module.

To clarify the mapping between the request queues, we take

the case in Fig. 1 as an example to illustrate the process of

TABLE I
DIFFERENCES BETWEEN OUR FRAMEWORK AND EXISTING FRAMEWORKS
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sending requests from the switch to the controller. The exam-

ple has three SBSwitch modules and nine NBSwitch mod-

ules totally. For every SBSwitch module, it has three

request queues since there are three services in the control

plane. Each switch uses one SBSwitch module and three

NBSwitch modules to assign requests to controllers. For

instance, SBSwitch1, attached to physical Switch1, can

send requests to anyone within NBSwitch1, NBSwitch4

and NBSwitch7 through Queue1, Queue2 and Queue3.

For every NBSwitch module, it has two request queues since

the attached controller provides with two services. Hence, as

depicted in Fig. 1 with dotted arrow, requests of Service1

from SBSwitch1 can be sent to NBSwitch1 Queue1 or

NBSwitch4 Queue2 via SBSwitch1 Queue1.

In general, the framework allows multiple controllers to

process requests from the same switch, so as to decouple the

binding between switches and controllers. At the same time,

for each type of request between each switch controller pair,

the framework can provide a complete request queue, so that

the assignment of requests is independent of each other. Based

on the proposed framework, we can achieve dynamic request

assignment by customizing the strategy to schedule between

the request queues.

D. Statelessness of Request Assignment

Since there are distributed controllers in the control plane, it

is a challenge to maintain state consistency during request

assignment. For the existing mainstream framework ONOS

[11], each controller will regularly back up its own state infor-

mation and periodically exchange this information with each

other to maintain state consistency during request processing.

However, backup and information exchange require too much

time, so it is difficult to adapt to dynamic, agile and flexible

request assignment.

In the proposed framework, by separating the state from the

controller into an independent data storage, we adopt the state-

lessness of request assignment. Statelessness has the following

advantages: when the controller fails, a new controller can be

instantiated immediately, and the new controller can directly

access all the required states. When the control plane expands

horizontally, the request can be sent to the new controller for

processing immediately, without worrying about the inconsis-

tency of the state between the new and old controllers. Most

importantly, because each controller shares state, the con-

troller’s processing of requests does not depend on how the

requests are assigned. With this state-separated architecture,

the state can be pushed to a dedicated cache or back-end stor-

age server, thus supporting the efficient and modular deploy-

ment of the control plane.

Although there are multiple services on the control plane,

their states can generally be divided into the following two

categories: static state, such as service configuration and SLA

rules, and dynamic state, that is, the state that is continuously

updated by the controller process. Among them, the dynamic

state can be further divided into: internal state, such as file

descriptors and temporary variables, and network state, such

as routing strategies and service relevance in the network.

In fact, not all states need to be separated into data storage.

When assigning requests, only the network state must be con-

sistent for each controller, while the static state and internal

state can be stored and accessed locally in the controller.

Fig. 1. Framework overview. The example has three SBSwitch modules and nine NBSwitch modules totally. SBSwitch modules are attached to physical
switches by one-to-one mapping while NBSwitch modules are attached to controllers by n-to-one mapping. n is equal to the number of switches in the control
plane. Each switch uses one SBSwitch module and three NBSwitch modules to assign requests to controllers. For every SBSwitch module, the amount of
request queues it has depends on how many services the control plane can provide with. For every NBSwitch module, the amount of request queues it has
depends on how many services the attached controller can provide with. Upon a receipt of a request, SBSwitch module categorizes the request according to its
service type, pushes it into correspondent request queue (of this SBSwitch module), and then decides which controller to send it to. According to predefined
mapping between two-layered request queues (as depicted with dotted arrow), the request is first sent from the SBSwitchmodule to correspondent NBSwitch
module, and then to a controller for processing.
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Literature [25] shows that the use of an independent data stor-

age layer can completely separate the state into the back-end

storage or cache to maintain state consistency without signifi-

cantly degrading processing performance. Therefore, we have

reason to believe that the statelessness of request assignment

is technically feasible, for example, using technologies such

as RAMCloud [26] to build the state data storage system

shown in Fig. 1. Bear in mind though, our motivation in this

paper is not to design such a data storage system. Also note

that we cannot claim that statelessness is necessary or that it is

the optimal choice to solve state consistency problem in the

control plane. We argue that statelessness can naturally fit

with dynamic request assignment, so it should be a good com-

plement to our framework.

III. MODEL OF REQUEST ASSIGNMENT

The problem studied in this section is an online decision

problem, that is, how to select an appropriate request queue

for the requests arriving in real time. We will show that this

problem is a variant of the scheduling problem in a Stochastic

Processing Network (SPN) [20] which has similar properties.

By transforming this problem to the SPN one, we can apply

the results from the SPN problem.

In order to better model the request assignment problem, we

abstract the example in Fig. 1 and replace the SBSwitch

module and the NBSwitch module with an abstracted

scheduler. In the original example, each switch uses one

SBSwitch module and three NBSwitch modules to assign

requests to the controller. After abstraction, each switch uses a

scheduler to assign requests. As shown in Fig. 2, the abstracted

control plane contains three controllers and three switches.

Connected to each switch is a scheduler, which is responsible

for assigning requests to controllers and returning responses to

the switches. The control plane provides three different serv-

ices in total. Each controller provides two services, that is, has

two service replicas.

Without loss of generality, we consider a request assign-

ment case similar to Fig. 2. The control plane consists of mul-

tiple distributed controllers, each of which has computing

resources for running multiple replicas of services. Connected

to each controller is a group of schedulers, responsible for

scheduling requests in the switch, and processing the response

returned from the controller. The main symbols used in the

model are shown in Table II.

