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SUMMARY

Large-scale online services and distributed execution engines (i.e., MapReduce and Dryad) generate large
volumes of traffic in data center networks. As a consequence, significant congestion can occur in the data
center network. To the best of our knowledge, most existing approaches either focus on local congestion-
aware mechanisms, which have only a poor ability to handle asymmetry or use explicit congestion
notification packets, which are difficult to implement directly in switch hardware. These methods are insuffi-
cient to solve the congestion problem. In this paper, we focus on a congestion-free routing strategy, resorting
to the global view of the data center network in a software-defined networking controller. Specifically, a
timeslot allocation was first conducted for the coming packets, and then the corresponding routing paths
were computed for each packet. In view of the efficiency, the timeslot allocation algorithm follows a heuris-
tic pattern, and the path selection is modeled as a bin-packing problem. Simulation results showed that
the congestion-free routing strategy proposed here performs well in throughput, queuing, and end-to-end
round-trip time. Copyright © 2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Data centers, the underlying infrastructure of today’s cloud computing, not only provide differ-
ent kinds of large-scale online services but also host various back-end computation tasks, such as
MapReduce [1] and Dryad tasks [2]. Because these applications have a large volume of traffic to be
transported among a large number of servers in data centers, this traffic is likely to lead to signifi-
cant congestion in the data center network. Moreover, such congestion can become worse with the
constant increasing demand of these applications.

Taking advantage of the queues in the switches, some existing congestion control-based
approaches focus on low queue occupancy using explicit congestion notification [3], such as data
center transmission control protocol (DCTCP), high-bandwidth ultra-low latency, and low-latency
data center transport [4–6]. Others rely on local selection of no congestion paths for the arriving
packets [7]. However, these methods are not suitable for a congestion-free data center network.
Generally, the drawbacks of conventional approaches mainly involve the following two facts: First,
explicit congestion notification is hard to be implemented in hardware. Second, locally selecting no
congestion paths can be inefficient in an asymmetry network.
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For these reasons, the present work focused on a congestion-free routing strategy in data cen-
ter networks in this paper. To make an optimal routing strategy with no-queuing and no-waiting,
global network control is needed. Fortunately, such central network control is becoming techni-
cally feasible with the success of software-defined networking (SDN) controller, which has been
widely applied in the data center networks [8]. Therefore, aiming to eliminate congestion, a feasi-
ble congestion-free routing strategy can be realized by carefully making decisions regarding when
to schedule each packet and when to select the corresponding routing path.

The SDN controller can be used to make decisions regarding timeslot allocation and routing path
selection for each packet to prevent congestion in the data center network. In order to achieve this
goal, two stages were considered. The first stage involves executing a timeslot allocation algorithm
to find a maximal matching. All the selected endpoints can be used to establish communication
when they satisfy all the input and output bandwidth constraints in one timeslot. The second stage
is to assign routing paths for packets transported among the selected endpoints in each timeslot.
Specifically, the path assignment problem was modeled as a bin-packing problem. Here, bandwidth
resources are modeled as bins, and packets fromm items of different sizes were modeled as objects.
These multi-dimensional bin-packing problems were non-deterministic polynomial-time hard (NP-
hard) [9]. It was here approximated using a greedy algorithm, which blended the advantages of
both the next fit heuristic (NF) algorithm and simple genetic algorithm (SGA). Finally, compre-
hensive experiments were conducted to demonstrate the efficiency of the proposed congestion-free
routing strategy.

In summary, the contributions of this paper were demonstrated as follows:

� Focusing on the congestion problem in a data center network, a congestion-free routing strategy
was here proposed by taking advantage of an SDN controller. Such an SDN controller makes
decisions for each packet regarding timeslot allocation and routing path selection.
� The underlying key stages of congestion-free routing strategy are timeslot allocation and path

assignment. To efficiently solve these problems, heuristic algorithms were used to produce an
approximate solution. For timeslot allocation, a fast data structure, that is, the bitmap table,
was use to speed up the algorithm. For path assignment, both the NF algorithm and SGA were
used to select a path.
� The algorithm was evaluated using detailed packet-level experiments in comparison with trans-

mission control protocol (TCP) and DCTCP. The experimental results showed that the proposed
congestion-free routing strategy performed better than DCTCP on reducing the switch queue
size and round-trip time (RTT). The proposed method achieved a throughput similar to that of
the TCP method.