A. Control Plane

We model the control plane as a graph G ¼ ðV;S; EÞ, where
V is the set of switches, S is the set of controllers, and E is the

set of links interconnecting controllers and switches. Each con-

troller S 2 S has a total available resources of cS (cS > 0),
and offers at least one service. For each link E 2 E, we use

dEðlÞ to denote the l-th request transmission delay on link E,

where dEðlÞ (l51) is assumed to be a sequence of i.i.d. random

variables, with an average of dE and a finite variance. In com-

mercial datacenters, the average request transmission delays

[27], [28] are usually stable (in ms) and significantly less than

the average request processing delays (in ms) [17]. We there-

fore assume the request transmission delays are negligible com-

pared to the request processing delays in our model.

B. Service Replicas

Each service provided by the control plane is a processing

logic applied to a specific type of request. We denote by F the

set of services. As shown in Fig. 2, each service F has one or

more service replicas in the control plane. We denote by I the

set of service replicas, and by IS the set of service replicas

running on controller S. As we do not study the controller

deployment problem, we assume that the controllers and their

service replicas have been deployed in the control plane, by

using any of the solutions proposed in the literature (see

Section VII).

Without loss of generality, we assume that given equal

resources, all service replicas of the same type have the same

request processing rate. We denote by mF the processing rate

of service F when provided one unit of computational

resource. Thus, k� mF is the processing rate of a replica of

type F when k units of resources are allocated to this replica.

This is a common model assumption in the literature [29] and

this linear relationship between processing rate and resources

Fig. 2. Abstraction for the example depicted in Fig. 1. The abstracted control
plane has three controllers and three switches. Connected to each switch is an
abstracted scheduler, whose functionality is same with SBSwitch module
and NBSwitch module, responsible for assigning requests to controllers, as
well as returning the responses back to the switches. The control plane pro-
vides with three services in total. Every controller provides with two services,
known as having two service replicas.

TABLE II
SYMBOLS IN THE MODEL
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has been verified in the literature [30]. Moreover, we assume

that the available resources of a controller is shared among all

the co-located replicas according to some given policy. Under

such a policy, a replica IS 2 IS has a resource occupancy rate

wIS and the resource occupancy rates are constrained by

enforcing
P

IS2IS wIS41. Furthermore, we assume that each

service replica has a local cache to store requests and the rep-

lica processes the requests in a non-preemptive manner.

C. Switch and Scheduler

Each switch V 2 V runs a scheduler which behaves as both

the ingress and egress for the requests. In our model, each

scheduler has a set of buffers, which is an abstraction of the

request queues of the SBSwitch module and the NBSwitch

module.

We assume that the scheduler can perform the classification

of the requests according to: the message type of the request,

and the service chain attribution of the request. Generally, the

message type of the request under the OpenFlow protocol can

be determined by the type of OpenFlow message [7], and the

service chain attribution of the request can be determined by

the service path identifier carried in the Network Service

Header (NSH) [2]. After classification, the scheduler will label

each request a service type, that is, the type of service replica

corresponding to the request.

D. Variant of Stochastic Processing Network

The problem of dynamic request assignment is how to assign

the requests in the request queues to the appropriate controller,

and how much computational resources are allocated to each

service replica on each controller, so as to maximize the request

throughput of the control plane while optimizing the average

response delay experienced by the requests.

The properties of this problem are similar to the ones of a

Stochastic Processing Network (SPN). SPNs [20], [31] are a

general class of network models that have been used in a wide

range of fields [32], including manufacturing systems and

cross-training of workers at a call center. The key elements of

an SPN include a set of buffers, a set of processors, and a set

of activities. Each buffer holds jobs that await service. Each

activity takes jobs from at least one of the buffers and requires

at least one available processor to process the jobs.

We can transform this problem into a variant of a SPN:

1) Buffer: In our model, each scheduler has a set of request

queues for storing requests, namely buffers. All requests of the

same type on the switch are stored in the same buffer. We

denote by B the set of buffers in the model. When the switch

receives a request, the scheduler will determine its type and

push it to the corresponding buffer of that type. The requests

stored in the same buffer will be scheduled in the order of

First-in-First-out (FIFO).

2) Processor: Each controller in our model corresponds to

a processor in the SPN. Each service has multiple service rep-

licas in the control plane, so multiple controllers can handle

requests from the same buffer, and the scheduler decides

which controller to handle the requests.

3) Activity: In our model, each activity is to process a

request from a buffer by an eligible controller. The set of all

potential activities can be expressed as A ¼ fB 7!SjB 2
B ^ S 2 SBg, where SB 2 S is the set of controllers eligible

for the requests in buffer B. B 7!S means an activity that pro-

cesses a request from buffer B by controller S. We denote by

AB the set of activities that are related to buffer B and by AS

the set of activities that are related to controller S. We denote

by mA the processing rate of activity A. We assume that mA is

determined by the function gð�Þ, and gð�Þ is related to the proc-
essing rates of requests and the transmission delays of

requests, i.e., mA ¼ gðmF ; dEÞ. As mentioned in Section III-A,

since the transmission delays of requests are negligible com-

pared to the processing delays of requests, we hence assume

that the processing rate of the activity is dominant by the

request processing rate of the service in our model.

In order to further clarify the transformation between

our model and the SPN, we take the case depicted in

Fig. 3 as an example. Since there are three switches and

three types of requests, there are nine buffers in Fig. 3,

which is the same as the number of SBSwitch module

request queues in Fig. 1. Activity A3 and A4 connect

buffer B2 to S1 and S3, respectively. mA3
¼ gðmF2

; dE1
Þ,

where E1 is the link between switch1 and control-

ler1. mA4
¼ gðmF2

; dE2
Þ, with E2 being the link between

switch1 and controller3. And so on, knowing the

control plane graph G, given the set of service replicas I ,
the set of buffers B and the set of activities A can be

determined accordingly.

In this way, the dynamic request assignment problem is

transformed into the SPN scheduling problem defined in the

literature [20], [33]. Its goal is to provide a scheduling strategy

for activities to maximize the throughput of the SPN while

ensuring the stability of all buffers.

IV. MAXIMUM PRESSURE POLICY

In this section, we present the maximum pressure policy

(MPP), and show its runtime guarantees on request throughput

and response latency. Assume that in our request assignment

framework, every scheduler is aware of the state of all the buf-

fers, i.e., the buffer utilization given by~z (a vector of size jBj),
and also of the state of every controller S 2 S, qS ¼ f0; 1g,
where qS ¼ 0 if S is idle and 1 otherwise.

Fig. 3. SPN representation of the example depicted in Fig. 2. The SPN has
three classes of requests and nine buffers.
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Prior works such as [20], [33] have shown that the asymp-

totically optimal scheduling can be obtained for SPNs by fol-

lowing the MPP. We now show that the MPP can also be

applied to the dynamic request assignment problem thanks to

its similar properties.

A. Scheduling of MPP

We denote by a column vector ~h of size jAj the resources

consumed by the activities. If an activity is performed at hA, it

consumes a fraction of hA resources of correspondent control-

ler, where 04hA41 and A 2 A. Let H be the set of all feasi-

ble allocations for activities. For each buffer B 2 B and each

activity A 2 A, we define

rBA ¼ mA; A 2 AB;
0; otherwise:

�
(1)

The matrix R ¼ ðrBAÞ is named the input-output matrix of the

SPN. It captures the average processing rate of requests from

buffer B consumed by activity A [31]. Given a weight vector

~a of size jBj, we define by

F~að~h;~zÞ ¼ ð~a�~zÞ � R~h (2)

the network pressure with parameter~a under allocation ~h 2 H
and buffer utilization ~z. The MPP aims to maximize the net-

work pressure by choosing suitable allocations

~h� 2 argmax
~h2H

F~að~h;~zÞ: (3)

Note thatH is bounded and convex. Since F~að~h;~zÞ is linear in
~h, according to the Corollary 1, the maximum of F~að~h;~zÞ will
be achieved at one of the extreme points.

Corollary 1. For any buffer utilization ~z (zB50; 8B 2 B),
there exists an extreme allocation ~h� 2 H that maximizes the

network pressure Fð~h;~zÞ such that for each buffer B of ~h�,
the buffer utilization zB is positive.

Proof. Since each activity is only associated with one

buffer, the SPN here is a strict Leontief network [34]. If only

the preemptive scheduling in the network is considered, the

corollary directly established [33]. For non-preemptive sched-

uling, if the SPN is a reversed Leontief network, the corollary

still holds. Since each activity is only associated with one pro-

cessor, the SPN satisfies the definition of a reversed Leontief

network, so the corollary is also true for non-preemptive

scheduling.

Corollary 2. The extreme allocation for maximum network

pressure is an integer allocation.

Proof. For each processor S 2 S, let AS 2 A be the set of

activities that the processor can take. We assume that when

the processor is idle, it takes on a dummy activity A0. Thus,

processor S will be able to take any of the activities in A0
S ¼

A0 [ AS . We then prove the contradiction while considering

an extreme allocation ~h such that h ~A 2 ð0; 1Þ for some activity
~A 2 A (non-integer allocation).

Let ~S be the processor that holds activity ~A. For each A 2
A0

~S
, we define a new allocation ~h0 by modifying ~h: We process

A with hA ¼ 1 at processor ~S and keep the others unchanged.

It is easy to check that ~h0 is a feasible allocation. It follows

that ~h ¼ fhAh
0
A : A 2 A0

~S
g, where we set hA0

¼ 1�P
A2A0

~S
;A 6¼A0

hA. Due to the fact that
P

A2A0
~S

¼ 1; ~A 2 A0
~S
,

and h ~A < 1 by assumption, ~h is a linear combination of feasi-

ble allocations. As a result, ~h cannot be an extreme allocation,

contradicting the assumption. Therefore, any extreme alloca-

tion must be an integer allocation.

According to the Corollary 2, the extreme allocation pro-

duced by the MPP will never split the processing capacity of a

processor. Hence, the scheduling of MPP can be simplified as

follows. For any controller S 2 S and any activity A 2 AS ,

we define

FAS ¼
X
B2B

aBrBAzB: (4)

If controller S is in idleness, the scheduler selects activity

A� 2 arg max
A2AS

FAS (5)

to be served by the controller. A tie-breaking rule will be

applied in case more than one allocation attains the maximum.

By applying the above scheduling logic to our framework,

we can execute the MPP on the SBSwitch module to sched-

ule between the request queues. By monitoring the changes in

the NBSwitch module request queues, we can track the

workload on the controllers. The pseudo code of MPP is

shown in Algorithm IV.