The rest of this paper is organized as follows. In Section 2, an overview of the congestion-free
routing design is presented. In Section 3, timeslot allocation is shown. In Section 4, path selection
algorithms are presented. In Section 5, the experimental evaluation is discussed. Further discussion
is provided in Section 6. Related work is presented in Section 7. Finally, this paper is concluded in
Section 8.

2. OVERVIEW OF CONGESTION-FREE ROUTING STRATEGY

To design a congestion-free routing strategy, a discrete time-slotted system where the timeslot length
can range from hundreds of milliseconds to minutes is considered [10, 11]. In each timeslot t , a num-
ber of flows generated by the applications arrive at the data center, and each packet of flows must be
forwarded to the destination without causing any congestion in the data center. Hence, a congestion-
free routing strategy is designed by taking advantage of an SDN controller to monitor the traffic
and has a central network control [12, 13]. Consequently, the key design is to assign timeslots and
routing paths for each packet. As shown in Figure 1, the SDN controller contains three main func-
tions: timeslot allocation, path selection, and SDN communication. Through communicating with
switches, the SDN controller determined overall network situations as well as informed switches of
the network modification. Once an endpoint (source) called for a transmission, the operating sys-
tem sent this demand to the SDN controller. The source provided the controller with two pieces
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CONGESTION-FREE ROUTING STRATEGY 5737

Figure 1. The overview of congestion-free routing function on software-defined networking (SDN) con-
troller, which allocates timeslot to each flow, computes the routing path, and interacts with the source.

of information: (i) the flow size (FlowSize) and (ii) destination. Based on this, the controller allo-
cated timeslots to each packet, computed the routing paths, and returned them to the corresponding
sources.

As a general view, the most important design principle behind congestion-free routing strategy is
precise transfer time control, and spare paths choose, which we divided into the following:

� Timeslot allocation. The SDN controller ran the timeslot allocation algorithm and assigned the
requester a set of timeslots in which to transmit its data and also keep track of the source-
destination pairs assigned to each timeslot.
� Path selection. After assigning timeslots, the controller selected available paths for each

requester in every timeslot and returned this information to the source.

Given the aforementioned guidelines, the essential workings of congestion-free routing strategy
are as follow. Every source periodically contacted the controller to retrieve its transmission time
and paths and transmits its packets until all data are finished. Because the controller knew about all
current and scheduled transfers, it could choose timeslots and paths to guarantee the transmission of
data without delays and congestion in the data center network. One key benefit of congestion-free
routing is that there is no need to make any changes to the switches. The main reason is that the
endpoints’ transmissions should occur at the times prescribed by the controller, and there should be
some hardware support in Network Interface Card (NIC)’s of endpoints [14].

3. TIMESLOT ALLOCATION SCHEME

In this section, the design of the proposed timeslot allocation algorithm is described in detail, and
then the performance of the algorithm is analyzed.

3.1. Timeslot allocation design

We consider a discrete time-slotted system where time is slotted. In timeslot t , each endpoint can
transmit or receive at most one Maximum Transmission Unit (MTU)-sized packet. Thus, when a
large amount of flow arrives at the data center network, the first task is to allocate transfer time for
them to avoid congestion. Here, timeslot allocation was conducted at the packet level.

A congestion-free routing strategy design should ensure that traffic can only be routed in a
congestion-free way and that it will satisfy both the input and output bandwidth constraints. Tra-
ditionally, today’s data center networks are often organized into tiers, with tiers having various
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bandwidth constraints, such that the total amount of bandwidth required by allocated matchings
must not exceed both the input and output bandwidth capacities of each tier.

Here, the optimal timeslot allocation problem (TAP) was mathematically formulated using two
or more tier resources and multiple packet classes. The objective of the TAP was to maximize the
matchings between endpoints in a given timeslot with the bandwidth constraints satisfied, such that
congestion cannot occur.