Algorithm 1:MPP at the SBSwitch module

Input: the set of controllers S;
the set of request queues B;
the buffer utilization vector~z (a vector of size jBj);
the input-output matrix R;
the weight vector~a (a vector of size jBj);

Output: the assignment A� for the request;
let S� ¼ Oslash; ; let B� ¼ Oslash; ; let F�

AS ¼ 0;
Thread while Truedo

for each controller S 2 Sdo
if controller S is idlethen

S� ¼ S� [ fSg; continue;
S� ¼ S� [ fSg � fSg;

Thread while Truedo

for each request queue B 2 Bdo
if request queue B has requeststhen

B� ¼ B� [ fBg; continue;
B� ¼ B� [ fBg � fBg;

Thread while Truethen

for each controller S 2 S�do
for each request queue B 2 B�

Sdo

FAS , calculated refer to Equation (4);

F�
AS ¼ maxðFAS;F

�
ASÞ;

A� ¼ argF�
AS , calculated refer to Equation (5);

select assignment A�;
send a request from the selected request queue of the

SBSwitch module to correspondent request queue of the

NBSwitch module;
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B. Performance Analysis

We analyze the performance of MPP from three perspec-

tives: request throughput, response latency, and time complex-

ity, and show that the MPP can provide runtime guarantees on

the performance of control plane.

1) Request Throughput: Corollary 2 shows that the allocation

produced by the MPP will never split the processing capacity of a

processor. Under such a property, we can have the SPN stability

result as shown in the Corollary 3. Based on the Corollary 3, we

can further have Corollary 4 to show that the MPP is asymptoti-

cally optimal with respect to request throughput.

Corollary 3.Non-preemptive MPP can stabilize the network.

Proof. To prove this corollary, we first introduce an auxil-

iary linear program that was called the static planning prob-

lem [31] as follows:

min r

s:t: R~x ¼ 0;X
A2AS

xA4r; 8S 2 S;

xA > 0; 8A 2 A:

(6)

Here ~x is a column vector of size jAj representing the long-

term fraction of time during which each activity is used. The

problem indicates that the long-term input rate to the buffer is

equal to the long-term output rate from the buffer. According

to the Theorem 1 of [20], the SPN is stable if the static plan-

ning problem has a feasible solution with r41. According to

the Corollary 1 and the Corollary 2, the SPN is a reversed

Leontief network and the MPP will never split the processing

capacity of a processor. When applying Theorem 9 of [20], we

can prove that the non-preemptive non-processor-splitting

MPP can stabilize the network if the static planning problem

has a feasible solution with r41.
Corollary 4. For any ~a > 0, the MPP with parameter ~a is

asymptotically optimal with respect to request throughput.

Proof. Since the Corollary 1 has implied that the SPN as

well as its assumptions satisfy the extreme-allocation avail-

able (EAA) condition. Hence, in combination with the

Corollary 3 and the Theorem 1 of [33], the MPP with parame-

ter~a is asymptotically optimal for the throughput of the SPN.

2) Response Latency: According to the Corollary 5, the

MPP is asymptotically optimal for minimizing a cost function

of buffer occupancy levels. And the waiting time of the request

in the buffer accounts for most of the response time, so the

MPP provides a approximate guarantee on the response latency.

Corollary 5. For any given " > 0, there exists a ~h� that is
asymptotically optimal for a quadratic cost function of the

buffer utilization~z, i.e.,
P

B2B aBðzBÞ2.
Proof. The proof of the corollary follows from the fact that

the SPN and its assumptions satisfy Assumptions 1-4 of [33].

Thus, the same result on asymptotically optimality of qua-

dratic cost holding in Theorem 3 of [33] applies here.

3) Time Complexity: According to the Corollary 6, the time

complexity of MPP is bounded by a linear term on the total

number of switches, which we expect to be much smaller than

the number of servers or the number of service function chains.

This low time complexity indicates that the MPP can provide

runtime guarantees on the performance of control plane.

Corollary 6. The MPP scheduler has a time complexity of

OðjVjÞ, where jVj is the total number of switches.
Proof. To find the optimal allocation, and for a given S 2 S,

the MPP scheduler need to perform the Equation (4) for all

A 2 AS and then apply Equation (5). Note that rBA under the

summation has non-zero values for only one or two B 2 B
(refer to Equation (1)). The Equation (4) can be regarded as

the summation of these two terms, and hence has Oð1Þ time

complexity. The MPP scheduler therefore has a time complex-

ity of OðjBjÞ as jASj4jBj. Since jBj ¼ kjVj where k is the

total number of request types which is a constant, the MPP

scheduler has a time complexity of OðjVjÞ.

V. DISTRIBUTED MPP

Despite those benefits, MPP still faces practical constraints

inherent to large-scale deployment. MPP is a strategy that exe-

cutes a scheduling for each request, and it needs the global

state information to make decisions. On the one hand, with the

expansion of the network scale, the cost of obtaining network-

wide state information is increasing. On the other hand, even

if the logic of each scheduling is very lightweight, scheduling

for each request still brings excessive runtime overhead to the

switch, which will cause the switch to overload. To deal with

these constraints, we propose the distributed maximum pres-

sure policy (DMPP). DMPP runs in local state on each switch

and performs scheduling logic for batch requests.

A. Local State

In the DMPP, we assume that the scheduler running at each

switch V 2 V only knows the local state related to itself.

These states include: the state of the buffers (i.e., buffer utili-

zation), and the state of the connected controllers (i.e.,

whether controllers are busy or idle). Other information, such

as the position of the service replica in the control plane, the

average processing rate of the service replica, and the corre-

spondence between the switch and the service replica, are stat-

icallly known to each switch. The scheduler does not use the

information of request queues, controllers, and service replicas

that are not related to itself.