Consider a network with N endpoints where endpoints are denoted by 1, . . . , N . Each endpoint
potentially has requests for any other endpoint. Let Dij (t ) denote the total demand of packets wait-
ing to be transferred from endpoint i to endpoint j at timeslot t . Dij can be described using a data
structure: (i , j , and t imeslots’ need). Figure 2 shows the demand requests of one timeslot with
six active flows. For simplicity, a full bisection bandwidth network that is capable of supporting any
traffic, where each node was paired to at most one other node per timeslot, was assumed.

The controller’s timeslot allocation algorithm can be described as follows: Each Dij is assigned
a priority number based on some schedule strategy, that is, max-min fairness or minimizing flow
completion time. In the beginning of timeslot t , the controller processes all Dij in non-decreasing
order based on priority numbers. Timeslot t can be assigned to pair (i , j ) if there is no another
packet starting from endpoint i or destined to endpoint j in this timeslot. Step by step, at the end of
algorithm, maximal matching is achieved between endpoints that are allocated to the timeslot. As

Figure 2. A case of demand needed in a simple data center with five endpoints.

Figure 3. Procedure of timeslot allocation. The controller allocates current timeslot to remaining demands.
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shown in Figure 3, the controller always maintains a list of requests from unassigned endpoints and
allocates the current timeslot to the remaining flow demands. Note that the newly received demands
are also merged to the remaining demand set.

Algorithm 1 Timeslot allocation design
Input:

<RemainingDemand, NewlyDemand>
Output:

Allocated Matching
1: DemandListDRemainingDemandCNewlyDemand;
2: Order DemandList based on allocation policies and generate DemandOrder;
3: while ADHCDemandŒi �<C do
4: AllocatedMatchingDAllocatedMatchingC(src,dst)i ;
5: ADH=ADH+DemandŒi �;
6: i CC;
7: end while

(a) timeslot allocation of timeslot 

(b) timeslot allocation of timeslot  +1

Figure 4. A simple example of timeslot allocation, using min-max-min Maximum Transmission Unit
(MTU)’s policy.
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Algorithm 2 Timeslot allocation model
Input: <RemainingDemand, NewlyDemand>
Output: Allocated Matching

1: DemandListDRemainingDemandCNewlyDemand;
2: Order DemandList based on allocation policies and generate DemandOrder;
3: while ADHCDemandŒi �<C do
4: AllocatedMatchingDAllocatedMatchingC(src,dst)i ;
5: ADH=ADH+DemandŒi �;
6: i CC;
7: end while
8: RemainingDemandDDemandList�AllocatedMatching;
9: return AllocatedMatching;

3.2. Algorithm demonstration

At the first glance, this problem only needed to be solved in the conventional way, that is, short-
est flow or data first (SF), by resorting to the global network view of the controller. Unfortunately,
such a singsong scheduling strategy can potentially lead to some consequences, that is, SF is likely
to starve some large flows. In the following, various timeslot allocation strategies are used in
different timeslots.

In this paper, the controller was allowed to order the demands by first performing the fewest
remaining MTUs and then the largest remaining MTUs, then the few remaining MTUs again,
namely, min-max-min MTUs. As a result, large flows do not need to wait for a long time, but short
flows can be finished rapidly. For simplicity, here, we assume one bit for each source and for each
destination.

Figure 4 demonstrates the allocation of one timeslot in a simple network with five endpoints. The
left panel of Figure 4 shows the demand list rearranged for min-max-min MTUs’ purpose, while
the right panel shows the bandwidth constraints that should be satisfied. Figure 4(a) is the allocation
of timeslot t . The controller first allocates the pair of (3,5). Because source 3 and destination 5
are available, the pair can be allocated. However, the second pair (3,2) cannot be allocated because
source 3 has already been allocated. In this similar way, maximal matching can be reached (3,5),
(1,3), (2,1), and (5,4) at timeslot t .

Ideally, the controller can process the remaining demands as soon as it is produced. Figure 4(b)
shows the timeslot allocation at timeslot t + 1. However, contrary to the aforementioned sequence,
the controller must reorder demands before allocating timeslots. Because the pair of 3 and 5 no
longer requires any timeslot, it is removed. The procedure of allocation is the same as timeslot t . At
last, we will get a matching of (4,1), (5,4), (3,2), and (1,3).

For min-max-min MTU policy, every time the controller chooses matching for a new times-
lot, it should reorder the demands. To reduce the overhead of processing and reordering demands,
demands can be kept in roughly the correct order, while the controller allocates a batch of four
timeslots in one shot.