The DMPP applies similar scheduling logic as the MPP, but

only on local buffers, local processors, and local activities. In

other terms, it assumes that the SPN is only composed of the

buffers at the local switch, the controllers that are connected

to the local switch, and the activities which connect these buf-

fers to these controllers, then it performs the MPP over the

local SPN to pick the activity whenever a controller is idle.

The DMPP applies a local version of Equation (4) as follows:

F̂AS ¼
X
B2B̂

âBr̂BAẑB: (7)

Here ~̂z is the local buffer utilization and R̂ ¼ ðr̂BAÞ is the local
input-output matrix, with values as ~z and R for buffers and

activities that are local (and 0 otherwise).
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Performance analysis of DMPP. According to the

Corollary 7, the DMPP is locally asymptotically optimal with

respect to request throughput, and is also locally asymptoti-

cally optimal for minimizing a cost function of buffer occu-

pancy levels. According to the Corollary 8, the DMPP

scheduler has a time complexity of Oð1Þ.
Corollary 7. For any ~̂a > 0, the DMPP with parameter ~̂a is

locally asymptotically optimal with respect to request

throughput. For any given " > 0, there exists an allocation

that is locally asymptotically optimal for a quadratic cost

function of the buffer utilization ~̂z, i.e.,
P

B2B̂ âBðẑBÞ2.
Proof. Since the DMPP executes the scheduling logic of the

MPP on the local SPN, the same result on asymptotically opti-

mality holding in Corollary 4 and Corollary 5 applies here.

Therefore, in terms of the request throughput and the quadratic

cost function of the buffer utilization, DMPP can reach

asymptotically optimal on the local SPN.

Corollary 8. The DMPP scheduler has a time complexity of

Oð1Þ.
Proof. On the local SPN, and for a given S 2 Ŝ, the DMPP

scheduler has Oð1Þ time complexity for all A 2 ÂS , according

to the Corollary 6. Since jÂSj ¼ c where c is the number of

buffers on the switch which is a constant, the DMPP scheduler

has a time complexity of Oð1Þ.

B. Batch Scheduling

To alleviate the constraints on runtime scheduling overhead,

we introduce the batch scheduling, where the batch size n
specifies the (maximum) number of requests which DMPP

would send over to a controller at each scheduling round. More

precisely, each DMPP scheduler keeps track of how many

requests are pending, queued, at service replicas running at

each of controllers. If the pending requests in a controller is

close to drained, the scheduler selects the next activity over this

controller, sending up to n requests from the selected buffer to

the controller (if the buffer has more than n requests, the sched-

uler sends n requests over the controller, otherwise, it sends as

many requests as are in the buffer). Using the batch scheduling,

we reduce the scheduling granularity to one decision per batch,

and hence reduce the runtime overhead of scheduling. The

pseudocode of DMPP is shown in Algorithm V-B.

It is worth noting that the larger the batch size we set, the

less likely the DMPP will perform the best scheduling deci-

sion. Therefore, how to balance the runtime overhead of batch

scheduling and the loss of optimality is an important issue. If

the granularity of batch scheduling is set too finely, the rounds

of scheduling may be too intensive, which brings unnecessary

runtime overhead to the scheduler or the SBSwitch module.

If the granularity is set too coarsely, the scheduling will not be

able to catch up with the dynamic change of the request arrival

rate, which will reduce the optimization degree of the schedul-

ing result.

Overall, MPP is a method of scheduling each request once,

while DMPP is a method of scheduling each request batch

once, so DMPP changes the granularity of request assignment

from a single request to N requests. We choose DMPP mainly

for the following two reasons: First, very fine-grained request

scheduling may not be required in actual scenarios. Accord-

ingly, the request assignment can be appropriately coarse-

grained. Even so, the granularity of DMPP is still finer than

that of the existing solutions based on switch migration [16],

[18]. Second, appropriately coarse-grained request assignment

can effectively adjust the scheduler’s scheduling rounds in

each time period, thereby reducing the scheduler’s runtime

overhead.

VI. EVALUATION

In this section, we use the settings that can represent real

scenarios to evaluate the performance of the proposed frame-

work in request assignment. To this end, we implement a pro-

totype system and use it as a test platform for simulation

experiments. The prototype system is compatible with the

control plane specification of the OpenFlow protocol [7].

In general, the results of the experiment show that the

solution we propose can more effectively use the resources

of the control plane, and can provide effective guarantees

for the requested throughput and response latency. The

results of the experiment also show that DMPP has perfor-

mance close to that of MPP, and that DMPP requires much

less resources when assigning requests on the switch, so

Algorithm 2: DMPP at the SBSwitch module

Input: the set of controllers Ŝ;
the set of request queues B̂;
the buffer utilization vector ~̂z (a vector of size jB̂j);
the local input-output matrix R̂;

the weight vector ~̂a (a vector of size jB̂j);
the size of request batch n;

Output: the assignment Â� for the request batch;
let Ŝ� ¼ Oslash; ; let B̂� ¼ Oslash; ; let F̂�

AS ¼ 0; let n� ¼ n;
Thread while Truedo

for each controller Ŝ 2 Ŝdo
ifcontroller Ŝ is idlethen

Ŝ� ¼ Ŝ� [ fŜg; continue;
Ŝ� ¼ Ŝ� [ fŜg � fŜg;

Thread while Truedo

for each request queue B̂ 2 B̂do
if request queue B̂ has requestsdo

B̂� ¼ B̂� [ fB̂g; continue;
B̂� ¼ B̂� [ fB̂g � fB̂g;

Thread while Truedo

for each controller Ŝ 2 Ŝ�do
for each request queue B̂ 2 B̂�

Ŝ
F̂AS , calculated refer to Equation (7);

F̂�
AS ¼ maxðF̂AS; F̂

�
ASÞ;

Â� ¼ arg F̂�
AS , calculated refer to Equation (5);

select assignment Â�;
letm = the amount of pending requests in the selected buffer;

ifm < nthen
n� ¼ m;

send n� requests from the selected request queue of the

SBSwitch module to correspondent request queue of the

NBSwitch module;
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resource utilization is higher. In addition, we compare the

proposed framework with existing solutions based on switch

migration [16], [18]. The results show that our proposed

framework makes full use of agile and flexible request

assignment capabilities, so its performance is significantly

better than existing solutions.

The entire experimental part is trying to answer the follow-

ing three questions: First, what is the performance of MPP and

DMPP in request assignment. Second, what are the benefits of

using fine-grained mechanisms to assign requests. Finally,

why does DMPP need a batch scheduling mechanism, and

what impact does the batch size have?

A. Simulation Setup

In order to ensure the fairness of comparison, we used

experimental settings similar to those in the literature [18].

1) Topology: We use fat-tree [27] and VL2 [28] topologies

that are common in datacenters for simulation. For the fat-tree

topology, we set the number of pods to 24, so there are a total

of 3456 hosts and 720 switches in the topology. For the VL2

topology, we set the degree of the intermediate switch and the

aggregate switch to 48, so there are a total of 576 racks in the

topology, each rack has 10 hosts, and a total of 648 switches.

Such a topology scale can be compared with the general com-

mercial datacenter [13].

2) Trace: Since the request is usually triggered by the flow

arrival event on the switch, we simulate the arrival rate of the

request and make it follow the flow arrival rate distribution

measured in the actual datacenter [13], where the CDF of the

flow inter-arrival time is plotted in Fig. 9. We have also intro-

duced a load factor to change the arrival rate of requests to

evaluate the performance under different load conditions. We

place 16 controllers on the control plane in advance to meet

the peak load of all switches, and all controllers have the same

capacity. In the datacenter, although the transmission delays

of requests (in ms) are much smaller than the processing

delays of requests (in ms) and can be ignored [17], [27], [28],

we still simulate the transmission delays with a positive

Gaussian distribution Nð1; 0:1Þ. If the transmission delay is

not considered here, the experimental results will be more

ideal.

3) Request Class: We simulate 10 different types of

requests. According to literature [17], the processing rate of

each controller is 3.7�104 requests/sec, and the worst-case

response time is 24.5 ms. Therefore, we simulate the process-

ing rate of each controller for these 10 type of requests as

f1.0, 1.6, 2.2, 2.8, 3.4, 4.0, 4.6, 5.2, 5.8, 6.4g � 104 requests/
sec. In order to evaluate the QoS guarantee ability of the pro-

posed solution, we simulate the response deadline of these 10

type of requests as f29, 28, 27, 26, 25, 24, 23, 22, 21, 20gms.

The total number of requests for each type is the same.

B. Solutions Compared

1) Gmpp: In GMPP, the schedulers use global state infor-

mation to make decisions. Each scheduler knows the occu-

pancy rate of all request queues, and the workload of all

service replicas. The scheduling granularity of GMPP is to

schedule once for each request.

2) Dmpp: In DMPP, the schedulers use local state infor-

mation to make decisions. Each scheduler only knows the

occupancy rate of local request queues, and the workload of

local service replicas. The scheduling granularity of DMPP is

to schedule once for each batch of requests, so DMPP sends a

batch of requests to the controller in each scheduling round.

Unless explicitly stated, the batch size is set to 50.

3) Smt: SMT is a state-of-the-art solution based on switch

migration [18]. It uses the RFHC framework to decompose

the online switch migration problem into a series of matching

problems under a single time slot, and the matching problem

under each single time slot is divided into two stages to solve.

In the first stage, it will produce an initial match between the

switches and the controllers. In the second stage, it will input

the generated initial match into an alliance game model to fur-

ther optimize the match. SMT needs to predict the request

arrival rate in the future time slots, and use the above-

mentioned optimization method to make decisions based on

the predicted request arrival rate. According to the setting in

the literature [18], we use the prediction method based on the

harmonic mean to achieve the required prediction. The num-

ber of predicted time slots is 2, and the length of each time

slot is set to 10 s.

4) Dha: DHA is also a state-of-the-art solution based on

switch migration [16]. It uses the Markov approximation

framework to dynamically determine the starting point and

the destination of switch migration. If the load of a certain

controller exceeds the threshold in consecutive time slots, it

will activate the corresponding switch migration mechanism.

In order to match the setting in [16], we set the above thresh-

old to 80%, the duration to 2 time slots, and the length of each

time slot to 10 s.

As shown in Table III, we compare these solutions in multi-

ple dimensions. Both GMPP and DMPP are based on the gran-

ularity of requests, while SMT and DHA are based on the

granularity of switches. Except for SMT, all other solutions

consider the diversity of requests. DMPP and DHA decom-

pose the request assignment problem on the switches and the

controllers respectively, while other solutions do not. Only

DHA re-assign requests in a reactive way, while all other solu-

tions are proactive.

Additionally, these existing solutions require the priori

knowledge such as the arrival rate of requests in order to per-

form scheduling. Compared with the existing solutions, our

solutions (including GMPP and DMPP) do not require more

state information to make decisions. We consider the runtime

scheduling of requests and assume no priori knowledge of

request arrival rate distribution.