Speeding up the process: It is important for the controller to calculate the new assignment
quickly in order to promptly adapt to network dynamics and meet low latency and high throughput
requirements.

However, finding an allocation with a maximum matching is expensive. To reduce allocation time,
a fast data structure, the bitmap table was used to produce a fast operation in a heuristic way. In
a bitmap table, ‘1’ indicates that the pair cannot communicate in that timeslot, while a ‘0’ indicates
otherwise [14]. The algorithm was sped up using a ‘find first set’ operation.

4. PATH SELECTION

In this section, we first modeled our path assignment problem as a bin-packing problem and then
present a hybrid genetic algorithm to solve this problem.
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Algorithm 3 Path selection
Input: Allocated matching
Output: RouTing path

1: Compute the demand of each ToR switch;
2: Sort ToR switches in the decrease order of the corresponding demand;
3: Choose Agg and Core switches.
4: Select Agg switches.
5: Sort the Agg switch’s bandwidths;
6: Initialize setNumAgg;
7: for each i in NumToR do
8: Sequentially find an allocated Agg switch j with the spare space being larger than ToR

demand i;
9: if no spare space for all allocated Agg then

10: allocate a new Agg switch;
11: allocate the new AggID to this ToR demand;
12: else
13: allocate Agg switch j to this ToR demand;
14: end if
15: end for
16: Select Core switches and operate as the same in Step 4-15.

4.1. Design of path selection process

A critical requirement for congestion-free network is to assign packets to idle paths. No path
selection should assign one link to multiple packets in a single timeslot. In common data center
topologies (e.g., multi-rooted trees), there are redundant paths between endpoints. The rearrangeably
non blocking (RNB) property guarantees that once the timeslots are allocated, path selection assigns
packets to available paths through the network [15] .

Modern data center networks are constructed into tiers. Typical architectures today consist of
three-level trees of switches or routers (e.g., fat-tree): ToR, Agg, and Core. In the higher levels of the
hierarchy, there is a larger switching capacity to aggregate traffic between the edges. For simplicity,
it is here assumed that host to switch links were 1GigE, links between ToR and Agg were 2GigE,
and links between Agg and Core were 4GigE.

The path selection problem is a variant of multi-dimensional hierarchy bin-packing problem,
where the resources are the bins and the packets are the objects. Multi-dimensional bin-packing
problems are NP-hard [9, 16]. The objective of path selection is to minimize resource usage and
path length used by packet traffic. The notion of minimize resource usage and link length (MRL) is
here defined. Two types of resources were used: switches and links. Typically, assigning packets to
different switches will result in different MRL. For simplicity, each packet was first directly assigned
to its one-hop ToR switch.

Algorithm sketch: A given set of packets were sorted by decreasing traffic volume, and an attempt
was made to assign them one by one (i.e., packets with most traffic are assigned first). ToR, Agg,
and Core switches are here modeled as bins of three different sizes. To assign a given packet, all
switches were considered possible candidates to host this packet and pick the assignment that results
in the smallest MRL. This was processed in a hierarchical way, that is, first, all the packets were
loaded into ToR bins, then the ToR bins were loaded into Agg bins, and at last the Agg bins were
loaded into Core bins.

MRL consideration: For each potential assignment, the additional resource usage and path
length must be found. Considering the data center topology, the upper switches must be used as
little as possible.

In this way, bins (switches) may have some spare space. This may waste some resources. How-
ever, experimental results indicate that a congestion-free routing strategy can observably reduce the
tail of the packet delay distribution, which significantly improved network efficiency.
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4.2. Design of hybrid genetic algorithm

To solve a multi-dimension bin-packing problem, the problem was first approximated with a greedy
algorithm, which combined the advantages of both the NF algorithm and SGA. By emulating bio-
logical selection and reproduction, the algorithm can search the problem domain in a general,
representation-independent manner very effectively. Here, a sliding window was used to identify
highly fit sequences and identify reduction for their preservation. When these sequences were
optimal, the chromosome could be reduced and the sequences preserved by movement to the front
of the chromosome. NF served as the objective function for the following reasons: First, NF is by
far the simplest of the algorithms to implement; its O(n) efficiency proves more cost-effective than
the O (nlogn) efficiency of the other methods. Second, because we do not know when a packet
arrives and what its size may be, the bin packing is somehow an online problem, and NF can solve
online problems better than other methods can. This idea has been applied with success to a genetic
algorithm for bin packing.