TABLE III
EXPERIMENTAL METHODOLOGY
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C. Metrics Cared

1) Request Throughput: The number of requests processed

per unit time in the control plane. This indicator reflects the

ability of the scheduling strategy to utilize control plane

resources. Generally, the request throughput is affected by the

load balancing between controllers.

2) Response Latency: The time taken from the request to

the switch to leave the output queue of the controller. This

indicator reflects the quality of service provided by the sched-

uling strategy. Generally, the response latency for each request

is determined by its waiting time in the request queue.

3) Service Quality: The ratio of the responses that satisfy

the QoS deadlines to the total. This indicator can measure the

strength of the scheduling strategy to guarantee service

quality.

4) Goodput: The throughput satisfying the QoS deadlines.

This metric reflects not only the effect of load balancing in the

control plane, but also reflects the guarantee effect of the

scheduling strategy on the quality of service.

D. Request Throughput

The request throughput for fat-tree and VL2 is plotted in

Fig. 4 and 5, where we compare GMPP, DMPP, SMT and

DHA under different request loads (x-axis on the figures).

From the results, we make the following observations: (a)

As the request load increases, the throughput also increases

since the resource bottleneck does not appear at the begin-

ning (i.e., load factor below 1.0); (b) When the load grows

to a certain point, the throughput stops increasing. This is

expected, because long running requests accumulate in the

controllers over time, and it becomes difficult for any strat-

egy to exploit more processing rates from the control plane;

(c) Compared to other solutions, SMT has the most unstable

and unpredictable throughput; (d) GMPP outperforms

DMPP and increases the throughput by 7.3% in fat-tree and

7.9% in VL2 on average, thanks to its global view. DMPP

outperforms DHA by 4.6% in fat-tree and 5.8% in VL2,

and outperforms SMT by 7.1% in fat-tree and 5.4% in VL2,

thanks to its fine-grained scheduling.

E. Response Latency

We also investigate how our scheduling policy performs in

terms of response latency. Fig. 8 provides a comparison of the

response time across different solutions under different

request loads. We observe that as the total number of requests

increases, the response time also increases since the available

computational resources on controllers are limited. We also

find that our scheduler offers a better response time than state-

of-the-art solutions. Specially, GMPP outperforms DMPP and

decreases the response time by 18.4% in fat-tree and 20.9% in

VL2 on average. DMPP outperforms DHA by 9.2% in fat-tree

and 12.4% in VL2, and outperforms SMT by 6.1% in fat-tree

and 7.6% in VL2. Additionally, GMPP and DMPP provide a

more stable response time than DHA and SMT, thanks to the

fine-grained scheduling. Even with a load factor above 1.0,

GMPP still answers 91.3% of requests in less than 30 ms in

fat-tree and 93.5% in VL2 on average. Because of the reactive

nature of DHA, some controllers are always left as hot-spots.

Similar to the result on request throughput, the scheduling in

SMT also provides the most unstable and unpredictable

response time.

F. Quality of Service

Fig. 6 and 7 plot the results of QoS in fat-tree and VL2

across different solutions under different request loads. As the

total number of requests increases, the ratio of the responses

satisfying the QoS deadlines to the total decreases gradually.

GMPP outperforms DMPP and increases the QoS by 20.8% in

fat-tree and by 16.0% in VL2 on average. DMPP outperforms

DHA by 16.6% in fat-tree and 27.5% in VL2, and outperforms

SMT by 22.8% in fat-tree and 15.3% in VL2. When the load

factor is greater than 1.3, the QoS of DMPP is worse than that

of SMT. This shows that in terms of QoS, the global view

Fig. 4. Normalized throughput for fat-tree topology.

Fig. 5. Normalized throughput for VL2 topology.

Fig. 6. Ratio of the responses observed satisfying the QoS deadlines to the
total for fat-tree topology.

Fig. 7. Ratio of the responses observed satisfying the QoS deadlines to the
total for VL2 topology.
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based SMT has more advantages than the local view based

DMPP when the load is heavy. However, compared with

GMPP, which is also based on a global view, SMT still has a

significant gap.

Fig. 10 and 11 plot the comparisons on goodput across differ-

ent algorithms under different request loads. We observe that

the goodput first increases then falls down. We also find that

our scheduler performs better than other solutions. GMPP out-

performs DMPP and increases the goodput by 34.2% in fat-tree

and 27.9% in VL2 on average. DMPP outperforms DHA by

22.1% in fat-tree and 39.4% in VL2, and outperforms SMT by

32.3% in fat-tree and 21.3% in VL2. Similar to the result on

request throughput and response latency, SMT’s QoS and

goodput are also the most unstable and unpredictable. As

shown in Fig. 10, SMT has two obvious local maximums and

minimums under different load factors, and a similar situation

also appears in Fig. 6. Firstly, this is because SMT does not

consider the difference in request types, and secondly, this is

because SMT is too sensitive to errors in the request arrival rate

prediction model. The above two reasons cause the perfor-

mance of SMT to be unstable and unpredictable.

G. Batch Scheduling

We also study the effect of different batch sizes on the per-

formance of DMPP. Fig. 12, 13 and 14 plot the performance

degradation of using large batch size in fat-tree. Overall, as

the size of request batch increases, the performance degrada-

tion, in terms of throughput, response time, and goodput

increases gradually. This is expected, since the larger the

batch size set, the fewer possibilities a DMPP scheduler has

for choosing the best scheduling decision. Fig. 15 plots the

Fig. 10. Normalized throughput satisfying the QoS deadlines for fat-tree
topology.

Fig. 11. Normalized throughput satisfying the QoS deadlines for VL2
topology.

Fig. 8. Distribution of response time for fat-tree and VL2 topology. (a) GMPP. (b) SMT. (c) DHA.

Fig. 9. CDF of flow inter-arrival times in the UNI1 DCN traffic dataset [13]. Fig. 12. Normalized throughput for fat-tree topology under different batch
sizes.

Fig. 13. Ratio of the responses observed satisfying the QoS deadlines to the
total for fat-tree topology under different batch sizes.

Fig. 14. Normalized throughput satisfying the QoS deadlines for fat-tree
topology under different batch sizes.
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average cpu usage of the schedulers under different batch sizes

in fat-tree. We find that the batch scheduling significantly

reduces the runtime overhead, and this effect is more signifi-

cant as the batch size increases. This is also expected, because

the larger the batch size is set, the fewer scheduling rounds the

scheduler executes at each time period. Therefore, the batch

scheduling trades slightly reduced optimization for signifi-

cantly improved scalability in terms of runtime overhead.

VII. RELATED WORK

1) NFV and Service Function Chaining

Software-defined networking (SDN) and Network Function

Virtualization (NFV) is the key enablers of network softwari-

zation. Prior study show that integrating the SDN and NFV

may trigger innovative designs that fully exploit the advan-

tages of both paradigms [35]. 5 G networks will also rely on

these technologies to create end-to-end logical networks on

demand [36], [37]. Normally, such self-contained networks

depends on flexible service function chaining mechanism [2]

to simultaneously accommodate diverse service slices on a

common network infrastructure [38]. Each slice is defined to

have particular workloads and meet particular service require-

ments [39], [40], bringing with significant differentiated SDN

control plane processing [5].

2) Distributed Control Plane

Originally, the control plane of SDN was tied to a single

point [21], [41], even in the presence of high-availability

clusters [12]. When more larger-scale deployment is consid-

ered for datacenters, a distributed control plane with multi-

ple controllers becomes necessary. To address this, several

distributed controller platforms have been proposed [11],

[42]–[46]. Distributed controller platforms require policy to

efficiently use resource and to balance load in the control

plane, bringing with them the problem of dynamic request

assignment.

3) Dynamic Request Assignment

For better utilization of controller resources, Dixit et al. [17]

propose a protocol to enable switch migration across multiple

controllers. Dynamic switch migration across controllers to

assign requests becomes technically feasible. On basis of

switch migration framework, some solutions on dynamic

request assignment such as [16], [18], [19], [47] are come up

with, in which the request assignment of the control plane is

periodically adapted to the dynamic arrival of requests. These

coarse-grained solutions however cannot do load balancing in

run-time, because they rely on heavy message exchanges

which are time-consuming, and the time complexity of their

decision algorithms is much too high. The frequency of their

decision-making is thus limited to allow for the migration to

happen slow enough to fit with the overhead. The effect of

their decision algorithms is not ideal because they require

aggregated information about request arrival which provides

only an estimation of the actual request arrival. Due to these

reasons, they fail to explore and exploit the resources that

become available on the fly as a result of real-time changes in

the control plane, yielding only poor resource usage. Besides,

although one [16] of them considers different request classes,

the binding between switches and controllers makes their

request assignment inflexible, and inherently difficult to adapt

to the practice of request diversity.

4) Placement of Controllers

We assume that the controllers, with possibly multiple rep-

licas for each service, are already deployed in the control

plane, e.g., by using existing algorithms [48]–[50]. The major-

ity of existing deployment solutions focus on the placement

problem, by deciding where controllers should be deployed

(e.g., at which geographical locations) and how much resour-

ces (e.g., computing capacity, memory, storage) should be

allocated to each of them. The request assignment proposed

by these solutions is performed in a rather static manner,

where the requests are assigned among the deployed control-

lers without dynamic load-balancing performed among them.

A few solutions that pay close attention to the incremental

deployment of control plane have also recently been pro-

posed [51], [52].

5) Control Plane Request Bypass

These approaches are to offload part of the control logic to

the data plane [53], [54]. Unfortunately, the limited function

and space available at the data plane prevents such solutions

from handling the complex control logic of many services.

Despite their limitations, and the fact that dynamic request

assignment is still necessary, these approaches actually

improve the utilization of the switch resources and reduce the

overhead to the control plane to a certain extent, hence are

complementary to our work.

6) Stochastic Processing Networks

SPNs [20], [31] are a general class of network models

that have been used in a wide range of fields [32], includ-

ing manufacturing systems and cross-training of workers at

a call center. The key elements of an SPN include a set of

buffers, a set of processors, and a set of activities. Each

buffer holds jobs that await service. Each activity takes job

(s) from at least one of the buffers and requires at least one

processor available to process the job(s). In this paper, we

consider the dynamic request scheduling problem to be a

Fig. 15. Average cpu utilization of schedulers for fat-tree topology under dif-
ferent batch sizes.
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variant of the scheduling problem in an SPN. The results

from the SPN problem [33] can then be applied to our

problem to find the optimal policy.

VIII. CONCLUSION

Experimental results show that the framework and request

assignment strategies (including MPP and DMPP) proposed in

this paper can effectively utilize the resources of controllers,

balance the load, improve the throughput, and reduce the

response time of requests. We expect the new framework can

bring the historical progression of request assignment to a

next stage, where the assignment is no longer based on the

granularity of switches but rather based on the more efficient

granularity of requests. For DMPP, how to balance the run-

time overhead of batch scheduling and the loss of optimality

remains an important issue. In the future, we will explore in

more details the trade-offs related to scheduling granularity, to

better understand how to achieve fine-grained scheduling

within an acceptable runtime overhead.
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