5. PERFORMANCE EVALUATION

The performance of congestion-free routing strategy was evaluated through a series of simulations.
Congestion-free routing’s performance was compared to that of existing data center transports,
TCP and DCTCP. These were compared with respect to throughput, queueing, and latency.
The congestion-free strategy proposed here performed better than TCP and DCTCP in detailed
packet-level simulations.

5.1. Experimental setup

The experimental settings, including the data center topology and traffic workloads, are here
described, and the protocols are compared.

Data center topology: Here, three-tier topology comprising layers with 16 ToR switches, eight
aggregation switches, and four core switches is used. The topology interconnects 64 hosts through
16 ToR switches that are divided into four parts, which are in turn interconnected via four core
switches. In the baseline topology, the servers attached to the ToR switches with 1 Gbps links. The
ToR switches connected to each Agg switch with two 2 Gbps uplinks, and each Agg switch con-
nected to core switches with four 4 Gbps uplinks. Note that there was a 2:1 oversubscription at the
ToR level, typical of today’s data center deployments. Through the experiments, one server is set
aside for running the controller.

Traffic workloads: A simple program was developed to generate the traffic. It was here assumed
that flows arrived in a pattern of Poisson process and two servers were randomly chosen as its
sender–receiver pairs. Because the goal of the study was to address network congestion, a Poisson
arrival interval was set to 10 ms and timeslot to 1 s. Flow sizes were drawn from the interval (2 KB
and 198 KB), and packet sizes were drawn from the interval (64 B and 1513 B). Both of them showed
a uniform distribution.

Protocols compared: Congestion-free strategy, TCP, and DCTCP are compared. TCP uses the
endpoints to control the transmission rate and switches to choose the transmission paths. For TCP,
all the flows and endpoints were treated the same way, meaning that all the flows were equally sched-
uled. The only difference between TCP and DCTCP was that DCTCP prevented queue buildup and
so prevented timeouts. TCP and DCTCP were also implemented in the same data center topology
described previously.

Performance metrics: For deadline-constrained traffic, application throughput served as a met-
ric, here defined as the fraction of flows that met their deadlines. Meanwhile, for the queuing in
switch, the queue length was used at the receiver’s switch port. For the latency, RTT served as a
performance metric.

5.2. Throughput evaluation

This experiment was performed to determine whether congestion-free strategy could reach the same
throughput as TCP or DCTCP in the presence of long-lived flows. For simplicity, the number of
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Figure 5. Comparison of congestion-free with transmission control protocol (TCP) and data center trans-
mission control protocol (DCTCP) in terms of application throughput.

flows was kept constant during the experiment, and the data of flows was sent at a constant speed.
The number of flows ranged from two to eight. We also consider the N flows with identical RTTs,
sharing a single bottleneck link of capacity C . Note that each flow was from a different server
sending to the same receiver.

Three schemes were compared: (i) standard TCP, (ii) DCTCP with 30 KB marking threshold,
and (iii) DCTCP with 60 KB marking threshold. For DCTCP, there was a simple active queue man-
agement scheme, the marking threshold, K. An arriving packet was marked with the Congestion
Experienced (CE) code point if the queue occupancy was greater than K upon its arrival. Note that
the K was set as 30 and 60 KB. Also, two kinds of values of C , for example, 1 and 10 Gbps, were
used.

Analysis: The results are shown in Figure 5. The congestion-free strategy showed only slightly
less throughput than TCP and DCTCP with 1 Gbps link, while both TCP and DCTCP achieved
the maximum throughput of 0.945 Gbps. The throughput becomes gradually less effective as the
number of flows increases. Then, the experiment was repeated with a 10-Gbps link. Figure 5(b)
shows the throughput results. While TCP and congestion-free strategies maintained the throughput
similar to that maintained with the 1 Gbps link, the DCTCP performance was sensitive to value of
K. At 30 KB, the DCTCP performed worse than the congestion-free strategy.

5.3. Queuing evaluation

In congestion-free strategy, queuing may occur at a switch’s port, while packets from multiple end-
points might arrive together. If the endpoints transmission time controlled by controller is not precise
enough, the queuing becomes worse. In this section, a simple application was developed to funnel
traffic to a single receiver. The server requests were generated as a Poisson process in an open loop
fashion. That is, new requests were triggered independently of prior requests. Each server made two
requests per second on average, while the senders established connections to the receiver and sent
data as fast as they could. During the transfer, the queue length was sampled at the receiver’s switch
port every 200 ms. In this section, the congestion-free strategy was compared to standard TCP and
DCTCP (K = 20 KB).

A huge difference in queue length was observed among TCP, DCTCP, and the congestion-free
strategy. Figure 6 shows the variation of queue length over time. Results showed that both TCP and
DCTCP (K = 20 KB) queue lengths varied widely, especially TCP. Both of them were maintained
at high levels. On the contrary, the queue length of congestion-free strategy was remarkably small
and did not vary widely, even so much as the optimized queue-based DCTCP with a low marking
threshold. Meanwhile, the CDF in Figure 7 shows that congestion-free strategy queue length is
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Figure 6. Switch queue lengths sampled at 200 ms intervals on the ToR switch. TCP, transmission control
protocol; DCTCP, data center transmission control protocol.
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Figure 7. CDF of queue lengths with data center transmission control protocol (DCTCP) and congestion-free
strategy.

stable around two packets while the DCTCP (K = 20 KB) queue length was around 20 packets and
TCP queue length is 10 times larger than DCTCP. Considering the aforementioned statement, it
is observable that the congestion-free method achieves a suitable throughput, even at very small
queue length.

Analysis: Switch’s dynamic buffer allocation policy[17] caused TCP and DCTCP to use queues
to absorb data bursts. If packets arrived faster than the router (or switch) can process, the router (or
switch) placed them into the queue (also called the buffer) until they could obtain enough resources
to transmit them. The difference between TCP and DCTCP was that the DCTCP senders started
reacting as soon as queue length at a given switch port exceeded K. This reduced queueing delays
on congested switch ports, but it could not eliminate the queues. However, the congestion-free strat-
egy used a centralized global controller to assign timeslots to senders, which in turn keeps queues
relatively empty and greatly mitigated costly packet losses that can lead to timeouts.
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Figure 8. Congestion-free round-trip time (RTT) computed with a widely range of workloads in comparison
with transmission control protocol (TCP). DCTCP, data center transmission control protocol.

5.4. Latency evaluation

Here, the RTT of interactive requests was used to evaluate the latency under high load. Network
tools like ping tests and trace routes were used to measure latency by determining the time it takes
a given network packet to travel from source to destination and back, the so-called RTT.

These experiments were performed using TCP and DCTCP. For DCTCP experiments, K was set
to 20 on 1 Gbps links. The interactive requests (e.g., query) were time-sensitive, and the completion
time was the most critical point, although the RTT was a key indicator. Figure 8 shows the median,
95th, 99th, and 99.9th percentiles of RTT (ms). The results showed that congestion-free strategy
performs significantly better than TCP and DCTCP. It is here visible that, with TCP, the RTT of
interactive requests is substantially worse at the tail of the distribution than at other points while
congestion-free performance was unchanged and maintained significant reductions.

Analysis: Note that network delay included four parts: processing delay, queuing delay, transmis-
sion delay, and propagation delay. Queuing delay is a key component of network delay. So even
with the added round-trips to the controller, end-to-end latency was substantially lower than TCP.

6. DISCUSSION

6.1. Packet-based transmission

In this paper, a congestion-free routing strategy on the granularity of packets is proposed. Existing
switching methods used for data center can be classified as flow switching, packet switching, or
flowlet switching. Flow switching is suboptimal for ‘heavy’ flow distributions with large flows. A
flowlet is a burst of packets from the same flow followed by an idle interval. However, it is unclear
whether the low intra-data center latencies can meet the timing requirements of flowlet bursts to
prevent packet reordering and still achieve good performance. The gaps needed for flowlets may be
rare in the very high bandwidth of internal data center.

For scalability and reliability, packet was selected as the schedule unit. Packet switching is
optimal, but it required a reordering-resilient mechanism. To the extent that reordering occurs today,
many technologies have been proposed. RR-TCP [18] is a reordering-robust TCP with TCP senders
extended to distinguish between reordering and loss. This provides us a false fast retransmit-avoid
and transmission improvement over paths that reorder or delay packets.
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6.2. Explicit path control over allocated paths

Once the paths were allocated by the controller, the routing of packets to the paths allocated to them
must be guaranteed. This requires explicit control of the routing path over the underlying topologies.

In software-defined data center networks, OpenFlow [8, 19] has been used in many recent pro-
posals, such as Hedera [7], MicroTE [20], and ElasticTree [21] to enable explicit path control.
OpenFlow can establish fine-grained explicit routing path by installing flow entries in the switches
via the SDN controllers.

Current numerous companies and research institutions have presented their own controller solu-
tions. Ryu is one of an Apache-licensed open source software for building software-defined
networks. It offers software components with well defined API that make it easy for developers to
create new network management and control applications. Ryu is fully written in Python.

7. RELATED WORK

Broadly speaking, the prior work on addressing congestion-aware load balancing can be classified
as either centralized scheduling (e.g., Hedera [7]), in-network mechanisms (e.g., Flare [22]), or
host-based transport protocols (e.g., multipath TCP (MPTCP) [23]). These approaches all have
their limitations.

Traditional traffic engineering mechanisms for WAN use centralized ways of providing better
load balance and network sharing, but they operate at coarse timescales (hours) based on long-term
estimates of traffic matrices. Hedera collects flow information from constituent switches, computes
non-conflicting paths for elephant flows, and instructs switches to re-route elephants accordingly
[7]. Its goal was to maximize aggregate network utilization, and there is no solution that can reduce
network latency. The data center time division multiple access (TDMA) Media Access Control
(MAC) layer is implemented for commodity Ethernet hardware that allows link bandwidth and
switch buffer space are partitioned to flows, while only schedule elephant flows and short flows
are delegated to other means [24]. Recently, B4 and SWAN have been proposed, and the two have
nearly ideal performance. They classify modern WAN traffic into three categories and operate over
minutes, which is not suitable for highly volatile data center networks. The current method is similar
to Fastpass in that it uses a centralized method to determine when and how a packet should be
transferred, while Fastpass is suitable for two-tier data center [14]. The current method is more
scalable for all kinds of data centers.

In-network mechanisms and host-based transport protocols have a distributed traffic schedule.
Distributed approaches always use endpoints to make packet transmission decisions and switches to
make path selection. These result in a loss of control over intra-data center network. Flare proposed
multiple paths in the wide area on the granularity of local congestion-aware processes, which han-
dles asymmetry only poorly [22]. TeXCP [25] and MATE [26] perform dynamic traffic scheduling
across multiple paths using explicit congestion notification packets, which are hard to be imple-
mented directly in switch hardware. CONGA [27] is conceptually similar to TeXCP in that it uses
pathwise congestion metrics but it is significantly simpler. It splits TCP flows into flowlets. How-
ever, CONGA may not achieve the optimal traffic balance in networks with three or more tiers
because it only controls the load balancing decision at the leaf switches.

The host-based transport protocol, MPTCP [23], splits each connection into multiple sub-flows
and schedules them based on perceived congestion. While MPTCP is effective for load balancing,
the sub-flows can also increase the burst of traffic, making the method difficult to implement.

8. CONCLUSION

A centralized traffic engineering mechanism using an SDN controller to determine when each packet
should be transmitted and what path it should follow is here presented in the interest of improving
network congestion-free performance. The congestion-free strategy design involves two key com-
ponents: (i) Timeslot assignment algorithm uses a fast maximal matching to determine the time

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 27:5735–5748
DOI: 10.1002/cpe



CONGESTION-FREE ROUTING STRATEGY 5747

at which each packet is transmitted, and it reaches specific objectives such as max-min fairness,
minimizing the flow completion times and (ii) path selection algorithm at the SDN controller is
constructed as a bin-packing problem to determine each packet’s path. Extensive evaluation with
a simulation experiment demonstrated that this congestion-free routing strategy performed well in
throughput, queuing, and end-to-end RTT and can significantly reduce the queue length and median
ping time while maintaining a throughput similar to that maintained by DCTCP.
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